
Vol.:(0123456789)1 3

Journal of Molecular Modeling          (2022) 28:354  
https://doi.org/10.1007/s00894-022-05341-2

ORIGINAL PAPER

Reactivity and binding mode of disulfiram, its metabolites, 
and derivatives in SARS‑CoV‑2  PLpro: insights from computational 
chemistry studies

Pablo Andrei Nogara1,2  · Folorunsho Bright Omage1 · Gustavo Roni Bolzan1 · Cássia Pereira Delgado1 · 
Laura Orian3  · João Batista Teixeira Rocha1 

Received: 29 May 2022 / Accepted: 28 September 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The papain-like protease  (PLpro) from SARS-CoV-2 is an important target for the development of antivirals against COVID-
19. The safe drug disulfiram (DSF) presents antiviral activity inhibiting  PLpro in vitro, and it is under clinical trial studies, 
indicating to be a promising anti-COVID-19 drug. In this work, we aimed to understand the mechanism of  PLpro inhibi-
tion by DSF and verify if DSF metabolites and derivatives could be potential inhibitors too. Molecular docking, DFT, and 
ADMET techniques were applied. The carbamoylation of the active site cysteine residue by DSF metabolite (DETC-MeSO) 
is kinetically and thermodynamically favorable (ΔG‡ = 3.15 and ΔG =  − 12.10 kcal  mol-1, respectively). Our results strongly 
suggest that the sulfoxide metabolites from DSF are promising covalent inhibitors of  PLpro and should be tested in in vitro 
and in vivo assays to confirm their antiviral action.
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Introduction

Coronavirus disease 2019 (COVID-19) caused by the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
is a critical concern worldwide. The search for an effec-
tive antiviral drug to treat COVID-19 is still a challenge. In 
this sense, the viral protease enzymes are important targets 
for drug repositioning and new drugs development [1]. The 

main protease  (Mpro, or 3C-like protease —  3CLpro) and 
papain-like protease  (PLpro) are essential for viral replica-
tion due to their post-translational action on pp1a and pp1ab 
polyprotein processing. The catalytic dyad and triad from 
Mpro and  PLpro, respectively, are responsible for the peptide 
hydrolase activity, with cysteine (Cys) residues playing a 
central role in the catalysis, due to the nucleophilic character 
of the thiolate [2, 3].

Vast effort has been done in the search for SARS-CoV-2 
proteases’ inhibitors [4–8]. Here, we highlight the organo-
chalcogen drugs ebselen and disulfiram (DSF or Antabus) 
which have been demonstrated to inhibit the  Mpro and  PLpro 
from SARS-CoV-2 [9–11] and  PLpro from MERS-CoV and 
SARS-CoV [12, 13]. Disulfiram, which inhibits the mam-
mal aldehyde dehydrogenase (ALDH) enzyme irreversibly, 
deserves attention because it is a safe and well-studied medi-
cine for alcoholism therapy, with a long duration of action 
[14–17], as well as a potential drug for HIV latency reversal 
[18], indicating that it is a good candidate for drug reposi-
tioning. DSF prevents SARS-CoV-2 replication in cell-based 
assays (half-maximal effective concentration,  EC50 > 10 µM) 
and inhibits  PLpro with half-maximal inhibitory concentra-
tion  (IC50) of 6.9–7.5 µM, respectively [9–11]. However, in 
the presence of reducing thiol molecules such as glutathione 
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(GSH) or dithiothreitol (DTT), the inhibitory effect of DSF 
is weakened [10], suggesting that GSH and DTT can reduce 
DSF to diethyldithiocarbamate, which does not inhibit the 
proteases. Lobo-Galo et al. [19] showed that DSF and some 
metabolites can bind to the  Mpro active site interacting with 
the Cys145 residue. However, little is known about its bind-
ing and interactions with the  PLpro enzyme.

In this work, we aimed to understand the mechanism of 
 PLpro inhibition by DSF and verify if DSF metabolites and 
derivatives (Fig. 1) could be potential inhibitors, by applying 
in silico protocols (molecular docking, density functional 
theory (DFT) calculations, and ADMET (absorption, distri-
bution, metabolism, excretion, and toxicity) analysis). New 
acquired data can help in the design of new potential drugs 
against SARS-CoV-2. Here, each DSF metabolite isomer 
was studied that could be tested in vitro to confirm their 
inhibitory potential and antiviral activity.

Materials and methods

Disulfiram derivatives

With the aim of finding approved DSF analogs, a 
search was made on DrugBank [22]. The Thiram and 

dipentamethylenethiuram disulfide (DPTD) compounds 
were found as approved drugs (Fig. 1). Thus, they were 
included in our in silico studies to verify if they might be 
 PLpro inhibitors.

DFT calculations

Gaussian 16 [23] was used for all density functional theory 
(DFT) calculations involving reactivity descriptors of DSF 
and metabolites. The B3LYP hybrid functional was used 
combined to the Grimme D3 dispersion correction and the 
Becke-Johnson damping function [24, 25]. All first and 
second period atoms were described using the 6-311G(d,p) 
basis set, whereas sulfur atoms were described using Dun-
ning’s correlation consistent cc-pVTZ basis set. In the 
gas phase, all structures were optimized and frequency 
calculations were used to assess the stationary nature of 
the geometries before the wavefunction analysis of the 
reactivity descriptors. This level of theory was applied 
with success to investigate sulfur reactivity in biological 
context [26, 27]. The condensed Fukui function [28] was 
computed using the Hirshfeld charges [29], which were 
found to have a high overall reactivity prediction perfor-
mance [30, 31]. ORCA 4.2.1 [32, 33], B3LYP functional, 
and a triple-quality basis set (def2 TZVP) were used for 

Fig. 1  Chemical structure of disulfiram (DSF), metabolites, and 
derivatives. DSF derivatives are shown at the bottom. Disulfiram 
(DSF); diethyldithiocarbamate (DDTC); S-methyl-N,N-diethyldithio-
carbamate (DDTC-Me); S-methyl-N,N-diethylthiocarbamate (DETC-
Me); (R) S-methyl-N,N-diethyldithiocarbamate sulfoxide (DDTC-
MeSO (R)); (S) S-methyl-N,N-diethyldithiocarbamate sulfoxide 
(DDTC-MeSO (S)); S-methyl-N,N-diethyldithiocarbamate sulfone 
(DDTC-MeSO2); diethyldithiocarbamate N-acetylcysteine adduct 

(DDTC-NAC); (R) S-methyl-N,N-diethylthiocarbamate sulfoxide 
(DETC-MeSO (R)); (S) S-methyl-N,N-diethylthiocarbamate sul-
foxide (DETC-MeSO (S)); S-methyl-N,N-diethylthiocarbamate sul-
fone (DETC-MeSO2); diethylthiocarbamateN-acetylcysteine adduct 
(DETC-NAC); dipentamethylenethiuram disulfide (DPTD). For more 
information about the DSF metabolites, see the references [20, 21]. 
The active metabolites, which inhibit the ALDH, are highlighted in 
the boxes
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the  SN2 mechanism of the reaction between  CH3S− (Cys 
model) and the disulfiram (DSF) metabolites DETC-
MeSO(S) [26]. To account for dispersion corrections, the 
Grimme D3 parameterized adjustment to the DFT energy 
(with Becke-Johnson damping) was used [34]. All struc-
tures of intermediate species were found to be local energy 
minima (no imaginary frequencies) and saddle points (one 
imaginary frequency) for the transition state (TS). To con-
firm that the TS was the correct saddle point connecting 
reactants and products, we calculated the TS’s intrinsic 
reaction coordinate (IRC) defined according to Fukui et al. 
[35].

Docking simulations

Docking simulations were carried out according to the lit-
erature [36], using the AutoDock Vina [37] with exhaus-
tiveness of 50. The crystallographic structure of  PLpro was 
obtained from the Protein Data Bank (PDB ID: 7JN2). 
Water, ions, ligands, and other molecules were removed 
from the X-ray protein structures, and hydrogen was added 
using the CHIMERA program, followed by 100 steps of 
energy minimization [38]. Blind docking simulations were 
applied to the  PLpro monomer (coordinates 54.02, 40.34, 
11.92 and size 72 × 70 × 46 Å). In addition, with the aim to 
improve the interactions with the target Cys residues, the 
grid box was centered on the active site (coordinates 39.64, 
30.68, 1.66; size: 20 × 20 × 20 Å) and zinc site (coordinates 
82.40 × 26.32 ×  − 0.62; size: 20 × 20 × 20 Å) because DSF 
can promote  Zn2+ ion ejection from  PLpro [11].

The ligands’ structures were based on their protonation 
state at physiological pH (Figure S2), where they are mainly 
in the neutral form, with exception of the N-acetylcysteine 
(NAC) derivatives (carboxyl moiety is deprotonated) and 
DDTC. MarvinSketch was used to predict the molecules’ 
protonation state in different pHs (ChemAxon, www. chema 
xon. com). Taking into account that the distances between 
the Cys residues and the DDTC-deprotonated were higher 
than the protonated one (Figure S3), we decide to present 
the data with the DDTC neutral in the main text. The tridi-
mensional model of DSF, its metabolites, and derivatives 
were obtained by gas-phase optimizations carried out at 
B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ (see above). Both 
R- and S-isomers of the sulfoxides were considered because 
the sulfur nucleus is a chiral center, which is little explored 
in docking studies. For each ligand, the 20 best conformers 
(in terms of binding energies) were grouped in clusters with 
an RMSD threshold of 2 Å [39]. The best distance (from 
the most populated cluster) between the S (Cys) atom to S 
atom (or C = S or C = O groups) was considered as poten-
tial sites for the covalent bond formation between the  PLpro 
and organochalcogen ligands, respectively. The analysis and 

figures were performed using the Discovery Studio Visual-
izer program [40]. The N–C = S and N–C = O bonds of the 
ligands were kept rigid during the simulations due to their 
partial double bond character [41, 42]. The estimate binding 
sites of  PLpro were searched by using DeepSite, a protein-
binding site predictor [43].

ADMET properties

ADMET parameters help us to identify the drugability of 
molecules. The prediction of the ADMET properties of the 
ligands was made using pkCSM [44] and SwissADME [45] 
web freeware servers.

Results and discussion

Nucleophilic attack facility

Understanding the chemical reactivity of molecules is essen-
tial in drug discovery and the calculation of Fukui func-
tions is a good option for such prediction. In particular, the 
nucleophilic Fukui function (f+) indicates the susceptibil-
ity of different molecular sites to nucleophilic attack [30]. 
The analysis of the f+ indices of DSF, its metabolites, and 
derivatives (Table 1) shows that the S atoms of the disulfide 
bond and the S from the thiocarbonyl moiety are the most 
favorable sites for the nucleophilic attack, suggesting that 
the thiolate from Cys residue may attack these moieties. In 
fact, a covalent adduct with a disulfide bond between half of 
DSF and the S from Cys residues (thiocarbamoylation) was 
observed in Giardia lamblia carbamate kinase enzyme [46] 
and recombinant rat liver mitochondrial ALDH (rmALDH) 
[16]. However, the literature data about the DSF metabo-
lites indicate that the thiolate of Cys attacks the carbon 
atom of the (thio)carbonyl moieties (carbamoylation) [16, 
20, 21]. Despite the highest f+ indices are computed for the S 
atoms of DSF metabolites, the carbon center from the (thio)
carbonyl groups is also reactive and display higher values 
than the corresponding carbon center in the parent drugs 
(Table 1). This is a nice result, taking into account that cal-
culations are performed in gas-phase and no environment 
effects are included.

Blind docking

To explore the possible binding sites of DSF, its metabolites, 
and analogs on  PLpro, blind docking simulations were car-
ried out. The molecules interact in five main binding sites 
(A–E). Sites A and B present the major number of conform-
ers of DSF, its metabolites, and derivatives (Fig. 2), suggest-
ing a possible allosteric inhibition. Despite the low number 
of conformers binding to site C, an interaction with a Cys 

http://www.chemaxon.com
http://www.chemaxon.com
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residue (Cys181) occurs, indicating that this residue might 
be a target, especially for Thiram and DPTD. The analysis 
with DeepSite corroborates the docking data, and for the 
sites A, B, C, and D, the scores 0.84, 0.97, 0.53, and 0.99 
were obtained, respectively. However, the DeepSite program 
did not find site E (Glu203, Met206, Met208, and Lys232); 
conversely, it identified a binding site on the finger domain 
(between the residues Gln195, Ile222, Thr225, and Lys232). 
Unfortunately, no molecule interacted here. Next, we studied 
the interactions of the compounds in the active site and Zn 
binding site of  PLpro, due to the presence of critical Cys 
residues.

PLpro: interactions in the active site

In the catalytic triad of  PLpro of SARS-CoV-2, Cys111 acts 
as a nucleophile by cleaving the peptide bond of pp1a and 
pp1ab polyprotein, and His272 and Asp286 residues act as 
an acid–base pair promoting the thiol deprotonation and 
thus enhancing its nucleophilicity [3, 47]. So, blocking the 

thiol moiety of Cys111 is a strategy to inhibit the  PLpro. The 
predicted binding poses obtained from the docking studies 
focused on the active site demonstrate that a sulfur atom of 
the disulfide bond of DSF can interact with the thiol moiety 
of Cys111 (Fig. 3A and Table 2). These data indicate that 
the thiocarbamoylation of Cys111 might be possible, as also 
observed in the Giardia lamblia carbamate kinase enzyme 
[46] and  Ca2+-bound S100B protein [48]. The DDTC and 
DDTC-Me metabolites show a similar binding pose and 
an S∙∙∙C = S interaction at 4.9 Å. In contrast, DETC-Me 
showed an S∙∙∙C = O interaction of 4.4 Å (Fig. 3B–D). The 
dithiocarbamate metabolites DDTC-MeSO (R) and DDTC-
MeSO (S) interact better with Cys111 than DDTC-MeSO2 
(Fig. 3E–G), as indicated by the shortest S∙∙∙C = S interac-
tion. Among the sulfoxide and sulfone metabolites of DETC-
Me (Fig. 3I–K), DETC-MeSO (S) presents the best interac-
tion with the PLpro active site, where the oxygen atoms are 
involved in H-bonds with Cys111, and an S∙∙∙C = O interac-
tion at 4.2 Å is also present. This short S∙∙∙C = O interaction 
indicates that the covalent modification of Cys side chain 

Table 1  f+ indices for 
nucleophilic susceptible sites 
with DSF, its metabolites, and 
derivatives

Molecule N1 C2 S3 S4 S5 S6 C7 N8

a- DSF 0.04 0.06 0.13 0.10 0.10 0.12 0.06 0.03

b- Thiram 0.02 0.03 0.17 0.12 0.13 0.19 0.06 0.03

c- DPTD 0.02 0.04 0.16 0.11 0.12 0.18 0.06 0.03

N1 C2 S/O3 S4 C5 O6 O7 -

d- DDTC 0.06 0.14 0.29 0.17 - - - -

e- DDTC-Me 0.05 0.14 0.26 0.14 0.03 - - -

f- DETC-Me 0.00 0.02 0.04 0.14 0.07 - - -

g- DDTC-MeSO (R) 0.07 0.12 0.26 0.09 0.04 0.06 - -

h- DDTC-MeSO (S) 0.06 012 0.27 0.10 0.04 0.06 - -

i- DDTC-MeSO2 0.07 0.13 0.28 0.04 0.02 0.06 0.06 -

j- DETC-MeSO (R) 0.05 0.12 0.11 0.15 0.06 0.07 - -

k- DETC-MeSO (S) 0.05 0.12 0.12 0.16 0.06 0.07 - -

l- DETC-MeSO2 0.05 0.15 0.15 0.07 0.03 0.07 0.07 -

N1 C2 S/O3 S4 C8 C11 - -

m- DDTC-NAC 0.05 0.13 0.22 0.12 0.02 0.01 - -

n- DETC-NAC 0.01 0.04 0.04 0.07 0.02 0.01 - -

Values in bold highlighted the highest f+ indices for each molecule. An atom in a molecule with a posi-
tive f+ value is susceptible to nucleophilic attack. Y = O or S
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could be possible, as reported by Lipsky et al. [16] in the 
rmALDH assay.

The N-acetylcysteine metabolites, DDTC-NAC and 
DETC-NAC, do not show S∙∙∙S or S∙∙∙C = S/O interactions, 
but they interact with Cys111 through the carbonyl moiety 
of the N-acetyl group (Fig. 3H and L). Thiram presents an 
S∙∙∙C = S interaction at 4.9 Å and the DPTD shows an S∙∙∙S 
interaction at 5.4 Å with Cys111 (Fig. 3M, N), suggesting 
a poorer binding pose and activity than DSF. In addition, 
we performed the  PLpro docking with the active site in the 
ionic/charged state at physiological pH [49], i.e., the Cys111 
deprotonated, His272 protonated, and Asp286 deprotonated. 
The docking results do not present big changes, with the 
RMSD ranging from 0.1 to 2.3 Å, between the  PLpro dock-
ing with the active site neutral and ionic (Table S1 and 
Figure S1).

It is important to note that the H-bond between the 
sulfoxide moiety of DDTC-MeSO (S), DETC-MeSO (R), 
and DETC-MeSO (S) and the amine group of Cys111 is 
an essential feature for the complexes’ stabilization and 
that it may help the Cys111 nucleophilic attack to these 
ligands. Despite the least negative predicted binding ener-
gies observed here, the structural data help us to better 
understand the possible mechanism of inhibition of DSF 
and its metabolites against SARS-CoV-2  PLpro. In gen-
eral, the hydrophobic and van der Waals interactions with 
Trp106, Asn109, Leu162, and His272, and the H-bonds 
with Ala107, Ans109, and Cys111 play an important role 
to stabilize the  PLpro-ligand complexes. In fact, these 
residues interact with many inhibitors [50, 51] and they 
are also involved in the DSF interaction with  PLpro from 
SARS-CoV [12].

PLpro: Zn site interactions

While the active sites of  PLpro have only one Cys residue as a 
target, the Zn site is composed of a Zn(II) ion linked to four 
Cys residues (Cys189, Cys192, Cys224, and Cys226). This 

type of Cys-rich motif structure is found in many proteins, 
such as zinc finger proteins [52]. These small regions of the 
protein’s three-dimensional structure may have important 
structural and catalytic functions and are a potential molecu-
lar target for therapeutic intervention. For this reason, the 
disruption of protein function via the oxidation of cysteine 
residues by an organochalcogen at the  PLpro Zn binding site 
deserves to be investigated in more detail. The disruption 
of the protein may occur through the ejection of zinc ion at 
the  PLpro Zn site of SARS-CoV-2, as mentioned by Sarg-
syan et al. [11], where the clinically safe drugs ebselen and 
DSF can covalently bind to cysteine residues, thus forming 
a covalent adduct.

The binding poses obtained from the docking studies 
focused on the  PLpro Zn site demonstrate that the sulfur 
atom of the DSF disulfide bond can interact with the thi-
olate group of Cys224 (Fig. 4A and Table 2). The DDTC, 
DDTC-Me, and DETC-Me metabolites also interact with 
the Cys224 through S∙∙∙C = S/O interaction, with a small 
binding pose difference (Fig. 4B–D). The dithiocarbamate 
sulfoxide metabolites DDTC-MeSO (R), DDTC-MeSO 
(S), and DDTC-MeSO2 interact with the Cys224 through 
S∙∙∙C = S interaction (Fig. 4E–G), while the thiocarbamates 
DETC-MeSO (R), DETC-MeSO (S), and DETC-MeSO2 
bind through S∙∙∙C = O interaction (Fig. 4I–K). As observed 
in the active site, the DETC-MeSO (S) has a better interac-
tion with the Zn site, where oxygen atoms form H-bonds 
with Thr225, and there is also an S∙∙∙C = O interaction at 
3.6 Å. The metabolites from N-acetylcysteine, DDTC-NAC 
and DETC-NAC, like observed in the active site, do not 
present S∙∙∙S or S∙∙∙C = S/O interactions. They interact with 
Cys224 with the carbonyl portion of the N-acetyl group 
(Fig. 4H–L). The studied derivatives show similar behavior 
to DSF, especially Thiram. Both Thiram and DPTD show 
S∙∙∙C = S and S∙∙∙S interactions (Fig. 4N, O); however, the 
shorter S∙∙∙S distance (3.9 Å) of the Thiram derivative sug-
gests a better binding pose and activity than DPTD. In this 

Fig. 2  Blind docking of  PLpro. 
(A) Structure of  PLpro: the 
binding sites are represented 
with purple circles. DETC-Me 
was used as a representative 
molecule. The  PLpro domains 
ubiquitin-like, thumb, finger, 
palm (residues 1–60, 61–178, 
179–240, and 241–315, respec-
tively) are shown in blue, cyan, 
green, and red color, respec-
tively. (B) Number of conform-
ers in the binding sites of  PLpro
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sense, DSF analogues should be better studied as possible 
 PLpro inhibitors.

It is important to note that the H-bonds with a Gln195 and 
Thr225 could help to stabilize the  PLpro Zn-ligand complexes, 
and may be of great value in the mechanism of inhibition of 
this site, promoting the possible ejection of the Zn ion, after 
the nucleophilic attack of Cys224 (which was found to be 
the target Cys residue), as reported in a previous study [11].

Energetics of thiolate attack to DSF and DETC‑MeSO 
(S)

As observed by the docking study, the disulfide (S–S) bond 
of DSF and the carbamoyl moiety of DETC-MeSO (S) 
metabolite are Cys’ warheads. Thus, to understand the poten-
tial covalent inhibition, DFT calculations were carried out 
using as a model the nucleophile methylthiolate  (CH3S−) (a 
Cys’ lateral chain model), as done in other theoretical studies 
[26, 36]. The DSF and DETC-MeSO (S) can form adducts 
with the Cys’ lateral chain, in an energetically favorable 
exergonic reaction (ΔG =  − 26.9 and − 12.1 kcal   mol-1, 
respectively) (Fig. 5). In fact, theoretical studies indicate 
that this reaction is thermodynamically favored [26, 53].

Focusing on the potential inhibition by DETC-MeSO (S), 
it was verified that  CH3S− proceeds via a concerted nucleo-
philic attack mechanism on the carbonyl (C = O) group of 
DETC-MeSO (S), which has been located on the potential 
energy surface (PES) and confirmed by an intrinsic reac-
tion coordinate (IRC) calculation. This is consistent with the 
earlier mechanistic analysis reported by our group [36, 54]. 
The reaction starts with the formation of a reactant complex 
(RC), in which the  CH3S− (nucleophile) coordinates to the 
carbonyl-carbon group of DETC-MeSO (S) (substrate) at 
3.14 Å. In the gas phase, the reactant complexes are sta-
bilized by 13.20 kcal  mol−1 with respect to isolated reac-
tants. At the transition state (TS), the overall energy barrier 
is 3.20 kcal  mol−1 relative to the RC, and the length of the 
S∙∙∙C = O bond of  CH3S− (nucleophile, 2.01 Å) gets pro-
gressively shorter, while the length of the S∙∙∙C = O bond 
of DETC-MeSO (S) (leaving group, 2.25 Å) gets longer and 
eventually breaks completely, releasing the methylsulfenate 
anion  (CH3SO−). The TS was found to have only one imagi-
nary frequency, proving the structure’s rationality. Taking 
all together, the docking simulations and DFT calculations 
highlight that the S∙∙∙C = O (thiol/thiolate∙∙∙ carbamoyl) 
interaction and the consequent Cys’ nucleophilic attack on 
the carbamoyl moiety of DETC-MeSO (S) are a key step 
in the enzyme inhibition mechanism, and it is energetically 
favorable, suggesting that DSF and metabolites are good 
Cys’ blocking agents due its covalent modification.

Fig. 3  PLpro docking with DSF, its metabolites, and derivatives. 
H-bonds, hydrophobic, and S···S (or S···C = O/S) interactions are rep-
resented by green, purple, and orange dashed lines, respectively. The 
distances are in Å

◂

Table 2  Predicted binding free energies (ΔG, kcal∙mol−1) between  PLpro and DSF, its metabolites, and derivatives

active site Zn site
Molecule ∆G E+∙∙∙Sa E+ ∆G E+∙∙∙Sb E+

DSF -2.9 4.5 S–S -3.2 4.0 S–S

DDTC -2.5 4.9 C=S -2.1 5.1 C=S

DDTC-Me -2.7 4.9 C=S -2.4 4.5 C=S

DETC-Me -2.8 4.4 C=O -2.9 3.8 C=O

DDTC-MeSO (R) -2.8 4.6 C=S -2.9 4.3 C=S

DDTC-MeSO (S) -3.0 4.6 C=S -2.7 4.1 C=S

DDTC-MeSO2 -2.7 6.4 C=S -3.0 4.3 C=S

DDTC-NAC -4.1 4.5 C=O' -3.7 4.3 C=O'

DETC-MeSO (R) -3.0 5.2 C=O -3.2 4.0 C=O

DETC-MeSO (S) -3.1 4.2 C=O -3.4 3.6 C=O

DETC-MeSO2 -2.8 4.5 C=O -2.8 4.5 C=O

DETC-NAC -4.1 4.4 C=O' -3.7 4.4 C=O'

Thiram -3.1 4.9 C=S -3.4 3.9 S–S

DPTD -3.8 5.4 S–S -4.2 4.5 S–S

E+, electrophile group of the ligand, which can be S, C = O, C = S, or the acetyl group (C = O′). The first atom in the column is the electrophilic 
center of the ligands. Distances (in Å) from the thiol of aCys111 and bCys224 to the  E+; green, yellow, and red colors indicate a favorable, inter-
mediate, and less favorable interaction, respectively.
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ADMET analysis

Prediction of absorption, distribution, metabolism, excretion, 
and toxicity (ADMET) properties of molecules is essential in 
drug discovery, giving important information about the drug 
likeness [44]. For example, the Lipinski’s rule of five (molecu-
lar weight < 500; number of H-bond donors < 5; number of 
H-bond acceptors < 10; logP < 5) plays an important role in 
the screening of drugs with pharmacological activity [55]. For 
these reasons, we have investigated the ADMET features of 

DETC-MeSO (S) because it demonstrated to be a potential 
 PLpro inhibitor, and compared it to DSF and DDTC-MeSO (S) 
metabolite. According to Table S2, DSF, DETC-MeSO, and 
DDTC-MeSO follow Lipinski rules, and they are predicted 
to have good water solubility, with high Caco-2 permeabil-
ity and intestinal absorption, and low skin permeability. The 
metabolites appear to be more hydrophilic than the DSF. Only 
DSF and DDTC-MeSO showed to be P-glycoprotein sub-
strates. Regarding the distribution properties, the volume of 
distribution (VDss), which represents if the drug is preferably 
contained in tissues rather than in plasma, and the unbound 
fraction suggest an uniform distribution. The blood–brain bar-
rier (BBB) and central nervous system (CNS) permeability 
imply a moderate distribution to the brain. DETC-MeSO and 
DDTC-MeSO do not appear to be substrates or inhibitors of 
hepatic cytochrome P450 isoenzymes (an essential system for 
drug metabolism in the liver), while DSF might be an inhibi-
tor. The drug excretion prediction indicates that they are not 
substrates of the organic cation transporter 2 (OCT2), a renal 
uptake transporter that plays an important role in the disposi-
tion and renal clearance of xenobiotics. With exception of the 
skin sensitization (allergic contact dermatitis) tests, the toxicity 
assays suggest that the molecules are not toxic. In fact, the DSF 
lethal dosage  (LD50) in rats is 8.6 g/kg [56]. In addition, the 
drug likeness (Table S3), analyzed by five different rule-based 
filters (Lipinski, Ghose, Veber, Egan, and Muegge), suggests 
that the compounds are good oral drug candidates [45]. In 
short, the predicted ADMET properties indicate that DSF, 
DETC-MeSO, and DDTC-MeSO present good water solubil-
ity and absorption, moderate distribution, poor metabolism 
and excretion, and moderate toxicity. These data are essential 
in drug design, which can effectively be a guide and lead to a 
reduction of failures in clinical trials [44]. The replacement of 
S (in DDTC-MeSO) to O atom (in DETC-MeSO) has a low 
effect on the predicted ADMET. However, it could have an 
influence on the molecule reactivity; since O is more electron-
egative than the S, the DETC-MeSO could be a better elec-
trophile than DDTC-MeSO and be an important thiol target.

Conclusions

The data here presented suggest that the DSF and metabo-
lites are  PLpro inhibitors, which is consistent with the out-
comes of previous studies [9–11], besides helping to under-
stand its molecular mechanism of action at the molecular 
level. Specifically, the sulfoxides metabolite DETC-MeSO 
(S) show a satisfactory interaction with the thiol group of 
Cys111 of  PLpro, suggesting that the inhibition may be cova-
lent, as observed for the ALDH [16, 20, 21], hexokinase 
[57], and glutathione S-transferase enzymes [58].

We have presented a systematic quantum chemical analy-
sis of the mechanism and energetics of the reactions between 

Fig. 4  PLpro Zn site docking with DSF, its metabolites, and deriva-
tives. H-bonds, hydrophobic, and S···S (or S···C = O/S) interactions 
are represented by green, purple, and orange dashed lines, respec-
tively. The distances are in Å

◂

Fig. 5  (A) Proposed reaction between  CH3S− (Cys model) and DSF 
and DETC-MeSO (S). (B) Gas phase energy profile for the reaction 
for DETC-MeSO (S), and (C) optimized molecular structures of reac-
tant complex (RC), transition state (TS), and product complex (PC). 
The calculated Gibbs energies are in kcal  mol−1 and are relative to 
the energy of the separated reactants. The distances are in Å. Level of 
theory B3LYP-D3(BJ)/TZVP
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 CH3S− and a DETC-MeSO (S) using DFT. In vacuo, this 
reaction proceeds via an  SN2 mechanism, and it is kinetically 
and thermodynamically favorable. Our data suggest a great 
advantage of DSF because its metabolites are still active 
and can have pharmacological action. In this way, the use 
of DSF, its metabolites and derivatives, may be an option in 
the search for antivirals against COVID-19. Furthermore, 
DSF was able to block neutrophil extracellular traps (NET) 
formation and protect rodents against lung injury and SARS-
CoV-2 infection [59]. Currently, two clinical trials have been 
approved to evaluate the effects of DSF in patients with 
COVID-19 (NCT04594343, NCT04485130), and recent 
studies suggest that patients undergoing DSF treatment had 
a reduced COVID-19 infection rate and fewer symptoms 
than those untreated [60, 61]. Taken as a whole, these data 
strongly suggest that DSF and active metabolites are impor-
tant molecules, due to their disulfide and carbamoyl moie-
ties, and should be tested in in vitro and in vivo trials to 
confirm the inhibitory and pharmacological potential against 
SARS-CoV-2.
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