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Rapid and robust assembly and decoding of
molecular tags with DNA-based nanopore
signatures
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Molecular tagging is an approach to labeling physical objects using DNA or other molecules
that can be used when methods such as RFID tags and QR codes are unsuitable. No
molecular tagging method exists that is inexpensive, fast and reliable to decode, and usable in
minimal resource environments to create or read tags. To address this, we present Porcupine,
an end-user molecular tagging system featuring DNA-based tags readable within seconds
using a portable nanopore device. Porcupine's digital bits are represented by the presence or
absence of distinct DNA strands, called molecular bits (molbits). We classify molbits directly
from raw nanopore signal, avoiding basecalling. To extend shelf life, decrease readout time,
and make tags robust to environmental contamination, molbits are prepared for readout
during tag assembly and can be stabilized by dehydration. The result is an extensible, real-
time, high accuracy tagging system that includes an approach to developing highly separable
barcodes.
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agging physical objects has proven useful for a range of

formats and scenarios like UPC barcodes in packaging, QR

codes for easy association of digital information with
printed material, and radio-frequency identification (RFID) tags
for inventory tracking. However, these tags cannot be applied to
objects that are too small, flexible, or numerous, or in scenarios
where the code should be invisible to the naked eye, like anti-
forgery. Molecular tags address these shortcomings via their
nanoscale footprint and difficulty to forge. However, existing
methods for encoding digital information in molecules; including
silica-encapsulated DNA tracers!, DNA embedded in 3D printed
material?, microbial barcodes?, or spatially isolated marker pep-
tides%; require access to specialized labs and equipment to make
new tags — making them impractical in applications that require
a very large number of tags. In most cases, the protocol prevents
real-time use cases, for example, in the case of PCR-based or
SHERLOCK-based detection which takes tens of minutes in the
best case®. An ideal molecular tagging system should be inex-
pensive and reliable, with fast readout and user-controlled
encoding and decoding from end-to-end with minimal reliance
on lab equipment.

Molecular biologists have also long been interested in tagging
biomolecules, for example, with multiplexing samples in a single
sequencing run through the inclusion of a sample-specific short
DNA tag appended to each sequenced fragment. For nanopore
sequencing in particular, direct raw signal techniques have
improved efficiency of dereferencing multiplexing barcodes.
DeepBinner classifies raw signals from 12 of Oxford Nanopore
Technologies’ 96 commercially available barcodes, improving
upon their previous sequence-based tool, Porechop®. Similarly,
DeePlexiCon classifies four hand-designed DNA barcodes for
multiplexing in direct RNA sequencing, for which barcodes were
not previously commercially available’. While these tools have
enabled higher yields of demultiplexed reads, or in the case of
RNA, made multiplexing possible, they would likely perform even
better if the barcodes were designed to optimize raw signal
separability. Other tools have also been developed for raw signal
processing later in the sequencing pipeline, for example for
genomic alignment8.

Porcupine addresses limitations in prior DNA-based tagging
methods by building on recent advances in nanopore-based DNA
sequencing technologies and raw signal processing tools. The
development of portable, real-time nanopore sequencing?, toge-
ther with new methods that simplify the modular assembly of
predefined DNA sequences!Y, creates additional opportunities for
rapid writing and on-demand readout in low resource
environments.

Porcupine is a molecular tagging system that uses synthetic
DNA-based tags and nanopore-based readout. Porcupine encodes
a 96-bit digital tag through the presence or absence of 96 pre-
determined DNA fragments with highly separable nanopore
signals, which we call molecular bits (or molbits, previously
coined by Cafferty et al.%), shown in Fig. la. Although DNA is
typically considered expensive for reading and writing, Porcupine
lowers the cost by presynthesizing the DNA, which can then be
mixed arbitrarily to create new molecular tags. Molecular tags are
then read out quickly using a portable, low-cost sequencing
device (Oxford Nanopore Technologies’s MinION; Fig. 1b).
Typically, raw nanopore signal must first be converted back to a
DNA sequence in a computationally expensive process called
basecalling, but we classify molecular tags directly from raw
nanopore signal, forgoing basecalling. Raw signal classification is
often used for DNA and RNA sample demultiplexing, which also
uses DNA barcodes®’; Porcupine drastically increases the num-
ber of barcodes by custom designing them to produce unique
ionic current signatures. Error correction is also added to the tag

to resolve decoding errors, similar to electronic message trans-
missions systems and recently used in other molecular applica-
tions!!. Molbits are prepared for readout (sequencing) prior to tag
application and can be stabilized by dehydration, an approach that
extends tag shelf life, decreases decoding time, and reduces con-
tamination from environmental DNA. Thus, creating tags requires
the set of pre-prepared molbits, sequencing adapter kit and its
corresponding requirements (e.g., centrifuge, thermal cycler, and
rotator mixer), and a dehydration method; and reading tags only
requires the tag, nuclease-free water, and a MinION device. The
result is a highly accurate real-time tagging system that includes an
approach to developing highly separable barcodes. These bar-
codes, and the methods we use to develop them, are extensible;
they can be used both within Porcupine to tag physical objects and
beyond this system for other molecule-level tagging needs like
sample multiplexing for nanopore sequencing.

Results

Molbit definition and assembly. To develop Porcupine, we first
defined an individual molbit as a DNA strand that combines a
unique barcode sequence (40 nt) with a longer DNA fragment
selected from a set of sequence lengths that we pre-determined
(Fig. 2a). To make assembly of molbits simple and modular, we
designed them to be compatible with Golden Gate Assembly, a
convenient and scalable one-pot DNA assembly method that
combines a TypellS restriction enzyme and ligase, by incorpor-
ating a short single-stranded overhang!?. To increase classifica-
tion accuracy and decrease computation time, we further
optimized them to avoid basecalling. Thus, for the barcode
region, the objective was to produce a large set of sequences that
could generate unique ionic current signatures (“squiggles”) to
promote unambiguous classification.

Designing highly separable molbits. To model the predicted
ionic current signature for arbitrary DNA sequences, we used
“Scrappie squiggler” a tool that converts sequences of bases to
ionic current via a convolutional model. For example, to
demonstrate Scrappie’s ability to accurately model real nanopore
squiggles, we hand-designed a DNA sequence that appears as the
letters “UW” in squiggle space (Fig. 2b), with high visual similarity
to the simulated squiggle (except for noise). Scrappie’s output also
let us compute the signal similarity of two sequences quantitatively
using dynamic time warping (DTW) as the distance measure. We
used this approach inside an evolutionary model designed to make
barcodes as separable as possible (Fig. 2c).

To produce a set of 96 orthogonal molbit barcode sequences,
we initialized the evolutionary model using 96 random or pre-
seeded starting sequences (see the Methods section). We
perturbed each sequence independently in random order by
mutating two adjacent nucleotides simultaneously at a random
location. If the mutated sequence failed to improve the minimum
and average DTW similarities between itself and all other
sequences, we reversed the mutation and attempted again for
the same sequence. We also restricted sequence similarity and
free energy of the sequences to avoid labeling ambiguities and
secondary structure (see the Methods section). Using this
method, we began with a set of starting sequence that had a
minimum DTW similarity of 2.9 and mean 4.2 + 0.4 and
achieved a final minimum of 4.2 and mean 5.8 + 0.8 after 31
rounds of evolution (Fig. 2d), representing a ~40% improvement
in both the minimum and mean.

Using length as an additional encoding channel. Given the set
of 96 designed molbit barcodes, we wanted to increase the
number of available molbits without requiring additional barcode
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Fig. 1 Creating a molecular tag using the Porcupine molecular tagging system. a Porcupine’s encoding scheme. A digital tag is converted into a codeword
to add additional bits for error correction. Each codeword bit is assigned to a unique molbit, where 1s and Os are represented by the presence or absence of
individual molbits in the molecular tag mixture. b A user first defines a digital tag as a binary 96-bit number, and pipettes 1-bits into the molecular tag. The
tag is applied to an object, which is then shipped or stored. To read the tag, it is rehydrated and loaded directly onto Oxford Nanopore Technologies’
MinlON device. Software then decodes the molecular tag without knowledge of the original digital tag.
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Fig. 2 Molbit design scheme. a Molecular bit (molbit) structure. The molbit sequence is attached to a spacer sequence via Golden Gate assembly to
achieve a minimum length for sequencing and provide an additional encoding channel. Since the sequencing adapter is attached to both ends, the strand
can be sensed from either direction. b The letters "UW" depicted visually in nanopore raw data (as opposed to encoded in the sequence contents). From
top to bottom, the shown sequence was simulated using Scrappie and sequenced on the ONT MinlON, demonstrating the viability of using simulations for
designing intentional, arbitrary raw signal shapes. ¢ Evolutionary model workflow. Each round of evolution begins with a set of sequences, their simulated
squiggles, and pairwise Dynamic Time Warping (DTW) distances. The sequence order is randomized, and sequences are mutated one at a time, verifying
DTW improvement (minimum and mean) after each attempt. d Dynamic time warping (DTW) scores before (left) and after (right) 31 iterations of the
evolutionary model. After initialization, the minimum DTW similarity was 2.9 (mean 4.2 = 0.4), and after evolution the minimum was 4.2 (mean 5.8 + 0.8).
Source data are provided as a Source Data file.

design or synthesis. To do this, we inserted a DNA fragment barcode plus a specific spacer sequence length, adding another
between the barcode regions as a spacer sequence, which can be length effectively adds an additional 96 molbits. Length works as
set to different lengths as an additional encoding channel. Thus, an additional encoding channel because even without basecalling,
since each molbit consists of the unique combination of a molbit  the length of nanopore signals can be easily distinguished; the

NATURE COMMUNICATIONS | (2020)11:5454 | https://doi.org/10.1038/s41467-020-19151-8 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a b os
= o e
g Sz
kS ---- Cutoff -0 04 - . .
€ w400 Sy . .
9 1600 ©c .
° €3 02 iy
@ o © 0 Ay
8 z !
o X ®s  p=3.1x1025, r=0.84
5000 10,000 15,000 20,000 25,000 0.0 0.2 0.4 0.6
Raw signal length Normalized read
counts (train)
c d
Acquire nanopore Accumulate molbit counts o 10° 1in 1 billion
current traces 8 5
S — 58 10°
= D O
. . . | B N
Classify the molbit o - E % 1010 AT e
. bg bs by by b, by Dy g5 10 —— 16 data bits
in each raw current trace F A R ] Ot 24 data bits
[e]
ety — —b, - 0001160 2107 _ —— 32databits
LA —| CNN |2 Convert to digital tag 1020 Porcupine ___ 49 data bits
ing ECC + threshol
ok — —b, using ECC + threshold 0.025 0050 0.075 0.10

Corruption rate

Fig. 3 Molbit classification and tag decoding results. a Violin plots with embedded box-and-whiskers showing the distribution of raw nanopore signal
lengths for DNA sequences of length 400 nt (n = 354,000 reads) and 1600 nt (n = 375,000 reads). The white dot represents the median, and the thick
center line shows the quartiles. The dashed vertical line shows the cutoff used when calling reads as 400 mers or 1600 mers. b Correlation of read counts
for each molbit, demonstrating consistency in molbit occurrences between training and testing runs (two-sided Pearson correlation, p = 3.1 x 10~26,

r = 0.84). Counts were first normalized within each run and normalized again after combining runs for either training or testing. ¢ Tag decoding workflow,
with error correcting codes (ECC). After acquiring nanopore current traces from a standard sequencing run, the molbit in each trace is identified using the
CNN (confidence > 0.9). Successfully identified molbits are accumulated and converted into binary using a threshold for presence. This threshold is varied
as error correction is carried out multiple times, accepting the binary digital tag that has the fewest differences from the received codeword. d Chance of
incorrect tag decoding as a function of the bit corruption rate and number of data bits. This chance increases exponentially as the corruption rate and

number of data bits increase linearly. The dashed line represents the goal of 1in 1 billion tags incorrect, and the “+" marks Porcupine’s chance of incorrect

decoding. Source data are provided as a Source Data file.

signal length is roughly proportional to the DNA fragment
length. We tested this concept using two spacer lengths (400 and
1600 nucleotides extracted from an arbitrary portion of plasmid
pCDB180; see the Methods section) and found that simple signal
length binning was sufficient for decoding. The median signal
length for the 400 and 1600 nt strands was 5768 and 16,968,
respectively, and a cutoff at 9800 gave 91% accuracy, where most
errors were caused by long strands misidentified as short strands
(Fig. 3a). We additionally evaluated the source of the mis-
classifications, particularly with the 1600 nt strands. (Supple-
mentary Methods) For remaining experiments, we focused on a
single spacer length to reduce experimental complexity, and
develop the more conceptually interesting molbit design.

Classifying molbits directly from raw nanopore signals. After
designing the molbits and acquiring a theoretical understanding
of their separability, we developed a convolutional neural network
(CNN) model to accurately classify them directly from real raw
nanopore data (Supplementary Fig. 1). Direct signal classification
is preferred over sequence-based methods primarily because
classification is an inherently simpler problem than full sequence
decoding, where the problem can be reduced to distinguishing
between 96 distinct signals rather than reproducing the exact
series of underlying nucleotides generating an arbitrary signal.
This enables simpler model architectures, which typically come
with lower computational and training data requirements. In our
model, molbits do not need to be segmented or otherwise isolated
from the raw data, rather, the CNN uses only the first portion of
the each molbit since the molbit barcode is located at the
beginning of the strand. We gathered training data by dividing
the 96 molbit barcodes into six sequencing sets, with each molbit
appearing once; optimizing the sets for maximum sequence

separability to improve labeling (see the Methods section); and
running each set on the MinION. We assigned labels to each
molbit read using traditional basecalling methods and a modified
semilocal Smith-Waterman sequence alignment!?, using only
high-confidence alignments (see the Methods section). For test
data, we divided the 96 molbits into two sequencing sets, with
each molbit appearing once, and gathered the data as described
for training. The model was trained for 108 iterations, with a final
training, validation, and test accuracy of 99.9%, 97.7% and 96.9%,
respectively, compared to sequence-derived labels. However, in
real world decoding, all reads are classified, not just those that
pass basecalling and sequence alignment. We found that the CNN
was consistently able to confidently classify a larger portion of the
reads (97% of reads in the test set) than basecalling plus align-
ment (75% of reads in the test set), revealing a large portion of
reads that we could not easily validate. We reasoned that if the
occurrence of each molbit was proportional between basecalling
and the CNN, that the CNN was likely not making spurious calls,
but was perhaps performing better on the raw signal data. Read
counts correlate extremely well between the two methods (Sup-
plementary Fig. 2), revealing another advantage of direct signal
classification, making use of ~30% more data than sequencing
alone. As a result, “accuracy” only reflects the model accuracy and
does not necessarily measure each molbit’s error rate or the
overall chance of decoding the tag incorrectly.

Encoding data in molecular tags with error correction. We next
composed actual molecular tags. We assigned each molbit a
unique position in a binary tag, allowing each 1 or 0 to represent
the presence or absence of a specific molbit over the course of a
single tag sequencing (decoding) run. To determine presence or
absence, we used CNN-classified read counts for each molbit.
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Ideally, 0 bits would have zero reads, and 1 bits would have
nonzero reads. However: two factors complicated our setting this
threshold to determine bit presence: (1) nonzero read counts for
molbits not present in an experiment, and (2) significant varia-
tions in counts for molbits present in an experiment, which we
found to be up to 20-30x in our training and test sets (Supple-
mentary Methods). Fortunately, these variations were consistent
when we compared the ratios of molbit counts in the training and
test data (Fig. 3b). We accounted for this variation by scaling all
read counts by a fixed vector based on these ratios. Thresholding
and scaling read counts reduced our per-bit error rate from 2.9 +
1.8% to 1.7 + 1.6%, a 42% reduction.

Since a reliable tagging system should have a very low chance
of incorrect decoding (e.g., 1 in 1 billion), we decided to further
reduce our overall tag decoding error rate by including error
correcting codes (ECCs) as part of our tag design (Fig. 3c). The
simplest nonECC method for encoding information in these tags
is a naive 1:1 mapping between digital bits and molbits; however,
with this method, even a single bit error makes the tag
unrecoverable (i.e., produces an incorrect decoding). In our
system, bits are set to 1 or 0 using a threshold for presence or
absence on the read counts, meaning that any 0-bits above this
threshold are instead flipped to 1, and vice versa. ECCs reduce the
possibility of unrecoverable tags despite the relatively high per-bit
error rate by reserving a smaller number of bits for the digital
message and creating a codeword by projecting this message into
a larger space with greater separability. This allows more bits to
be flipped before the message is decoded incorrectly. To encode
the digital message, we simply multiply the message by a binary
matrix of random numbers, known as a random generator matrix
(Supplementary Methods). The number of bits reserved for the
ECC depends on the application’s error tolerance and the per-bit
error rate (Fig. 3d). As the error rate increases, the chance of
incorrect decoding increases exponentially. Thus, the number of
bits for the message must be chosen carefully. We chose a
message size of 32 bits, which at an error rate of 1.7% produces a
1.6 x 1071 chance of incorrect decoding and permits ~4.2
billion total unique tags, with correct decoding guaranteed at or
below nine bit errors.

End-to-end encoding and decoding. Next, as a proof-of-
principle for our tagging system, we demonstrated end-to-end
tag encoding and decoding of the acronym “MISL” short for
“Molecular Information Systems Lab” (Fig. 4a). We began by
encoding MISL into binary using ASCII, which uses 8 bits for
each character, for a total of 32 bits, and we multiplied this bit
vector by the generator matrix to produce a 96-bit codeword. The
molecular tag was then prepared as explained previously, with
one modification for lab efficiency (see the Methods section).
Once the molecular tag was assembled, it was prepared for
sequencing and read out using an ONT MinION. We then
identified the molbits from the raw data using our trained CNN
classifier, accumulated a count for each molbit, and rescaled these
counts (as explained above) to accommodate systematic read
count variances. We then decoded the tag as described for the
ECC by binarizing the counts using a sliding read count threshold
to determine presence and absence, then finding the distance
between the binarized counts and the nearest valid codeword at
each read count threshold. When the edit distance is low enough
to guarantee a unique correct decoding (this distance is 9 for this
ECC), the molecular tag decoding is complete. The earliest cor-
rect decoding occurred less than 7 s after sample loading (109
molbit strands observed), demonstrating reliable encoding and
decoding of a 32 bit message in only a few seconds using a
portable sequencing instrument.

Measuring decoding time. Finally, to robustly estimate correct
decoding time under these conditions, we simulated new tags
using our original two test runs and one additional random tag by
reassigning molbit labels within the tags (e.g., molbit 0 in the
original tag is given a new label, molbit 42, in the simulated tag).
This simulation impacts the error rate both positively and
negatively due to the nonuniform distribution of distances
between codewords in the ECC. To achieve this remapping, we
generated new codewords with the same number of 1-bits as the
original tag data sets. The original observed molbits were then
randomly assigned to the new bit ordering: 1-molbits in the
original tag were assigned new 1-molbit labels in the synthetic tag.
After creating these new codewords, we sampled reads without
replacement, accumulated a count for each molbit, and decoded
as above, with ten repetitions per run time, where run time was
estimated by the average of 10,000 reads per minute. We found
that some tags could be successfully decoded with only a few
seconds of sequencing data, and all tags after just 10-15 s
(Fig. 4b).

Discussion

In summary, Porcupine offers a method for molecular tagging
based on the presence or absence of synthetic DNA sequences
that generate explicitly unique nanopore raw current traces. By
directly manipulating segments of nanopore raw current and
keeping unique sequences short, we reduce synthesis costs for the
end user and produce visually unique nanopore current traces,
enabling high accuracy decoding. The speedy decoding time
means our system can decode using newer technologies such as
the Flongle, a cheaper, single-use flowcell produced by ONT with
a quarter of the pores of the MinION in as little as 1-3 min. In
addition, tags can be prepared for sequencing at the time of tag
creation and then shelf-stabilized by dehydration, further redu-
cing readout time at the cost of increasing “writing” time through
sequencing preparation. Prepreparation appears to have minimal
risk, supported by correct tag decoding and minimal changes to
sequencing yield, Q-score, and basecalled sequence length when
sequencing a freshly prepared and dehydrated tags (at 0 and
4 weeks from dehydration (Supplementary Fig. 3). In the future,
more bits can be acquired by adding more insert lengths, by
extending the length of the unique region to allow more variation
between molbits, or by combining barcode regions serially. Fur-
thermore, a generative model for molbit design may be a natural
next step, especially if a dramatically larger number of molbits is
desired, because the evolutionary model computations scale
exponentially with the number of desired bits.

One limitation of Porcupine is the variation in molbit counts.
Although decoding remains robust to bit errors, more stability in
read counts would increase the amount of information we could
encode by reducing the number of bits required for error cor-
rection. Without resolving this variation, the number of bits can
still be substantially expanded by adding more insert lengths to
take advantage of the modular system design.

From a computational perspective, we note that basecalling is
getting faster and more reliable; however, raw signal classification
is fundamentally a simpler problem than basecalling. Such clas-
sifiers can be trained with comparatively minimal data and
expanded to nontraditional sensing; for example, our molbit
approach could be easily extended to include nonstandard bases
for additional security, but standard basecalling would not be
possible without extensive amounts of training data. Similarly,
future updates to nanopore sequencing chemistry would likely
require retraining the classification model, made feasible by the
low training data requirements. Even if a new chemistry modifies
the raw signal to the extent that they are no longer classifiable via
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Fig. 4 End-to-end data flow for the acronym "MISL". a Encoding began by converting “MISL" to ASCII (32 bits). The digital tag was then multiplied by the
32 x 96-bit generator matrix, producing a 96-bit codeword. The codeword was converted to a molecular tag, stored, and sequenced for 35 min. When
sequenced, molbits were identified and accumulated into a single count for each molbit. Bit errors are calculated with respect to the closest codeword, not
necessarily the correct codeword. The dashed line represents the optimal threshold for binarizing these counts, which produced three incorrect bits.
Rescaling the counts according to known read count variation reduced these errors, in this case eliminating errors entirely. b Minimum tag decoding
distance as a function of sequencing runtime. Decoding occurred without a priori knowledge of the correct tag. Each color group (blue, orange, aqua, and
black) represents a unique sequencing run, and each tag is a different remapping of a valid codeword to molbit labels. Bit errors are capped by the distance
between tags, which is at least 18 in the chosen ECC. Incorrect decodings are marked with an X. At each time point, reads were sampled assuming an
average of 10,000 reads per minute (n = 10); the S.D. of this sampling is shown as the shaded area. Source data are provided as a Source Data file.

raw signal, tags would still be readable by directly sequencing
the DNA.

Methods

Molbit barcode design algorithm. To produce highly separable squiggles, we used
an evolutionary model. First, we initialized the 96 sequences. Fully random
sequence initialization works fairly well; however, we chose to initialize using the
output from a previous version of the molbit design algorithm, which produced
slightly better results than random initialization after the molbits were further
perturbed. This previous iteration was a brute force approach generating all
repetitive sequences of length 2-6, based on the idea that a CNN may be able to use
the periodicity to separate barcodes. However, this approach was limited for a few
reasons: it did not account for sequence similarity, causing issues for labeling
training data; any benefits to discriminability potentially provided by the peri-
odicity were outweighed by mediocre sequence-based labeling; and requiring
sequences to be periodic was too restrictive and significantly limited the space of

possible molbit barcodes. A similar “warm start” could be achieved by initializing
many random sequences and choosing a subset of these that are maximally distinct
within this random set, before beginning evolution. Starting sequences and their
corresponding simulated nanopore squiggles are shown in Supplementary Fig. 4.
During mutation, we placed constraints on the sequences to ensure that they
can be easily synthesized, assembled, and measured using the ONT MinION. If a
mutated sequence does not fulfill these constraints, the mutation is reversed and
attempted again. There are two types of constraints: (1) those that affect only a
single sequence (independent constraints), and (2) those that impact the
relationship between one sequence and all others (dependent constraints).
Independent constraints require each sequence to be within a range of allowed GC
content (30-70% GC), have a maximum folding potential (—8 kcal/mol) as
calculated using NUPACK’s MFE utility!3, exclude the Bsal cut site sequence
(GGTCTC), and have a maximum homopolymer length of five for A/T and four
for C/G. Dependent constraints require a minimum sequence dissimilarity,
calculated using a local variant of the Smith-Waterman (SW) algorithm!2 (<15 SW
score; cost function +1 match, —1 mismatch, —8 gap); and a minimum squiggle
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dissimilarity, calculated by simulating the sequence’s nanopore squiggle using the
Scrappie squiggler and computing the dynamic time warping similarity'* for all
squiggles vs. the new squiggle.

At the start of each round of sequence evolution, sequence order is randomized.
Each sequence is mutated sequentially in this random order. The mutation is
introduced by simultaneously modifying two adjacent nucleotides, in a random
location. If the new sequence fails to fulfill the preceding constraints, we undo the
mutation and try again until a maximum number of tries (100, arbitrarily), at which
point we proceed to the next sequence. Next, we recalculate sequence similarities
with respect to the new candidate sequence. If any sequences are too close to the
new sequence, we undo the mutation and try again. Next, the nanopore squiggle is
simulated for the new sequence using Scrappie squiggler. We recalculate the
dynamic time warping similarity for all squiggles vs. the new squiggle, and, if any
squiggles are now too close, we undo the mutation and try again. If the new
mutation improves both the minimum and the average DTW dissimilarity between
all squiggles, it is accepted; if not, the mutation is reversed and reattempted.
Evolution ends when the optimization begins bouncing between just two sequences.
At this point, the process has produced a local minimum as the result of a series of
random incremental improvements, so further improvements may be gained only
by significantly perturbing these final sequences. We show final sequences and their
corresponding simulated nanopore squiggles in Supplementary Fig. 5.

Molbit classification model. We identify individual molbits using a classification
model, which takes raw nanopore signals as input and outputs the molbit ID with
an associated confidence. The model consists of a 5-layer CNN, followed by two
fully connected layers with 50% dropout, and a final fully connected layer with
softmax as the output layer. Each of the five CNN layers is identically structured,
including a 1D convolutional layer with Relu activation, average pooling, and then
batch normalization. We show a diagram of the model with exact parameters for
each layer (e.g., kernel size) in Supplementary Fig. 1.

Ideally, we we would build a training data set by sequencing each of the 96
molbits separately. However, due to cost, we instead divided the 96 molbits into six
runs of 16 molbits each. We constructed these sets to have a high predicted
distance between the molbits within a set, meaning the most similar and easily
confused molbits were not sequenced together for training data acquisition.

We assigned training labels using basecalling (Guppy version 3.2.2 with GPU
acceleration) followed by Smith-Waterman sequence alignment (cost function: +1
match, —1 mismatch, —8 gap) against the full set of 96 molbits. We considered any
SW score 215 to be a well-aligned match. As a quality measure, we also examined
how many of these reads were labeled with one of the 16 possible molbits. An
average of 98.7% + 2.1% of well-aligned reads belonged to the true set of molbits
across all training runs, indicating high quality labels.

After labeling the training data, we balanced the data set by allowing a
maximum of 6000 reads occurrences for each molbit, with a total of 274,667 reads
used for training. To pre-process the raw signal, we rescaled the signal using a
median absolute deviation method modified from Oxford Nanopore Technologies’
Mako classification tool, trimmed the signal to remove the variable-length stalled
signal characteristic to the beginning of sequencing reads, and finally truncated the
signal to the first 3000 data points. On average, the molbit barcode comprises ~10
to 15% of these 3000 observations. Due to stochastic variation in the dwell time of
each nucleotide in the pore, there is some stretch in the signal, especially near the
beginning of the read. This can cause considerable variation in both the position
and length of the molbit barcode. This highlights the flexibility of the CNN, which
allows us to be liberal with trimming since finding the exact end point of the
barcode is not required.

We split the training data 85/15% to produce training and validation sets and
trained the model for 109 iterations, with a final maximum training accuracy of
99.94% and validation accuracy of 97.78%. Confusion matrices for training and
validating the final model are shown in Supplementary Fig. 6a.

We acquired and labeled testing data in the same manner as the training data,
using two new sequencing runs, each containing a unique half of the molbits.
Performance on these test sets was 98.1 and 95.7% for labeled data (Supplementary
Fig. 6b). We washed and reused the flowcell from test set 1 for test set 2, which
potentially contributed to a small portion of the errors present due to DNA carryover
between the runs. We show read counts for these two test runs in Supplementary
Fig. 7, noting when a molbit was possibly present from the previous run.

Experimental methods. We purchased forward and reverse strands of the 40 nt
unique barcode sequences from Integrated DNA Technologies (IDT). Reverse strands
contained a 5 GAGT overhang and a 3’ dA-tail. We annealed forward and reverse
strands by mixing them equimolar in 0.5 M PBS, boiling them at 94 °C for 2 min and
then allowing them to cool at room temperature. To generate the insert spacer, we
amplified an arbitrary 400 nt portion of plasmid pCDB180 [https://www.addgene.org/
80677/] by PCR, using primers we designed to add Bsal cut sites to the ends of the
amplified product. The primer sequences are available in Supplementary Table 1.
To assemble the molbits, 600 ng of the desired annealed barcodes (at equimolar
concentrations) and 600 ng of the spacer were ligated together using NEB’s Golden
Gate Assembly Kit. We prepared molbits for sequencing using ONT’s Ligation
Sequencing Kit (SQK-LSK109) following the kit protocol (we skipped the “DNA
repair and end-prep” step because molbits were already dA-tailed) and ONT’s Flow

Cell Priming Kit (EXP-FLP001). Molbits were sequenced on a R9.4.1 MinION flow
cell with bulk FAST5 raw data collection enabled on MinKNOW.

We dehydrated tags after nanopore adapter ligation by mixing the molbits with
1% trehalose dihydrate solution and lyophilizing the sample. To sequence, we
rehydrated the lyophilized sample in nuclease-free water and carried out the
sequencing run as described above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The raw nanopore sequencing data sets generated and analyzed during the current study
are available in the Harvard Dataverse repository with the identifier [https://doi.org/
10.7910/DVN/RCLENB]!>. Any other relevant data are available from the authors upon
reasonable request. Source data are provided with this paper.

Code availability

Code for analysis is available at https://github.com/uwmisl/Porcupine.
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