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Abstract

Background: Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to
predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to
improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving
vegetation change in southern African savanna, and how they vary across physiographic gradients.

Methodology/Principal Findings: We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension
reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index,
NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative
humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct
spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of
precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration,
particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental
covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions
with precipitation,750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions
with precipitation.950 mm).

Conclusions/Significance: We quantified the combined spatiotemporal effects of an available suite of environmental
drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but
also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA
approach to remote sensing products for regional analyses of landscape change in the context of global environmental
change. With the dramatic increase in global change research, this methodology augurs well for further development and
application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing.
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Introduction

Understanding the drivers of large-scale vegetation change is

critical to managing landscapes for the mutual benefit of human

and natural systems. Tropical and sub-tropical southern Africa is

dominated by the presence of savannas characterized by the

coexistence of trees and grasses. Savanna is a relatively productive

ecosystem; the entire African savanna biome accounts for 13.6%

of global Net Primary Production NPP [1]. Long-term changes in

ecosystem structure and productivity is thought to be driven by a

combination of biotic (including human) and abiotic drivers [2–7],

and may represent irreversible landscape degradation [8].

Degradation of southern African savanna [9] is usually represent-

ed on the landscape as a shift from grass- and tree-dominated

landscapes to less biologically productive ones dominated by scrub

[10–12]. Given this trend, understanding the spatial and temporal

dynamics of vegetation change and identifying the main drivers of

vegetation transition are critically important for land manage-

ment, particularly in light of significant climate variability and

possible directional climate change expected in the region [13,14].

The critical importance of single factors like water [6,15–17],

specifically mean annual precipitation (MAP) [3,4,7], is recognized

for savanna vegetation, although its role differs across vegetation

types and biomes, and it’s effects are typically analyzed at annual
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or longer time steps. Rainfall stimulates green-up onset and

determines the duration of growth and flowering of some plants,

and its distribution is critical to vegetation germination, growth,

and biomass [18]. Other individual factors like soils, nutrients,

herbivory, and land use (mainly grazing activities) contribute to

local patterns of savanna ecosystem structure at longer time frames

[4,19]. However, a simultaneous spatial and temporal analysis of

the dynamics of the coupled relationship among environmental

covariates controlling savanna vegetation has not been explored,

specially at a finer temporal resolution (i.e. monthly). Integrated

analysis of environmental factors is critically important for

explaining abiotic-biotic interactions over large spatial scales,

where the relative importance of abiotic drivers on vegetation may

vary between different physiographic regions. Thus, a method for

simultaneously identifying spatial patterns of the importance of

multiple, dynamic explanatory variables–while accounting for

unexplained, but shared, temporally varying trends–is required to

improve understanding of the factors controlling vegetation

response.

Remote sensing has provided a powerful instrument to observe,

monitor and characterize landscape changes, since it is able to

offer repeated measurements of large terrestrial areas at long

temporal scales [14,20–23]. Satellite-derived vegetation indices

such as the normalized difference vegetation index (NDVI) and

the enhanced vegetation index (EVI) have been closely linked with

fraction of green vegetation, leaf area index, and vegetation

primary production [24]. Time series approaches to analyzing

continuous remote sensing variables are being adopted to advance

understanding of intra- and inter-annual variations in vegetation

and to derive and examine the relationships between vegetation

growth and drivers of change [3,4,6,25–34]. Application of

wavelet analysis [35] and Fourier analysis [36–38] show promise

in elucidating patterns of land cover variation and individual

drivers of change, but rarely are multiple, spatiotemporally

variable drivers of landscape change assessed simultaneously.

To address this challenge, we applied Dynamic Factor Analysis

(DFA), a multivariate times series dimension reduction technique,

to investigate vegetation dynamics (via NDVI) across three large

watersheds in southern Africa. DFA models temporal variation in

observed data series (response variable) as linear combinations of

one or more common trends (representing unexplained variability)

and zero or more explanatory variables (representing explained

variability). DFA was initially developed to analyze economic time

series [39–42] and was later extended to include explanatory

variables in ecological predictions, like modeling the dynamics of

squid [43] and commercial fisheries [44–49]. DFA has been

successfully applied to improve understanding of variation in

groundwater levels [50–52], soil moisture dynamics [53,54],

Figure 1. Geography of the study area with (A) mean annual NDVI and precipitation and (B) climograph. Spatial pattern of mean annual
NDVI across the study area, derived from monthly MODIS NDVI data from 2001 to 2010. The subset polygons correspond to mean annual
precipitation intervals. The inset map shows the geographic location of the study area in southern Africa.
doi:10.1371/journal.pone.0072348.g001
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interactions between hydrological variables and groundwater

quality trends [55,56], annual maximum precipitation [57], and

air quality [58]. Recently, DFA has been used to link radial tree

growth and climate [59,60].

In this study, we applied DFA to the temporal and spatial

interactions between monthly NDVI and a suite of monthly

environmental covariates across the Okavango, Kwando, and

upper Zambezi watersheds, representing a dynamic savanna

landscape in southern Africa (Fig. 1A). The specific objective of

this study was to identify the most important physical drivers of

vegetation cover in the region and how they vary across

physiographic gradients at a monthly temporal scale. This analysis

supports the role of known drivers of savanna vegetation but also

uncovered the important roles of temperature and evapotranspi-

ration at this finer temporal resolution. Understanding the shifts in

importance of combined drivers of large-scale vegetation change is

critical to managing landscapes in the context of projected climate

and land use changes.

Results

Experimental Time Series
Monthly NDVI data collected between 2001 and 2010 showed

relatively consistent seasonal cycling, typical for this region [61],

across all data analysis precipitation polygons depicted in Fig. 1A.

However, variations in the magnitude of NDVI indicate consid-

erable spatial variation in vegetation, with highest values in the

more humid north (MAP.750 mm) (Fig. 2). Moreover, while

rising and declining phases of NDVI are generally parallel across

different precipitation polygons, vegetation dynamics differ spa-

tially and temporally during periods of NDVI minima and

maxima (Fig. 2). For example, the timing of summer NDVI peaks

varies across physiographic regions receiving different amounts of

MAP. Additionally, years with lower summertime NDVI maxima

(e.g. 2003 and 2005) in regions with low MAP do not necessarily

correspond to similarly low maxima in more humid regions.

Candidate Explanatory Variables
The application of the collinearity test (VIF,10, Methods

section) resulted in the selection of six CEVs for further

investigation (see details in Appendix S1, Table A2): precipitation

(P), mean temperature (T), maximum temperature (M), soil

moisture (S), fire (F) and potential evapotranspiration (E)

(Table 1). Each CEV consisted of monthly time series from each

of the 48 analysis polygons, yielding a total of 288 CEVs; this set of

explanatory time series was reduced by performing an initial DFA

on each CEV. In all cases, the inclusion of the area-weighted

average time series for the whole study region as an explanatory

variable yielded satisfactory reduced models, and resulted in

minimum BIC when combined with a single common trend

representing local ‘‘anomalies’’ from the average time series (Table

S1). Sufficiency of these reduced CEVs were supported by good

model fitting (global Ceff.0.90 for all response variables except fire)

and a marginal increase of Ceff for DFMs with higher numbers of

trends (Table S1). This indicates that the majority of observed

variance in each set of 48 spatially distinct CEVs was well

accounted by the global area-weighted average and a single trend

(anomaly).

Normalized, area-weighted average time series of the CEVs are

presented in Fig. 3A–F. While all CEVs show an annual cycle,

each is unique in its timing of seasonal maxima/minima and rates

of rise and decline. For example, precipitation, mean temperature,

and soil moisture are generally in phase (i.e. with winter maxima),

however correlation between the timing of precipitation and mean

temperature maxima is inconsistent across years, and the rate of

declining soil moisture is attenuated and delayed with respect to

precipitation. Similarly, while fire, maximum temperature and E

share the general timing of summer maxima, the E signal is better

resolved in winter months, while the fire signal disappears (i.e. time

when the burned area is essentially zero). Due to these distinct

patterns of temporal variation, no combination of the six

explanatory variables exceeded the collinearity threshold

(VIF,10) and the set was deemed suitable for use as CEVs in

the exploration of NDVI models.

DFA with no Explanatory Variables (Model I)
As a baseline for comparison, DFA was first applied to model

the 48 NDVI time series (response variable) using only an

increasing number of common trends (Model I). BIC was

minimized with one trend (M = 1), and addition of extra trends

impact on model performance minimally (Table 2). Overall Ceff

was 0.90 for Model I, ranging between 0.78 and 0.96 across

precipitation polygons (Table 2). The single common trend in

Model I illustrates shared variability across the 48 input time series

and may be viewed as a general signature of NDVI across the

domain, integrating environmental factors that influence vegeta-

tion dynamics. High positive correlations (0.88#r1,n#0.98)

between the common trend and the 48 NDVI response time

series indicates that the model captures the principal variability of

NDVI across the region. However, since this trend represents a

latent effect (i.e. unexplained variance), it does not reveal which

biophysical variables are actually driving NDVI variations.

DFA with Explanatory Variables (Model II)
Next, NDVI was modeled as combinations of common trends

and selected CEVs to reduce model reliance on the unexplained

variability identified in Model I. Based on the reduction of CEVs,

combinations of area-weighted average and ‘‘anomaly’’ CEV time

series were evaluated in a factorial manner to determine ‘‘best’’

model fits (273 DFMs explored; Table S2). The best-performing

models employed a single trend, and none of the best DFMs

included CEV ‘‘anomaly’’ time series (see Table S2), suggesting

that the combinations of average environmental drivers (Fig. 3A–F)

adequately captured spatio-temporal variation of NDVI.

Figure 2. Variability of observed NDVI for the study region for
two mean annual precipitation (MAP) ranges.
doi:10.1371/journal.pone.0072348.g002
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Systematic application of a multi-criteria model selection

process (see Methods section) led to the final selection of Model

II with one common trend and 4 explanatory variables (fire, soil

moisture, precipitation, and mean temperature) (shown in Fig. 3

and bold text in Table 2). This model minimized BIC amongst all

DFMs with M = 1 and K = 4 (Table S2) and had ‘‘good’’ model

performance with an overall Ceff = 0.91. Moreover, model

performance for the worst-performing polygon was substantially

improved (from Ceff = 0.79 with K = 1 to 0.88 with K = 4). Finally,

the majority of the model’s explanatory power shifted from the

common trend to the explanatory variables, with average

canonical cross-correlation between response and trend (r1,n)

reduced from 0.94 to 0.09 for K = 1 to 4, respectively.

Multi-linear Regression (Model III)
Finally, a multi-linear model (Model III) was developed from

DFA results by removing the trend from Model II. Fig. 4

summarizes relationships between Ceff and BIC for several multi-

linear models explored using different combinations of CEVs

(K = 126). The best Model III for each K is the model with the

highest region-averaged Ceff (symbols in Fig. 4) and best

explanation of NDVI for the worst-performing polygon (lower

Ceff value in error bars, Fig. 4). Note that with the same set of

CEVs identified in Model II (F, S, P, T), Model III only suffered a

small reduction in performance (overall Ceff decreased from 0.91 to

0.90; Table 2; Fig. 5), indicating the weak reliance of Model II on

trend. Further addition of E met the selection criteria, yielding

minimum BIC, best overall performance, and best explanation in

the worst-performing polygons (Table 2 and Fig. 5). Fig. 6 presents

observed and simulated NDVI time series for the best (Fig. 6A–C)

and worst (Fig. 6D–F) performing polygons in each watershed.

Although some extreme values are missed, both Model II and

Model III closely reproduce the observed NDVI patterns across

the region. Model III will be used in the ensuing discussion since it

contains only explained variability (environmental covariates).

Discussion

Understanding of environmental factors driving variance in

NDVI is key in predicting how projected climate and land-use

change will affect local and regional vegetation. DFA results

quantify the combined spatio-temporally variable effects of the five

main environmental factors driving NDVI distribution in study

area over ten years, and allow addressing important questions on

regional vegetation dynamics.

How does the Relative Importance of Environmental
Drivers Vary in Space?

The spatial distribution of regression coefficients (bk,n) (see Table

S3) represents the relative importance of the normalized explan-

atory variables across different regions (Fig. 7). As expected, fire (F,

Fig. 7A) is negatively related with green vegetation, with an

apparent north-south gradient in bF,n (20.13$ bF,n $ 20.61).

Strongest fire effects (highest absolute bF,n values) are seen north of

the 750–800 mm MAP line, suggesting that fire plays a stronger

role in determining vegetation dynamics in wetter areas, likely due

to greater biomass in wetter areas (and thus greater impacts of

fire), and a stronger dependence of vegetation upon MAP (vis-à-vis

fire) in drier regions [62].

Soil moisture (S, Fig. 7B) was positively related to NDVI

(0.01#bS,n#0.64) and revealed the opposite spatial pattern to fire,

with importance decreasing from south to north. The maximum

bS,n found in the drier southwestern areas evidence S as a key

factor in the variability of NDVI, reflecting the ‘‘hydrologic

capacitance’’ or rainfall storage capacity of the area. In the wetter

northern regions, S is less important due to more abundant MAP

(bS,n reaches its minimum value where MAP.1300 mm). Area-

weighted average precipitation (P, Fig. 7C) is positively related

with NDVI (0.09#bP,n#0.42), with maximum bP,n values in drier

areas, mainly in the Okavango and Zambezi watersheds, due to

lower MAP and higher variability in these regions [63]. While S

and P are inherently (physically) related, their correlation is low

(r = 0.39) since moisture is further mediated by spatially variable

soil characteristics. Plant-available water is a function of both S

and P, and thus their inclusion improved NDVI model explana-

tion without exceeding the VIF collinearity criterion. However,

while small covariance is still present and cannot be ignored,

averaging the variables at a scale that is larger than their

characteristic scale of variability [64] largely reduces the small-

scale correlations among variables [65]. Thus, at the larger

polygon scale used the DFA, factors can effectively reflect the

large-scale controls over the response variable.

Area-weighted average temperature (T, Fig. 7D) was also

positively related with NDVI (20.02#bT,n#0.48), with an

apparent gradient in importance from north to south. This may

be due to differences in the response of trees versus grasses to

temperature variation. Timing of green-up and senescence in

grasslands is dominated by C-4 plants, better adapted to high

temperatures [66] and less likely to be affected by temperature (i.e.

have lower bT,n values), than wooded savanna regions. Highest

values in the north may reflect greater reliance on leaf-out cues

based on temperature rather than photoperiod [67] in more

mountainous areas, where slope and aspect affect the timing and

magnitude of insolation. To our knowledge, this is the first analysis

Table 1. Data sets used in DFA analysis and their sources.

Data set Symbol Source

Monthly MODIS NDVI (MOD13A3) NDVI http://reverb.echo.nasa.gov

Monthly MODIS Thermal Anomalies & Fire (MOD14A2) F http://reverb.echo.nasa.gov

Matsuura and Willmott’ s Monthly Precipitation P http://climate.geog.udel.edu/̃climate/html_pages/download.html#P2011

Matsuura and Willmott’ s Monthly Mean and
Maximum Temperature

T, M http://climate.geog.udel.edu/̃climate/html_pages/download.html#P2011

CPC Monthly Soil Moisture S http://www.esrl.noaa.gov/psd/data/gridded/tables/monthly.html

NCEP-DOE Reanalysis II Monthly
Potential Evapotranspiration

E http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.
html

doi:10.1371/journal.pone.0072348.t001
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to point out the importance of temperature to variance in NDVI

on savanna ecosystems.

Finally, area-weighted average potential evapotranspiration (E,

Fig. 7E) was negatively related to NDVI (20.42#bT,n#20.01),

with lowest values in the south increasing to their maximum and

leveling off around 900–950 mm. Potential evapotranspiration is

driven by climatic demand, taking no account of soil available

water. As the seasonality of E and S are out of phase (Fig. 3), it

follows that the potential evapotranspiration demand is not fully

met by actual evapotranspiration. The negative relation between E

Figure 3. Normalized, area-weighted average explanatory variables used in the study. (A) precipitation, P; (B) mean temperature, T; (C)
maximum temperature, M; (D) soil moisture, S; (E) fire, F; and (F) potential evapotranspiration, E. The common trend (G) for model II (FSPT) is shown
for comparison.
doi:10.1371/journal.pone.0072348.g003
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and NDVI points to the potential for vegetation growth that is

currently not met by the available water and becomes a limiting

factor in this landscape.

Fig. 8 summarizes the spatial organization of the importance of

each environmental covariate in Model III over NDVI, highlight-

ing the regional shift in importance in driving forces in areas

receiving differing MAP and representing three distinct savanna

types (from grass- to tree-dominated systems). For example, where

MAP,750 mm (primarily grass-dominated savannas) we show

that NDVI was most strongly influenced by soil moisture and

Table 2. Selected results of the dynamic factor analysis of Normalized Difference Vegetation Index (NDVI).

Modela
No. of
trends (M)

Explanatory
variables

No. of
parameters BICb Ceff

c p-valued r1,n
e

I 1 2 1272 21854 0.90 (0.78–0.96) + 0.95 (0.88–0.98)

2 2 1319 21668 0.91 (0.79–0.96) +

3 2 1365 21491 0.91 (0.79–0.96) +

II 1 P 1320 21683 0.86 (0.70–0.94) + 0.73 (0.53–0.85)

2 P 1367 21504 0.87 (0.72–0.94) +

3 P 1413 21308 0.87 (0.72–0.93) +

1 T 1320 21712 0.91 (0.79–0.96) + 0.94 (0.84–0.98)

2 T 1367 21566 0.91 (0.79–0.95) +

3 T 1413 21373 0.91 (0.79–0.96) +

1 M 1320 21704 0.91 (0.79–0.96) + 0.86 (0.77–0.92)

2 M 1367 21521 0.90 (0.78–0.94) +

3 M 1413 21316 0.90 (0.80–0.94) +

1 S 1320 21807 0.89 (0.79–0.93) + 0.74 (0.55–0.88)

2 S 1367 21626 0.89 (0.79–0.93) +

3 S 1413 21404 0.91 (0.80–0.95) +

1 F 1320 21706 0.87 (0.74–0.92) + 0.77 (0.60–0.90)

2 F 1367 21519 0.88 (0.78–0.93) +

3 F 1413 21329 0.88 (0.81–0.92) +

1 E 1320 21758 0.88 (0.73–0.95) + 0.76 (0.70–0.82)

2 E 1367 21592 0.89 (0.78–0.93) +

3 E 1413 21398 0.92 (0.85–0.96) +

1 F S 1368 21648 0.91 (0.84–0.94) + 0.61 (0.45–0.71)

2 F S 1415 21465 0.89 (0.83–0.94) +

3 F S 1461 21304 0.90 (0.81–0.93) +

1 F S P 1416 21510 0.90 (0.83–0.94) + 0.26 (0.06–0.35)

2 F S P 1463 21312 0.90 (0.83–0.94) +

3 F S P 1509 21121 0.91 (0.83–0.94) +

1 F S P T 1464 21376 0.91 (0.88–0.93) ++ 0.09 (20.09–0.20)

2 F S P T 1511 21138 0.92 (0.88–0.94) ++

3 F S P T 1557 2937 0.93 (0.88–0.95) ++

1 F S P T E 1512 21048 0.93 (0.88–0.95) ++ 0.13 (20.01–0.27)

2 F S P T E 1559 2869 0.93 (0.88–0.95) ++

3 F S P T E 1605 2682 0.93 (0.88–0.95) ++

III 0 F 96 26094 0.70 (0.51–0.81) 2

0 F S 144 28719 0.82 (0.70–0.87) +

0 F S P 192 210975 0.89 (0.81–0.92) +

0 F S P T 240 211391 0.90 (0.86–0.92) ++

0 F S P T E 288 211719 0.91 (0.88–0.93) ++

aModel I: only common trends (unexplained variability), Model II: with common trends and explanatory variables (explained variability), and Model III: only explanatory
variables (from multiple regression);
bBIC: Bayesian Information Criterion;
cCeff: Nash-Sutcliffe coefficient of efficiency. Values presented are calculated for the whole area (values in parenthesis represent range for polygons);
dClassification of goodness-of-fitness results based on statistical significance (p = 0.01) for the polygon with the lowest fit in the region: 2Unsatisfactory, +acceptable,
++good [85];
eCanonical correlation coefficients for the first common trend of Models I and II.
doi:10.1371/journal.pone.0072348.t002
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precipitation, with much smaller effects of fire, evapotranspiration,

and temperature. This supports previous studies [62,68], that

identified fire as less important than precipitation in predicting tree

cover in areas with MAP,1000 mm (due to water limitation on

tree growth) or .2000 mm (due to humid conditions), and

Linhoss et al. [69] who identified soil moisture in the Okavango

watershed as a key driver of the environmental dynamics in the

Okavango Delta.

On the other hand, when MAP. ,900 mm (where NDVI and

overall biomass increase with an increasing presence of woody

vegetation) markedly different patterns emerge. Fire and mean

temperature come to dominate the variability in NDVI, followed

in importance by evapotranspiration, while soil moisture and

Figure 4. Incremental improvement of model III performance with the addition of the explanatory variables. Variables are
precipitation, P; mean temperature, T; maximum temperature, M; soil moisture, S; fire, F; and potential evapotranspiration, E. Best models are shown
in bold with white symbols (F, FS, FSP, FSPT, FSPTE), solid lines show weighted averages and dashed lines the range across the spatial domain (Ceff:
Nash-Sutcliffe Coefficient; BIC: Bayesian Information Criterion).
doi:10.1371/journal.pone.0072348.g004

Figure 5. Spatial distribution of goodness-of-fit of the NDVI models. (A) final exploratory model II (FSPT) and (B) model III (FSPTE) with (C)
highlighting the changes in goodness-of-fit between model III and II (% DCeff III - II = 100*[Ceff III - Ceff II]/Ceff III), average value = 0.40, max = 1.40 and
min = 20.70. (Ceff: Nash-Sutcliffe Efficiency Coefficient).
doi:10.1371/journal.pone.0072348.g005
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precipitation effects decline (vegetation is no longer as water

limited). Previous studies suggest that in arid and semi-arid areas,

increasing pre-season temperatures reduce water availability by

increasing evaporation, thereby delaying season onset [2].

Importantly, the results summarized in Fig. 8 reveal the power

of DFA for the biogeographical interpretation of spatially variable

environmental effects. In particular, this analysis quantified the

spatial distribution of the role of each environmental factor in

driving NDVI across a large, heterogeneous domain and

highlighted the transition between savanna regions dominated

by S and P and those dominated by T, F, and E.

Applicability of the Final NDVI Model
Removal of unexplained variability from the final DFM Model

III yields a statistical model of NDVI based solely on a set of

biophysical parameters that may provide a ‘‘first-cut’’ approxima-

tion of the likely response of vegetation (via NDVI) to mid- and

long-term climate changes. It is important to recognize that these

models are statistical, and like any forecasting models, inherently

assume that the identified relationships remain consistent across a

different suite of climatic variables (a problematic assumption

under non-stationary climate conditions). While the sign of the

identified relationships may not change, the slope and magnitude

Figure 6. Comparison of model II and III results and measured NDVI. Best-performing (A,B,C in left column) and worst-performing (D,E,F in
right column) polygons in each watershed are shown.
doi:10.1371/journal.pone.0072348.g006
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likely will. For example, while fire and NDVI would remain

negatively correlated under varying climate scenarios, the

importance of fire to overall NDVI could change non-linearly

since it is a function of other climatic factors that influence biomass

(e.g. precipitation and temperature).

The length of some remote sensing records now permit

systematic quantification of the relationships between key drivers

of vegetation growth and resultant vegetation cover over sufficient

temporal and spatial scales to begin developing models for use as

predictive future change scenarios. These data are also valuable

for detecting contemporary changes not currently predicted in the

modeling framework and assessing where and why models

perform poorly. The approach helps improve our understanding

of the dynamics of vegetative change, the role and identification of

any missing drivers, and potential future impacts of increased

climate variability and change. Monthly MODIS-derived vegeta-

tion indices hold considerable promise for large-scale quantifica-

tion of complex vegetation-climate dynamics, and for regional

analyses of landscape change related to global environmental

changes [28,70].

This research highlights the utility of coupling remote sensing

and time-series tools. With the dramatic increase in global change

research, this type of methodology augurs well for further

development and application of spatially explicit modeling at the

intersection of remote sensing and Land Change Science.

Materials and Methods

Study Area
The study catchments cover 681,545 km2 in tropical and sub-

tropical southern Africa (Zambia, Angola, Namibia, and Bots-

wana) (Fig. 1A). MAP ranges from ,400 mm to 1400 mm yr21

and is strongly correlated with latitude and elevation, with highest

rainfall in the mountainous north (Fig. 1A). This gradient straddles

a noted [3] critical threshold of 650 mm, below which precipita-

tion is believed to dominate savanna vegetation patterns, and

above which other factors such as fire and herbivory are

hypothesized to play an important role. However, the cattle

stocking rate in our study region is very low (,1–10 head/km2,

compared to .250 head/km2 in other African savanna regions,

see Appendix S2, Fig. A1) [71] and although there are a number

of wildlife management areas throughout the region these are of

relatively small size and low wildlife density, suggesting their effect

is likely minimal at the polygon level. Thus, at the low densities

present in the study region, herbivory likely reduces proportionally

the amount of green vegetation in small quantities, following

primarily the same seasonal cycling as plant green-up and

senescence and although it could reduce slightly the magnitude

of NDVI it does likely not change the temporal pattern (i.e. the

variance) observed at the monthly time scale pursued in this study.

Relatively low regional human population [72] reduces the effect

of land use changes associated with roads and settlements, and

Figure 7. Spatial importance of the five explanatory variables in final NDVI model III. Importance is represented by the distribution of the
bk,n regression coefficients (values 21 to 1) for each variable: (A) fire, F; (B) soil moisture, S; (C) precipitation, P; (D) mean temperature, T; and (E)
potential evapotranspiration, E.
doi:10.1371/journal.pone.0072348.g007
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facilitates identification of the explicit effects of climate on

vegetation. Southern semi-arid areas are characterized by low

MAP with high interannual variability. Both magnitude and

relative reliability of MAP increases towards the north [73].

Rainfall is seasonal, with ,87% of MAP received from November

through March (Fig. 1B). July (mean temperature of 17.4uC) and

October (mean temperature of 25.6uC) are the coldest and

warmest months, respectively (Fig. 1B). Soils are primarily Oxisols

in the north and Entisols in the south [74]. In particular, Kalahari

sands characterize the majority of the area. Low topography in the

south, especially in Caprivi (Namibia and northern Botswana),

complicates hydrologic separation of the catchments. Historically

inter-basin water flowed eastward, but the systems have remained

unconnected since the late 1970s.

Remote Sensing Data – Response and Candidate
Explanatory Variables

Remote sensing data included ten years (2001–2010) of monthly

NDVI data (response variable) and a suite of environmental

variables used as explanatory variables (CEVs) in the DFA,

including precipitation, mean temperature, maximum tempera-

ture, soil moisture, relative humidity, fire and potential evapo-

transpiration (Table 1).

Time series of response and explanatory variables were

aggregated from pixel-scale data by extracting mean values over

areas defined by different precipitation intervals for each of the

three drainage basins, producing 48 individual data polygons

(Fig. 1A). While the dominant precipitation gradient is from north

(high elevation) to south (low elevation) there are also potentially

significant drivers of change from east to west (topography,

oceanic influence etc.), which may be better elucidated by

considering three distinct drainage basins oriented along this

gradient. The individual polygons (Fig. 1A), yielding a total of

336 time series (1 response variable and 6 CEVs in each of 48

polygons) comprised of 120 monthly average values.

Vegetation: NDVI. MODIS NDVI data (MOD13A3) were

applied as the response (dependent) variable (Table 1) since NDVI

has been closely linked with green cover, vegetation primary

production, and phenology of savanna systems [33,75–77].

MODIS provides monthly NDVI data at a 1-kilometer spatial

resolution in the sinusoidal projection. Grids contaminated by

clouds and those with average growing season NDVI less than

0.1 were excluded from analysis. Future research will evaluate the

suitability of these models for earlier data series (i.e. AVHRR

data), but we wished to avoid potentially confusing the time-series

by incorporating two distinct (spatial, temporal, spectral and

radiometric) datasets into one analysis.

Fire data. The MODIS Thermal Anomalies/Fire data [78],

were applied as an explanatory variable of fire frequency (Table 1).

This is an 8-day fire-mask composite image at 1-kilometer

resolution in the Sinusoidal projection. Numbers of fire pixels

within each precipitation interval were calculated at an 8-day

Figure 8. Environmental drivers of savanna ecosystems as a function of mean annual precipitation (MAP). Weight (or importance) of
each driver of NDVI is described by Model III bk,n regression coefficients along MAP gradients. Lines represent the main trajectories and highlight the
shift in the importance of environmental drivers along a gradient from grass- to tree-dominated savanna landscapes.
doi:10.1371/journal.pone.0072348.g008
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scale, and the number of fire pixels summarized to characterize

the monthly fire frequency within each polygon.

Climate: precipitation, temperature, potential

evapotranspiration, and soil moisture. We utilized datasets

of monthly precipitation (2001–2010) and monthly mean and

maximum air temperature (2001–2010), which have a spatial

resolution of 0.5 degree by 0.5 degree with grid nodes centered on

0.25 degree (Table 1). These improve upon previous global mean

monthly datasets using a refined Shepard interpolation algorithm

and increased numbers of neighboring station points [79]. Based

on grid nodes included in the three catchments we interpolated

continuous surfaces with 1-kilometer spatial resolution using

inverse distance weighting. Potential evapotranspiration impacts

water availability to vegetation and therefore influences savanna

ecosystems considerably. NCEP-DOE Reanalysis II global poten-

tial evapotranspiration data (Table 1) was used to represent

environmental demand for evapotranspiration. Irregular Gaussian

grids were converted to continuous surfaces of 1-kilometer spatial

resolution via inverse distance interpolation method in ArcGIS.

Soil moisture is an integrated factor exerting the dominant

control on the spatial distribution of trees, shrubs, and grasses. The

Climate Prediction Center (CPC) global monthly soil moisture

data (Table 1) provides monthly values at a 0.5-degree spatial

resolution with grid nodes centered on 0.25 degree, based on a

one-layer ‘‘bucket’’ water balance model, which uses CPC

monthly global precipitation data and monthly temperatures as

input fields [80].

Dynamic Factor Analysis (DFA)
DFA is a statistical explanatory tool built upon common

patterns among, and interactions between, response and explan-

atory time series. Thus, no a priori understanding of interactions

between response (NDVI) and explanatory variables (e.g. precip-

itation, fire etc.) is required [53]. It is inherently a structural time

series technique [40] that models temporal variation in observed

data series (response variable) as linear combinations of one or

more common trends (representing unexplained variability), zero or

more external explanatory variables (representing explained vari-

ability), a constant intercept parameter, and noise [41,81,82] as:

Sn tð Þ~
XM

m~1
cm,nam tð Þzmnz

XK

k~1
bk,nnk tð Þzen tð Þ ð1Þ

am tð Þ~am t{1ð Þzgm tð Þ ð2Þ

where Sn(t) is a vector containing the set of N response variables

(n = 1,N); am(t) is a vector containing the M common trends

(m = 1,M); cm,n are factor loadings or weighting coefficients, which

indicate the importance of each of the common trends; mn is a

constant level parameter; uk(t) is a vector containing the K

explanatory variables (k = 0,K); and bk,n are regression coefficients

indicating the importance of each of the explanatory variable.

Here, Sn represents the 48 NDVI time series (one from each

polygon in Fig. 1A). Terms en(t) and gm(t) are independent

Gaussian noise with zero mean and unknown diagonal or

symmetric/non-diagonal covariance matrix. In order to produce

models with the smallest number of common trends, non-diagonal

error covariance matrices were used [83].

As with other modeling tools, DFA aims to balance goodness-of-

fit and model parsimony by developing different dynamic factor

models (DFM). We assessed DFM performance using the Nash &

Sutcliffe [84] coefficient of efficiency (Ceff) with significance test

[85] and Bayesian Information Criterion (BIC) [86]. The best

DFM minimizes numbers of common trends required to achieve

the best fit as determined by Ceff and/or BIC. Appropriate

explanatory variables may help improve the model, identify which

environmental factors (if any) affect the response variables, and

quantify the spatial distribution of the importance of each factor.

To compare the relative importance of common trends and

explanatory variables across response variables, all response and

explanatory variables were normalized (mean subtracted, divided

by standard deviation) prior to analysis [43,81]. Canonical

correlation coefficients (rm,n) quantified cross-correlation between

response variables and common trends, with values of rm,n.0.5

indicating high correlations. DFA was implemented using Brodgar

software (v2.7.2, Highland Statistics Ltd., UK).

Dimension Reduction of Candidate Explanatory Variables
Nine available candidate explanatory variables (CEV) (Table

A1 in Appendix S1) were initially considered, consisting of

monthly times series of precipitation, mean temperature,

minimum temperature, maximum temperature, soil moisture,

fire, relative humidity, actual evapotranspiration and potential

evapotranspiration. The variance inflation factor (VIF) was used

to quantify the severity of collinearity of each set of CEVs [83].

Combinations of CEVs with VIF.10 were excluded from the

analyses [83,87,88]. Prior to performing the DFA, with the goal

of identifying the most useful representation of this large suite of

potential explanatory variables, we explored the reduction of the

48 polygon-based time series for each of the non-collinear

variables. An initial dimension reduction of the large suite of

environmental covariate time series was performed by carrying

out a preliminary DFA on the CEVs. In this approach, each

CEV was considered as a set of 48 response variables and was

analyzed to assess the feasibility of representing the CEV with a

much-reduced set of variables. Two DFMs were explored: 1) a

base-line model consisting of only common trends without

explanatory variables, and 2) a model consisting of one or more

common trends and a single explanatory variable calculated as

the area-weighted average of the 48 response variables. In the

latter, the area-weighted average represents the domain-wide

‘‘average’’ CEV, while the trends represent remaining unex-

plained variation (or ‘‘anomalies’’) from this average. In both

models, trends and variables were added until a minimum in

BIC was achieved. This approach reduced each CEV from an

initial set of 48 time series to a smaller set of time series for

exploration of NDVI through DFA.

NDVI Analysis Procedure
DFA of NDVI was performed in three steps. DFMs were

developed using an increasing number of common trends without

CEVs until satisfactory model performance was achieved accord-

ing to goodness-of-fit indicators [82], referred to as Model I. Next,

combinations of CEVs were incorporated to create Model II aimed

at reducing unexplained variability (fewer number and reduced

weight of common trends, represented by lower factor loadings)

and improve description of NDVI (goodness-of-fit metrics).

Finally, Model III was explored by removing unexplained

variability (common trends) when optimizing a multi-linear model

consisting of the CEVs identified in Model II. Multiple regression

code in Matlab (v2012a, The MathWorks, Inc., USA) was used in

the optimization process. Model III permitted refining of selection

of the most important CEVs, since inclusion of trends in Model II

may mask effects of important explanatory variables of the

multivariate model [52]. When selecting the ‘‘best’’ model, we

adopted a multi-criteria objective consisting of: a) model adequacy

(minimizing BIC); b) global model goodness-of-fit (maximizing
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Ceff); c) improvement in Ceff for the worst-performing polygons

(minimizing range in Ceff); and d) reduction in importance of

common trends (i.e. minimizing rm,n).

Conclusions

Dynamic factor analysis was applied to study variation in NDVI

across three large watersheds in southern Africa and to identify

factors driving observed variations in savanna vegetation across

physiographic gradients. The analysis framework allowed a

dimension reduction of the large suite of candidate explanatory

variables, identifying area-weighted domain averages of fire, soil

moisture, precipitation, temperature, and potential evapotranspi-

tarion as important environmental factors driving NDVI, with

negligible importance of unexplained variability.

This novel approach permitted analysis of shared spatial effects

of potentially important environmental variables on NDVI. In

contrast, most previous studies of NDVI in southern Africa have

focused on individual relationships between NDVI and one or two

explanatory variables [2,3], highlighting some of trends relating to

individual factors but ignoring a suite of variables acting in

concert. Our results support the importance of the spatial

distribution of soil moisture [89], and precipitation and fire

[4,62,63] on NDVI, but also points to other overlooked effects of

temperature and potential evapotranspiration, particularly in

regions with MAP. ,950 mm. The spatial distribution of

environmental covariates evinces transitional importance over

NDVI from grass-dominated regions with MAP,750 mm (dom-

inated by precipitation and soil moisture) to tree-dominated

regions with MAP.950 mm (dominated by fire, potential

evapotranspiration, and temperature). Through the use of such

models we can now better evaluate and understand landscape level

changes in vegetation amounts. This improves characterization of

the landscape upon which examinations of change mechanisms

and drivers are based, is of unparalleled use to managers and

researchers alike, and constitutes a powerful tool. The potential

power and utility of such techniques permeate biogeography,

ecology, land change and remote sensing studies, especially in the

context of global environmental change.
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