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Abstract: Grain protein fractions have great potential as ingredients that contain high amounts
of valuable nutritional components. The aim of this study was to study the rheological behavior
of destarched oat and pea proteins and their blends in extrusion-like conditions with a closed
cavity rheometer. Additionally, the possibility of producing fibrous structures with high-moisture
extrusion from a blend of destarched oat and pea protein was investigated. In the temperature
sweep measurement (60–160 ◦C) of the destarched oat protein concentrate and pea protein isolate
blend, three denaturation and polymerization sections were observed. In addition, polymerization
as a function of time was recorded in the time sweep measurements. The melting temperature of
grain proteins was an important factor when producing texturized structures with a high-moisture
extrusion. The formation of fibrillar structures was investigated with high-moisture extrusion from
the destarched oat and pea protein blend at temperatures ranging from 140 to 170 ◦C. The protein–
protein interactions were significantly influenced in the extruded samples. This was due to a decrease
in the amount of extractable protein in selective buffers. In particular, there was a decrease in
non-covalent and covalent bonds due to the formation of insoluble protein complexes.

Keywords: closed cavity rheometer; destarched oat protein concentrate; high-moisture extrusion

1. Introduction

In recent years, heightened concerns over the sustainability of animal protein pro-
duction and the influence of red and processed meat on health have boosted the demand
for plant-based high-protein foods [1]. According to Afshin et al. [2], the global consump-
tion of processed meat is 90% higher and the intake of red meat is 18% higher than that
recommended. One way of limiting meat consumption is by offering tasty, easy-to-use
plant-based alternatives to replace animal protein products [3]. Traditional plant-based
foods that have been used as meat replacers include tofu and tempeh, which are produced
from soybean or fava beans, and seitan made from wheat gluten [4–6]. Modern meat
analogs, such as sausages or patties, are generally made from soy or pea protein [7].

Usually, these types of meat-analog products are made from texturized vegetable
protein (usually soy) obtained through low-moisture extrusion using a combination of
hydrocolloids, such as carrageenan and methylcellulose [8,9].

Extrusion technology can be utilized to create fibrous products from plant proteins
that have high moisture content (40–80%) and fibrous, non-expanded textures [10]. Studies
have demonstrated that similar fibrous structures can be made from soy and pea protein
isolates as well as wheat gluten [11–13]. In addition, oat and pea protein blends have been
used to produce fibrillar structures using a twin-screw extruder without cooling die [14,15].
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For example, De angelis et al. [15] produced meat analogs from an oat and pea protein
isolate blend (ratio 30:70 w/w%) using low-moisture extrusion with parameters such as a
screw speed of 600 rpm and an extrusion temperature of 150 ◦C.

During extrusion, plant-based proteins are modified by pressure, thermal and mechan-
ical forces. The barrel of the extruder is used in heating and maintaining the temperature
whilst the shear of the screws leads to mechanical and thermal forces [11]. The extrusion
process can result in the denaturation of proteins as well as changes in the molecular
structure, which can lead to the formation of protein aggregates. Additionally, proteins
undergo unfolding and cross-linking during the extrusion, which leads to the formation of
protein–protein and protein–non-protein polymers with large molecular weights [16,17].
To generate a fibrous structure, a long cooling die is required at the end of the extruder
in order to promote the reorientation in the flow direction to form an anisotropic protein
network [18]. Furthermore, the cooling die prevents the extruded material from expanding
or puffing, which often happens in low-moisture extrusion.

The extrusion process is described as a “black box” due to a poor understanding of
what happens to the proteins within the barrel [10]. One method to study the behavior
of proteins in extrusion-like conditions is a closed cavity rheometer, used in the rubber
industry to study the melting properties of polymers [19]. The closed cavity rheometer
combines the advantages of conventional rheometers with high shear cells and therefore can
be used to study biopolymeric melts. Similar treatments to extrusion (i.e., high temperature
and high mechanical torque) can be applied directly to the studied sample at elevated
pressure and without evaporation of water. The closed cavity rheometer has been used to
define the behavior of plant-based proteins such as wheat gluten [19], rapeseed [20], pea
and soy proteins [21]. Despite a great number of studies on high-moisture extrusion, there
are not many scientific studies on the “melting” properties of oat proteins or oat proteins
mixed with other grain legume protein sources, such as pea.

The aim of this study was to examine the behavior of oat and pea proteins and their
blend in extrusion-like conditions with a closed cavity rheometer. Additionally, fibrous
structures formed by high-moisture extrusion from a blend of destarched oat and pea
protein were investigated.

2. Materials and Methods
2.1. Materials

Commercial pea protein isolate (PPI) was obtained from Roquette (Nutralys F85M,
Roquette, Lestrem, France). Commercial wheat gluten (WG) was obtained from Kröner
Stärke (Vital Wheat Gluten, Kröner-96 Stärke, Ibbenbüren, Germany). Oat protein concen-
trate (OPC) was kindly provided by Fazer Mills (Lahti, Finland). Thermostable bacterial
α-amylase Gamalpha Spezial (activity according to specifications was 200,000 TAU/g) was
obtained from AB-enzymes (Darmstadt, Germany).

2.2. Preparation of Destarched OPC

The oat protein concentrate (30% w/w) was mixed with water (70% w/w) and 1%
of the total volume of α-amylase was mixed with water before adding the oat protein
concentrate. The oat–water suspension was heated in a drying oven (Memmert GmbH,
Buechenbach, Germany) at 80 ◦C for 15 min, and the suspension was mixed by shaking
it vigorously by hand in five-minute intervals. Heat-treatment of the suspension was
continued in a dry cabinet at 50 ◦C for 30 min under continuous mixing. This was done to
completely homogenizing the suspension and to allow the further hydrolysis of starch. The
hydrolyzation of starch was determined visually in the drop of viscosity. The suspensions
were centrifuged (Beckman, Avanti J25l, Palo Alto, CA, USA) (9000 rpm, 14,335× g; 10 min;
20 ◦C). After centrifugation, the supernatants were discarded and the precipitates were
dried in a cabinet vegetable dryer (Orakas, Lemi, Finland) at 50 ◦C for 6 h. The dried pre-
cipitates were then milled to a fine powder with a centrifugal mill (Retsch, Haan, Germany)
using 8000 rpm rotor speed and a 0.5 mm sieve.
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2.3. Proximate Composition of the Raw Materials

The protein content (total nitrogen × 6.25) was determined by using the Kjeldahl and
Dumas methods according to the methods by the international organization for standard-
ization (ISO) 8968-1:2014 and ISO 16634-2:2016, respectively. Ash, lipids, and moisture
content were determined according to the methods ISO 8070:2007, ISO 1735:2004, and
IDF26A:1993, respectively.

2.4. Characterisation of Oat Proteins

The oat proteins of destarched OPC samples were characterized with sodium dodecyl
sulphate polyacrylamide gel electrophoresis (SDS-PAGE) fractionation using 10% Bis-Tris
gel (Thermo Fisher Scientific, Invitrogen, Carlsbad, CA, USA), with non-reduced and
reduced 10% 3-(N-Morpholino)propane sulfonic acid (MOPS) running buffer and the
reducing agent was mercaptoethanol. SeeBlue Plus 2 Pre-stained Protein Standard (Thermo
Fisher Scientific, Invitrogen, Carlsbad, CA, USA) was used as a molecular weight marker,
and protein bands were stained with Coomassie Brilliant Blue.

2.5. Rheological Properties

The samples for rheological measurements were prepared by mixing protein materials
with water (Table 1) for approximately 6 min at room temperature in a Farinograph
(Brabender, Duisburg, Germany) with a 50 g mixing bowl. The mixed samples were
packed in a sealed plastic bag and were stored at 8 ◦C until the samples were analyzed the
following day. The samples were taken out from the cold storage 1 h before the rheological
measurement. The rheological properties of protein materials were analyzed with a closed
cavity rheometer (CCR) (APA2000, Alpha Technologies, Columbia, IN, USA). The samples
(approximately 5.0 ± 0.5 g) were placed in the rheometer cavity between two plastic films.
The plastic films were used to protect the CCR equipment. The cavity was bi-conical, where
the lower cone was driven by a motor in an oscillatory movement and the upper cone
was stationary. The cones had large grooves to prevent slippage and the sealed cavity was
pressurized during measurements to prevent water evaporation. The height of the gap
between the plates was between 0.48 and 3.0 mm from the center to the edges of the cones
and the diameter was 44 mm.

Table 1. The measured ratios of destarched oat protein concentrate, pea protein isolate, wheat gluten,
and destarched oat protein concentrate with pea protein isolate for the closed cavity rheometer
measurements.

Sample Protein Powders (%) Water (%)

Wheat gluten 55 45
Destarched oat protein concentrate 55 45

Pea protein isolate 55 45
Destarched oat protein concentrate + pea protein isolate 30 + 25 45

Temperature sweep tests were performed following Emin et al. [19] with slight mod-
ifications. Temperature sweeps were done using temperatures between 60 and 160 ◦C
(heating rate 5 ◦C/min), with a low strain of 1.5% and a low frequency of 1 Hz. After
reaching 160 ◦C, the samples were cooled down to 30 ◦C by blowing air directly onto the
sample. In the time sweep measurements, changes in the complex module G* as a function
of time were followed for 10 min, and the temperature, strain, and frequency were kept
constant at 140 ◦C, 80%, and 10 Hz, respectively. The parameters were chosen based on the
method presented by Geerts et al. [22] with slight modifications based on the temperature
sweep results. Rheological measurements were outside of the linear viscoelastic range
(LVE) and therefore a complex modulus G* was reported. Each experiment was replicated
three times.
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2.6. High-Moisture Extrusion Cooking

Two extrusion mixtures were prepared, extrusion mixture 1 (EM 1), consisting of 60%
PPI and 40% destarched OPC, and extrusion mixture 2 (EM 2, control sample), consisting
of 100% PPI. The behavior of PPI in the high-moisture extrusion process was characterized
in a previous study by Osen et al. [12] and was thus chosen as a control sample. The
extrusion mixtures were blended with 50% water inside the extruder, which was calcu-
lated from the rate of water feed. The extrusion mixtures were extruded with a lab-scale
high-moisture twin-screw extruder (Process 11 Hygienic, Thermo Scientific, Karlsruhe,
Germany), equipped with a cooling die with dimensions of 4 × 20 × 250 mm (H × W × L).
The process parameters were as follows: sample feed rate in the gravimetric sample feeder,
300 g/h; water feed rate, 330 mL/h; and screw speed, 300 rpm. The diameter and the length
of the screws were 11 mm and 48 cm (L/D of the screws was 1:40). A more detailed descrip-
tion of the configuration of the screws is presented in the study by Nyyssölä et al. [23]. The
barrel of the extruder consisted of eight heating blocks; the temperature of the first to the
fifth block was kept constant (50, 60, 90, 120, and 130 ◦C). The temperatures from the sixth
and seventh heating blocks were changed from 140 to 170 ◦C to study how the structure of
the extruded product changed as a function of temperature. The temperature of the final
heating block was kept constant at 115 ◦C. The temperature of the cooling die was 30 ◦C.
Other parameters, such as torque (Nm), die pressure (bar), and melt temperature before the
cooling die (◦C), were recorded when the extrusion process reached a steady state. Once
the steady state was achieved the samples were collected in set temperatures (140, 150, 160,
and 170 ◦C).

2.7. Characteristics of the Extrudates
2.7.1. Textural Properties

The cutting strengths of the extrudates were analyzed with an Instron universal testing
machine (Instron 33R 4456, High Wycombe, England) using the Allo-Kramer shear cell
with cutting blades while using a 5 kN load cell and cross-head speed of 400 mm/min.
The samples were cut to 60 mm slices. The sample width (20 mm) and height (5 mm)
were constant due to the cooling die dimensions. The samples were placed in the Instron
longitudinally and blades of the Allo-Kramer shear cell cut them transversally. Three
replicate measurements were carried out for each sample.

2.7.2. Protein–Protein Interactions of Extrudates

Protein–protein interactions of EM 1 were determined following the method of
Pietch et al. [24] with slight modifications. The extrudates from the high-moisture extrusion ex-
periment were dried in a freeze dryer (Christ, Alpha 1-4 LDplus, Osterode am Harz, Germany)
for 48 h. The freeze-dried samples were ground with a Bamix mixer to a fine powder. The
extractability of proteins from EM 1 was determined with three sodium phosphate buffer
solutions (pH 6.9). The first buffer was 0.2 M sodium phosphate buffer (PB) and disrupted
electrostatic interactions. The second buffer solution was 0.2 M PB with 17.3 mM sodium
dodecyl sulfate (SDS) and 8 M urea to disrupt non-covalent interactions. The third buffer
solution was 0.2 M PB with 17.3 mM SDS, 8 M urea, and 10 mM of the reducing agent
dithiothreitol (DTT) to disrupt the covalent and non-covalent interactions. The following
extraction was done similarly in all buffer solutions. Ground samples (200 mg) were
dissolved into 20 mL of buffer solution. The samples were first mixed with a vortex mixer
and then mixed for 1 h with a magnetic stirrer. After this, the samples were centrifugated
at 4637× g for 1 h and supernatants were collected for analysis of the protein content. The
extractable protein content from the first buffer solution was analyzed in duplicate using a
Dumas (Leco Corporation, City, MI, USA) according to ISO 16634-2:2016. The extractable
protein contents from the second and third buffer solutions were determined using a
Bio-Rad DC protein assay (Bio-Rad, Hercules, CA, USA), according to the manufacturer’s
instructions, and by analysis of the samples at 750 nm with a UV-Vis spectrophotometer
(UV-1700 PharmaSpec, Shimadzu, Kyoto, Japan). Bovine serum albumin was used as a
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standard protein. Measurements were replicated three times with duplicates resulting in a
total of six values per extrudate. The extractable protein is expressed as a percentage of the
total protein content in the untreated freeze-dried sample.

2.8. Statistical Analysis

All results were expressed as means ± standard deviation of at least triplicate mea-
surement, if not mentioned otherwise. One-way ANOVA was used for statistical analysis
of cutting strength and extractable protein and this was followed by Tukey’s honestly
significant difference (HSD) with p < 0.05. Statistical analysis was performed using Minitab
Statistical Software v. 20.1.1 (Minitab, Inc., State College, PA, USA).

3. Results and Discussion
3.1. Proximate Composition of the Raw Materials

The proximate composition of the raw materials was determined, and the composition
of the extrusion mixtures was calculated based on the composition presented in Table 2.

Table 2. The chemical composition of the commercial raw materials, destarched oat protein concen-
trate, and a blend of these proteins. The calculated proximate compositions of the extrusion mixtures
EM1 (destarched OPC + PPI) and EM2 (PPI) are shown.

Sample Protein (wt%) Fat (wt%) Ash (wt%) Moisture (wt%)

Oat protein concentrate 25.6 ± 0.0 4.9 ± 0.2 4.0 ± 0.0 7.32 ± 0.0

Pea protein isolate 77.5 ± 0.0 8.9 ± 0.2 4.5 ± 0.0 6.9 ± 0.1

Destarched oat protein
concentrate 33.1 ± 0.4 6.79 ± 0.0 5.1 ± 0.0 11.6 ± 0.0

Pea protein isolate +
destarched oat protein

concentrate blend
60.0 ± 0.3 7.61 ± 0.1 5.0 ± 0.0 7.6 ± 0.1

EM 1 * 30 3.8 2.5 63.7

EM 2 (control) * 38.8 4.5 2.3 54.4
* Calculated from results based on PPI + destarched OPC mix and PPI, respectively.

3.2. Effect of Destarching on Oat Proteins

The SDS-PAGE was undertaken to determine whether the oat proteins were hy-
drolyzed during the destarching process due to the potential side activities of α-amylase.
The main oat protein band was approximately 50 kDa in the non-reduced SDS-PAGE
(Figure 1A) in both OPC and destarched OPC. Under reducing conditions, 30 kDa and
20 kDa bands were the most dominant. Walburg and Larkins [25] reported the 50 kDa
band to be the native oat globulin protein, which breaks into 30 kDa and 20 kDa subunits
in reducing conditions. The supernatant of destarched OPC did not contain any solubilized
globulins, but there was a noticeable band at the 50 kDa area. This band was a rectangular
shape. Mikola and Jones [26] reported that rectangular-shaped bands (similar to those in
the supernatant of destarched OPC) at 50 kDa area are serpins (serinase protein inhibitors).
Serpins do not usually show in the SDS-PAGE due to storage protein bands covering them.
Inhibitors are small proteins, which specifically inhibit the actions of target enzymes. Based
on the SDS-PAGE results, there were no noticeable changes in the protein structure.
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Figure 1. (A) Non-reduced 10% Bis-Tris gel and (B) mercaptoethanol-reduced samples of 10% Bis-Tris gel with indications of
the sample molecular weight (MW standard), oat protein concentrate (starting material), destarched oat protein concentrate
and destarched oat protein concentrate supernatant.

3.3. Rheological Properties

The complex modulus G* of wheat gluten (WG) was determined with temperature
sweep analysis by CCR to show that the gluten sample behaved similarly to the descriptions
presented by Emin et al. [19]. Three regions can be recognized from the graph (Figure 2A).
First there was a steep decline in the complex modulus (G*) at 70 ◦C, followed by an
increase in the complex modulus as the temperature rose (80–120 ◦C), and peak values
were achieved at higher temperatures (130–135 ◦C). The complex modulus decreased after
140 ◦C, which was due to the degradation of the WG structure [19].

With destarched OPC + PPI, the three areas where the complex modulus decreased
and increased can be seen (Figure 2B). The first area of the G* decline was at 80–90 ◦C,
there was a second small decline at 110 ◦C, and the third decline was observed at a higher
temperature (140 ◦C). A similar decline in the complex modulus was observed in the
sample with destarched OPC, which had a decline at 90 ◦C and another at 140 ◦C. In the
control sample made from PPI, the complex modulus first declined continuously from
60 to 120 ◦C and then started to rise.
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Figure 2. (a) The temperature sweep of wheat gluten (WG).; (b) The temperature sweep of pea protein isolate (PPI) (control sample), destarched oat protein
concentrate (OPC), and destarched oat protein concentrate (OPC) + pea protein isolate (PPI). The temperature range was from 60 to 160 °C, strain and frequency 

were kept constant (1.5% and 1 Hz, respectively).
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Figure 2. (A) The temperature sweep of wheat gluten (WG); (B) the temperature sweep of pea protein isolate (PPI) (control
sample), destarched oat protein concentrate (OPC), and destarched oat protein concentrate + pea protein isolate. The
temperature range was 60 to 160 ◦C and strain and frequency were kept constant (1.5% and 1 Hz, respectively).

The decline of the complex modulus at 80 ◦C can be associated with the denaturation
temperature of pea globulins [27]. There was a small decline in the complex modulus
at 110 ◦C, which can be associated with the denaturation of oat globulin proteins [28].
Additionally, there was a small decline of the complex module at 140 ◦C. In the extrusion
experiments (see Section 3.4), the changes in the melt temperature lower than 140 ◦C
did not produce clear fibrillar structures in the end products. Moreover, using the blend
of destarched OPC and PPI (EM1), a melt temperature of 140 ◦C or higher was needed
to create fibrillar structures in the product. The same was observed in the case of EM2.
When the melt temperature reached 120 ◦C, a fibrillar structure was observed. This
corresponds with the decline of the complex module of the control PPI sample at 120 ◦C.
A similar phenomenon has been reported previously. For example, Pietch et al. [24] utilized
high-moisture extrusion to produce a fibrillar structure from WG at 155 ◦C and the melt
temperature of WG was reported to be 130–135 ◦C [29]. These findings align with our WG
temperature sweep results.

Quevedo et al. [30] investigated the denaturation and aggregation behavior of whey
protein isolate (WPI) in extrusion-like conditions with CCR. They reported multiple regions
(I–IV) where the complex modulus decreased and increased due to the protein denaturation
and aggregation. Furthermore, onset denaturation and aggregation temperature can shift
depending on factors such as protein concentration, water content, and shear rates due
to the differences in denaturation kinetics [31]. For example, it has been reported that the
onset denaturation temperature of WPI decreased from 73 to 66 ◦C when shear rates were
increased from 0.06 to 50 s−1 [30]. The differences in protein concentration between the
samples could explain the noticeable change in the behavior of the complex modulus of
the PPI control sample compared to the other samples.

The time sweep measurements were carried out at 140 ◦C with a high strain (80%) and
high frequency (10 Hz) for 10 min. The conditions in the time sweep measurements were
set to mimic the process applied in the high-moisture extrusion at constant temperature. At
the beginning of the time sweep graphs (Figure 3), there was a noticeable decline and rise
in the complex modulus. This might have been due to the denaturation and aggregation
of proteins [22]. The sample with destarched OPC + PPI showed an increase of G* as
a function of time (Figure 3C). The complex modulus G* increased slowly (3 min) and
then reached a steady state. This type of behavior was not observed in the time sweep
graphs of the samples for PPI or destarched OPC alone. The sample with destarched OPC
(Figure 2B) had more deviation compared to the other samples because of the huge variance
between measured data points. The reason might have been that measurement was close
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to the detection limit of the CCR [20]. In previous studies, a similar type of behavior
was reported in the complex modulus with soy protein and the blend with soy protein
and wheat gluten, which were analyzed with a CCR with similar parameters [22,32].
Pietch et al. [11] suggested that this behavior was explained by the polymerization or
aggregation of proteins as a function of time.

(A) (B)

(C)

Figure 3. (a) Change in the complex modulus (G*) as a function of time of pea protein isolate.; (b) Change in the complex modulus (G*) as a
function of time of destarched oat protein concentrate.; (c) Change in the complex modulus (G*) as a function of time of destarched oat protein
concentrate + pea protein isolate. The temperature, strain, and frequency were kept constant in all of the measurements (140 °C, 80%, and 10 Hz,
respectively). All measurements were carried out in triplicates except (b). The standard error bars in the graph are the standard errors of that
specific point (n=3, and n=2 for b).

Figure 3. (A) Change in the complex modulus (G*) as a function of time of pea protein isolate; (B) change in the complex
modulus (G*) as a function of time of destarched oat protein concentrate; (C) change in the complex modulus (G*) as a
function of time of destarched oat protein concentrate + pea protein isolate. The temperature, strain, and frequency were
kept constant in all of the measurements (140 ◦C, 80%, and 10 Hz, respectively). All measurements were carried out in
triplicates except (B). The standard error bars in the graph are the standard errors of that specific point (n = 3, and n = 2
for (B)).

3.4. Structure Properties of the Extrudates

The ratio of PPI and destarched OPC in EM1 deviated from the blend that was used in
the CCR tests. It was presumed that the CCR blend had too low a protein concentration to
form any fibrillar structure in the high-moisture extrusion. This presumption was based on
earlier reports that recommend that, to achieve fibrillar structures, the protein concentration
should be between 50–70% [15,33]. For example, Angelis et al. [15] reported that suitable
protein concentrations for producing a meat analog from dry-fractionated pea protein
concentrate and commercial OPC should be above 50%.

Fibrous structures were successfully produced by high-moisture extrusion from EM1
and EM2 temperatures ranging from 160 to 170 ◦C (Figure 4). The control sample EM2 first
exhibited a dough-like structure at lower temperatures (120–150 ◦C). When the extrusion
temperature (>150 ◦C) and the melt temperature (>120 ◦C) increased, a noticeable forma-
tion of a fibrous structure with a smooth surface was achieved. In addition, Osen et al. [12]
reported that the macrostructure of an extruded fibrillar pea protein isolate product at
160 ◦C had a homogeneous structure with a smooth surface. Grabowska et al. [34] demon-
strated that when soy protein concentrate was processed with a high shear cell, it did not
form a fibrous structure at 120 ◦C, but when the temperature was raised to 140 ◦C, a layered
structure with thick fibers was observed. The EM1 required higher temperatures (170 ◦C)
and higher melting temperatures (140 ◦C) than EM2 to form similar fibrous structures. It
can be concluded that the temperature and the melting temperature had a noticeable effect
on the fibrillar structure of the extruded samples. Additionally, a fibrillar structure from
EM1 was successfully formed despite the low protein content (30%).
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When measuring the cutting strength with the Allo-Kramer shear cell, the orientation
of fibers is an important factor, which can lead to inaccurate results. It has been demon-
strated by Bouton et al. [35] that, in order to measure cutting strength from chicken, the
samples need to line up so that the blades cut perpendicularly through the muscle fibers.

The cutting strength increased in the EM1 sample from about 200 to 250 N when
the melt temperature increased from about 130 to 140 ◦C (Figure 5). Kennedy et al. [36]
reported a similar increase in the cutting strength of extruded decorticated cowpea meal.
They reported that, at the moisture content of 40%, the cutting strength increased from
259 to 342 N when the extrusion temperature was increased from 150 to 200 ◦C. Further-
more, the addition of destarched OPC decreased the cutting strength when compared
to the extruded sample made from PPI (EM2). The cutting strength of cooked broiler
Pectoralis major muscle considered tender or very tender has been reported to be 110 N and
patty made from a ground chicken file was 40 N [37,38]. The cutting strength of extrudates
was noticeable higher compared to the firmness of the chicken breast. High cutting strength
values for textured vegetable protein products have been previously reported by Saio [39].
He investigated the cutting strength of commercial textured or fiberized vegetable protein
products that were made from soy protein or wheat gluten. He reported that the mean
cutting strength value of texturized soybean products (sample size was 54) was 927 N and
the mean cutting strength value of wheat gluten products (sample size was 24) was 538 N.

The dominant protein–protein interactions of freeze-dried EM1 extrudates at dif-
ferent extrusion temperatures ranging from 140 to 170 ◦C were determined by using
buffer solutions to solubilize the proteins. The amount of extractable protein was signif-
icantly (p < 0.05) different between the selective buffers. The disruption of the weaker
electrostatic interactions with PB buffer (buffer 1) could release only <20% of the proteins
(Figure 6A). The extractable protein content was increased from about 10 to 60% when
non-covalent bonds (electrostatic, hydrophobic, and hydrogen bonds) were disrupted with
PB + urea + SDS (buffer 2) (Figure 6B). The solubility increased to 100% when the freeze-
dried extrudates were treated with PB + urea + SDS + DTT (buffer 3), which disrupted
non-covalent and covalent interactions (Figure 6C). These results are in accordance with
previous studies that have shown that non-covalent and covalent bonds are responsible for
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the low solubility of proteins in the extrudate samples of buffers with the same composition
as buffer 1 [18,40,41]. Furthermore, it has been suggested that non-covalent bonds, such as
hydrophobic interactions and hydrogen bonds, as well as covalent disulfide bonds play a
major role in the formation and stabilization of the rigid structures of extrudates produced
with high-moisture extrusion [18,42,43]. Additionally, the protein extractability decreased
significantly (p < 0.05) in buffer 2 when the extrusion temperature was raised from 140 to
170 ◦C compared to the untreated sample. However, the protein extractability decreased
significantly (p < 0.05) in buffer 3 only at 170 ◦C. This suggests that there was a decrease in
non-covalent and covalent bonds due to the formation of insoluble protein complexes.
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Effect of Extrusion Process on the Protein–Protein Interactions

Ottenburn et al. [44] have demonstrated the formation of isopeptides at elevated
processing temperatures. Isopeptides are a formation of heat-induced crosslinks between
aspartyl, glutamyl, and lysinyl residues. These chemical and enzymatically resistant
crosslinks decrease the extractability of proteins in selective buffers [45]. It has been
reported by Hurrel and Carpenter [46] that the formation of isopeptide bonds through
heating reduced the nitrogen and lysine digestibility by up to 20% due to the blocking
of the enzyme active sites. Hellwig et al. [47] demonstrated in an in vitro study that γ-
glutamyl-ε-lysine isopeptides had low digestibility. However, in vivo studies showed
the opposite results, demonstrating that rats were able to digest and absorb the lysine
bound in the glutamyl-lysine isopeptides [46,48]. Rather than glutamyl-lysine, which
had full bioavailability, β-aspartyl-ε-lysine appeared to be the reason for the decreased
protein digestibility [49].

Extrusion at high temperatures has been shown to decrease bioavailability of certain
amino acids and decrease protein digestibility [50]. For example, extrusion undertaken
with low or moderate moisture contents (15–30%) at temperatures from 160 to 170 ◦C has
been shown to decrease the lysine bioavailability in soy proteins [50]. On the other hand, a
study by MacDonald et al. [51] on the growth of rats showed that high-moisture extrusion
preserved the bioavailability of lysine. On the other hand, the opposite results have also
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been found, showing that extrusion improved the digestibility of pulse proteins [52]. For
example, Palanisamy et al. [52] showed that lupin proteins extruded at temperatures from
135 to 180 ◦C and at moisture contents from 40 to 55% had 3 to 6% higher digestibility
compared to the untreated raw material. Furthermore, Duque-Estrada et al. [53] studied a
soy protein meat analog that was made with a high-temperature shear cell at temperatures
of 100 to 140 ◦C. They reported that the in vitro protein digestibility of soy proteins did
not decrease despite the decrease in the protein solubility and the higher level of carbonyls
in the protein due to the thermomechanical treatment. The possible increase in protein
digestibility has been hypothesized to be caused by the unfolding of major globulins and
the inactivation of anti-nutrients, such as trypsin inhibitors [50].
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4. Conclusions

In this work, enzymatically hydrolyzed destarched OPC was successfully utilized in
high-moisture extrusion together with pea protein to create a meat analog with a fibrillar
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structure. This provides a novel product concept for the growing meat analog sector. The
enzyme treatment utilized in this work to produce the destarched oat protein concentrate
mimicked the enzyme treatment applied in the production of oat milk. The destarched oat
protein concentrate corresponded to the side-stream that is created during the removal
of the insoluble fraction from the enzymatically hydrolyzed oat suspension. The method
presented in this work could be potentially deployed to utilize this insoluble oat fraction to
create novel meat analogs together with other protein sources, such as pea protein. The
CCR was successfully utilized in the characterization of the denaturation and aggregation
behavior of destarched OPC, PPI, and their blend. In the extrusion experiments for both
extrusion mixtures, clear fibrillar structures were achieved at temperatures that were above
the highest temperature for which denaturation and aggregation were recorded in the tem-
perature sweep data. This observation raises an interesting question concerning whether
a CCR be used to determine the required melting temperature for which the formation
of fibrillar structures would be achieved with high-moisture extrusion. Additionally, the
protein extractability was significantly decreased at higher extrusion temperatures. It
has been shown that isopeptides form at high temperature conditions, which reduces
protein digestibility and decreases the bioavailability of certain amino acids such as lysine.
Furthermore, traditional oat protein ingredients need pre-treatments before they can be
utilized in industrial processes. There is a need for further studies on how to improve the
functionality of oat proteins to produce highly functional plant-based protein ingredients
for the food industry.
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