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N-representability of the Jastrow 
wave function pair density of the 
lowest-order
Katsuhiko Higuchi1 & Masahiko Higuchi2

Conditions for the N-representability of the pair density (PD) are needed for the development of the PD 
functional theory. We derive sufficient conditions for the N-representability of the PD that is calculated 
from the Jastrow wave function within the lowest order. These conditions are used as the constraints 
on the correlation function of the Jastrow wave function. A concrete procedure to search the suitable 
correlation function is also presented.

The pair density (PD), which is defined as the diagonal element of the second-order reduced density matrix, 
has more information about the electron correlation than the electron density1–4. Therefore, the PD functional 
theory has been expected to be one of the promising schemes beyond the density functional theory5–28. We have 
proposed the PD functional theory that yields the best PD within the set of the Jastrow wave function PDs of the 
lowest-order (LO-Jastrow PDs)17. The search region for the ground-state PD is substantially extended as com-
pared with the previous theory18, 19. On the other hand, however, there remains a significant problem related to 
the N-representability of the LO-Jastrow PDs17. Concerning the N-representability of the PD or the second-order 
reduced density matrix, there are a lot of works29–39. But unfortunately, the necessary and sufficient conditions for 
the N-representability of the PD are not yet known in a practical form.

Let us revisit the problem here. We shall consider an N0-electron system. The Jastrow wave function is given by
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where xi denotes the coordinates including the spatial coordinate ri and spin coordinate ηi, and where AN0
, 

| − |f r r( )i j  and Φ ⋅ ⋅ ⋅x x( , , )SSD N1 0
 are the normalization constant, correlation function and single Slater deter-

minant (SSD), respectively. The LO-Jastrow PD is given by17, 40, 41
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where γ ′ ′ =rr rr( ; )SSD N N
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0
 is the PD calculated from the SSD. In the preceding paper17, we have confirmed that 

Eq. (2) meets four kinds of necessary conditions for the N-representability of the PD, and may become “approxi-
mately N-representable”42–47. However, the possibility of it being N-representable has not been discussed17. This is 
an arguable problem that is concerned with whether the reproduced PD is physically reasonable or not.

The aim of this paper is to discuss the N-representability of Eq. (2) and to show the way to search the suitable 
correlation function | − |f r r( )i j . The organization of this paper is as follows. For the convenience of the subse-
quent discussions, we first examine the properties of the LO-Jastrow PD in the next section. Then, the sufficient 
conditions for the N-representability of Eq. (2), which are imposed on the correlation function, will be derived 
recursively. Next, concrete steps for searching the correlation function that meets these conditions are discussed. 
Finally, concluding remarks are given in the last section.

Results
Properties of the LO-Jastrow PD.  In this section, we shall discuss the properties of the LO-Jastrow PD. To 
this aim, the properties of PDs that are calculated from SSDs are investigated. The cofactor expansion of 
Φ ⋅ ⋅ ⋅x x( , , )SSD N1 0

 along the N0th row leads to
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where φλ x( )N0
, φµ x( )N0

 … and φξ xN( )0 , are the constituent spin orbitals of Φ ⋅ ⋅ ⋅x x( , , )SSD N1 0
. In what follows, 

suppose that these spin orbitals are given as the solutions of simultaneous equations of previous work17, and 
therefore they are orthonormal to each other. Φ ⋅ ⋅ ⋅ −x x( , , )SSD

i
N1 10

 (1 ≤ i ≤ N0) in Eq. (3) denote (N0 − 1) 
-electron SSDs that are defined as the minor determinants multiplied by −N1/ ( 1)!0 . The PD that is calculated 
from Eq. (3) is given by
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10
 is the PD calculated from Φ ⋅ ⋅ ⋅ −x x( , , )SSD

i
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.
Likewise, the cofactor expansion of each Φ ⋅ ⋅ ⋅ −x x( , , )SSD

i
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 yields (N0 − 2)-electron SSDs, which are 
denoted by Φ ⋅ ⋅ ⋅ −x x( , , )SSD
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2  ≤ ≤ ≤ ≤ − ⋅ ⋅ ⋅ ≤ ≤ ≤ ≤i N j N p q(1 , 1 1, , 1 4,1 3)0 0  are PDs calculated from 

the two-electron SSDs. These two-electron SSDs, which are denoted by Φ ⋅⋅⋅ x x( , )SSD
ij pq

1 2 , are obtained by the 
above-mentioned successive cofactor expansions.

Multiplying both sides of Eq. (5) by ′−f r r( ) 2, we finally get
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This relation is the starting point to examine the N-representability of the LO-Jastrow PD.

Sufficient conditions for the N-representablity of the LO-Jastrow PD.  We shall start with consid-
ering the N-representability of γ′ ′ ′− =

⋅⋅⋅f r r rr rr( ) ( ; )SSD N
ij pq2 (2)

2  that appears in the right-hand side of Eq. (6). 
Suppose that the two-electron wave function that yields γ′ ′ ′− =

⋅⋅⋅f r r rr rr( ) ( ; )SSD N
ij pq2 (2)

2  is given by the following 
Jastrow wave function;
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where  ⋅⋅⋅A ij pq
2  i s  the  normal izat ion constant .  From Eq.  (7) ,  the  PD is  ca lcu lated  as 
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2 . Hereafter, we assume that such conditions hold for all values 
of ⋅ ⋅ ⋅i j p, , ,  and q, i.e.,
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Note that the normalization constant ⋅⋅⋅A ij pq
2  is determined by both −f r r( )1 2  and Φ ⋅⋅⋅ x x( , )SSD
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40, 41. Therefore, 
if they are given, we can calculate ⋅⋅⋅A ij pq

2 , and check whether the conditions Eq. (8) are satisfied or not. As men-
tioned later, the conditions Eq. (8) are the parts of sufficient conditions for the N-representability of Eq. (2).

Under the conditions Eq. (8), we have
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where γ ′ ′ =ˆ rr rr( ; )N n
(2)  denotes the PD operator for an n-electron system. Substituting Eq. (9) into Eq. (6) and 

rearranging, we get
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It should be noticed that the right-hand side of Eq. (10) has a characteristic form. Concerning the 
N-representability of this form, the following theorem holds:

Theorem. If there exists the set of single-valued, continuous, smooth and finite functions {aα(xn + 1)} 
(1 ≤ α ≤ n + 1) that satisfy the conditions;
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Here Ψ ⋅ ⋅ ⋅α
= x x( , , )N n n1  (1 ≤ α ≤ n + 1) denote the n-electron wave functions, and σ is a permutation operator 

upon the electron coordinates, and σ is the number of interchanges in σ.
Proof. The left-hand side of Eq. (13) seems to be related to the average of γ ′ ′ =ˆ rr rr( ; )N n

(2)  with respect to a 
density matrix for a mixed state. Indeed, if the density matrix for the mixed state is given by
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By using Eq. (16), the left-hand side of Eq. (13) is rewritten as ρ γ+ − ′ ′ =ˆ ˆn n rr rr{( 1)/( 1)}Tr[ ( ; ) ]n N n
(2) .

On the other hand, it is expected that the average ρ γ ′ ′ =ˆ ˆ rr rrTr[ ( ; ) ]n N n
(2)  may be given as the expectation value 

of γ ′ ′ =ˆ rr rr( ; )N n
(2)  with respect to a pure state for the whole system that includes the n-electron system as a sub-

system48, 49. We shall take an (n + 1)-electron system as the whole system, and suppose that the wave function for 
such the (n + 1)-electron system is given by Eq. (14) with Eq. (11). Then we indeed get
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Furthermore, if Ψ ⋅ ⋅ ⋅= + +x x( , , )N n n1 1 1  is antisymmetric, i.e., if Eq. (12) holds, then the expectation value of 
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Consequently, Eq. (13) immediately follows from Eqs (16), (17) and (18). This means that Eq. (13) holds under 
the conditions that there exists the set of functions {aα(xn + 1)} (1 ≤ α ≤ n + 1) that satisfy Eqs (11) and (12). 
Q.E.D.

First, we apply the above theorem to the term γ∑ Ψ ′ ′ Ψ= =
⋅⋅⋅

= =
⋅⋅⋅ˆ rr rr( ; )q N

ijk opq
N N

ijk opq1
1 1

3
2

(2)
2 2  that appears in Eq. 

(10). According to the theorem, this term can be rewritten as

∑ γ γΨ ′ ′ Ψ = Ψ ′ ′ Ψ
=

=
⋅⋅⋅

= =
⋅⋅⋅

=
⋅⋅⋅

= =
⋅⋅⋅ˆ ˆrr rr rr rr1

1
( ; ) ( ; )

(19)q
N
ijk opq

N N
ijk opq

N
ijk op

N N
ijk op

1

3

2
(2)

2 2 3
(2)

3 3

with

∑Ψ = Ψ=
⋅⋅⋅

=

⋅⋅⋅
=
⋅⋅⋅x x x a x x x( , , ) ( ) ( , ),

(20)
N
ijk op

q
q
ijk op

N
ijk opq

3 1 2 3
1

3

3 2 1 2



www.nature.com/scientificreports/

4Scientific REPOrTs | 7: 7590  | DOI:10.1038/s41598-017-07454-8

if there exists the set of functions ⋅⋅⋅a x{ ( )}q
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In addition to Eq. (8), the existence conditions for ⋅⋅⋅a x{ ( )}q
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3  (1 ≤ q ≤ 3), i.e., Eqs (21) and (22), are also the 
parts of sufficient conditions for the N-representability of Eq. (2). We assume that the set of functions ⋅⋅⋅{ }a x( )q
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Next, we apply the theorem to the term γ∑ Ψ ′ ′ Ψ= =
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Similarly to the above, we obtain
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The existence conditions for ⋅⋅⋅a x{ ( )}p
ijk o

4  (1 ≤ p ≤ 4), i.e., Eqs (26) and (27), are added to the set of sufficient con-
ditions for the N-representability of Eq. (2). At this stage, Eq. (8) and the existence conditions for ⋅⋅⋅a x{ ( )}q

ijk op
3  (1 

≤ q ≤ 3) and ⋅⋅⋅a x{ ( )}p
ijk o

4  (1 ≤ p ≤ 4) belong to the set of sufficient conditions.
Thus the theorem is applied repeatedly, so that further conditions are added to the set of sufficient conditions. 

Continuing until the conditions for a x{ ( )}i N0
 (1 ≤ i ≤ N0), we eventually obtain sufficient conditions for the 

N-representability of Eq. (2).

Discussions
Concrete steps for constructing the N-representable LO-Jastrow PD.  In the preceding section, the 
sufficient conditions for the N-representability of the LO-Jastrow PD are derived. In this section, we consider the 
concrete steps for searching the correlation function that meets these conditions or checking its existence.

	 1.	 First, we give a trial form of the correlation function. Using this, simultaneous equations for the N0-elec-
tron system are solved in a self-consistent way17.

	 2.	 Let us consider the SSD that consists of the resultant spin orbitals for the simultaneous equations. The SSD 
can generally be expanded using the cofactor. The SSD for the N0-electron system is expanded along the 
N0th row, then we get the N0 number of SSDs for the (N0 − 1)-electron system, i.e., Φ ⋅ ⋅ ⋅ −x x( , , )SSD
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 (1 
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j ≤ N0 − 1), can be obtained for each i. After that and later, the cofactor expansions are likewise repeated, 
and we finally arrive at the SSDs for the two-electron system, i.e.,Φ ⋅⋅⋅⋅ x x( , )SSD
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N0 − 1, 1 ≤ k ≤ N0 − 2, …, 1 ≤ o ≤ 5, 1 ≤ p ≤ 4 and 1 ≤ q ≤ 3, respectively.
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2
40, 41. We check whether all of ⋅⋅⋅⋅A ijk opq

2  are unity or not. If no, we return to the step 1 and change 
the form of the correlation function. This process proceeds until all of ⋅⋅⋅⋅A ijk opq

2  become unity. Suppose that 
such the correlation function is found, we get two-electron antisymmetric wave functions Ψ =

⋅⋅⋅⋅ x x( , )N
ijk opq

2 1 2  
for all cases of ⋅ ⋅ ⋅ ⋅i j k o p, , , , ,  and q through Eq. (7).

	 4.	 By means of these Ψ =
⋅⋅⋅⋅ x x( , )N

ijk opq
2 1 2 , three-electron wave functions are defined as Eq. (20). We will check 
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whether there exists the set of =⋅⋅⋅⋅a x q{ ( ), 1, 2, 3}q
ijk op

3  that are satisfied with Eqs. (21) and (22). Note that 
the check has to be performed for all cases of ⋅ ⋅ ⋅ ⋅i j k o, , , ,  and p. If suitable ⋅⋅⋅⋅a x{ ( )}q

ijk op
3  cannot be 

found, we again return to the step 1 and modify the correlation function. Suppose the suitable ⋅⋅⋅⋅a x{ ( )}q
ijk op

3  
is found in this process, then three-electron antisymmetric wave functions Ψ =

⋅⋅⋅⋅ x x x( , , )N
ijk op

3 1 2 3  for all cases 
of …i j k o, , , ,  and p can be constructed from Eq. (20).

	 5.	 We successively proceed the case of four-electron wave functions that are defined as Eq. (25). In a similar 
way to the step 4, we check whether the set of =⋅⋅⋅⋅a x p{ ( ), 1, 2, 3, 4}p

ijk o
4  meets the conditions of Eqs. (26) 

and (27). If no, we restart from the step 1 with the modified correlation function. Suppose that the suitable 
…a x{ ( )}p

ijk o
4  are found for all cases of …i j k, , ,  and o, the four-electron antisymmetric wave functions 

Ψ …=
… x x( , , )N

ijk o
4 1 4  can be obtained from Eq. (25).

	 6.	 Likewise, we further proceed the problem constructing the antisymmetric wave functions for more-elec-
tron systems. We search the set of α = … +α +a x n{ ( ), 1, 2, , 1}n 1  that are satisfied with Eqs. (11) and (12), 
together with modifying the correlation function. If we successfully find the correlation function that 
meets the conditions (11) and (12) for any n(≤N0 − 1), the LO-Jastrow PD of the N0-electron system 
becomes N-representable.

As easily inferred, the above steps are feasible only for the small-electron systems from the practical viewpoint. 
However, it should be noted that the correlation function that makes the LO-Jastrow PD N-representable may, in 
principle, be found along the above steps, though there is a possibility that the suitable correlation function may 
not exist in some system.

Other possibilities to obtain antisymmetric wave functions.  In the above-mentioned concrete 
steps, antisymmetric (n + 1)-electrons wave functions are built up from given antisymmetric n-electrons wave 
functions via Eq. (14). In this subsection, we show that there are other possibilities to obtain antisymmetric 
(n+1)-electrons wave functions without using Eq. (14).

Instead of Eq. (14), we can use the following expression for Ψ ⋅ ⋅ ⋅= + +x x( , , )N n n1 1 1 ;

∑ ∏Ψ ⋅ ⋅ ⋅ = Ψ ⋅ ⋅ ⋅
α

α α
α

= + +
=

+

=
+ =x x a x b x x x( , , ) ( ) ( ) ( , , ),

(28)N n n

n

i

n

i n N n n1 1 1
1

1

1
1 1

where aα(xi) and bα(xn + 1) denotes functions that should be determined. If these functions satisfy the follow-
ing conditions;

=αa x( ) 1, (29)2

∫ δ=
+α α α α′ + + + ′

⁎b x b x dx
n

( ) ( ) 1
1

,
(30)n n n1 1 1 ,

∑ ∏ ∑ ∏σ Ψ ⋅ ⋅ ⋅ = − Ψ ⋅ ⋅ ⋅
α

α α
α σ

α
α α

α

=

+

=
+ =

=

+

=
+ =a x b x x x a x b x x x( ) ( ) ( , , ) ( 1) ( ) ( ) ( , , ),

(31)

n

i

n

i n N n n

n

i

n

i n N n n
1

1

1
1 1

1

1

1
1 1

then Ψ ⋅ ⋅ ⋅= + +x x( , , )N n n1 1 1  becomes an antisymmetric wave function and yields the PD just given by the 
left-hand side of Eq. (13). Therefore, if we use the expression Eq. (28), then we have to search a set of functions 
aα(xi) and bα(xn + 1) that satisfy Eqs. (29)–(31) instead of Eqs. (11) and (12) in the above-mentioned concrete 
steps.

Similarly to the above, we can choose the other expression for Ψ ⋅ ⋅ ⋅= + +x x( , , )N n n1 1 1  instead of Eq. (14) or 
(28). For example, Ψ ⋅ ⋅ ⋅= + +x x( , , )N n n1 1 1  is supposed to be expressed by using Φ ⋅ ⋅ ⋅α x x( , , )SSD n1  that are con-
structed by using given spin orbitals φλ(x), φ ⋅ ⋅ ⋅µ x( ), , and yields γ ′ ′ α

=
⋅⋅⋅rr rr( ; )SSD N n

ijk(2) , i.e., we suppose

∑ ∏Ψ ⋅ ⋅ ⋅ = Φ ⋅ ⋅ ⋅
α

α
α

= + +
=

+

=
+x x a x x x x( , , ) ( , ) ( , , ),

(32)N n n

n

i

n

i n SSD n1 1 1
1

1

1
1 1

where aα(xi, xn + 1) denote a function that should be determined. If aα (xi, xn + 1) satisfies the following 
conditions;

∫ ∏ δ=
+

Ψ ⋅ ⋅ ⋅

Φ ⋅ ⋅ ⋅α α α α

α

α
=

′ + + + ′
=⁎a x x a x x dx

n
x x
x x

( , ) ( , ) 1
1

( , , )
( , , )

,
(33)i

n

i n i n n
N n n

SSD n1
1 1 1 ,

1
2

1
2

∑ ∏ ∏σ Φ ⋅ ⋅ ⋅ = − Φ ⋅ ⋅ ⋅
α

α
α σ

α
α

=

+

=
+

=
+a x x x x a x x x x( , ) ( , , ) ( 1) ( , ) ( , , ),

(34)

n

i j

n

i n SSD n
i j

n

i n SSD n
1

1

, 1
1 1

, 1
1 1

then Eq. (32) becomes an antisymmetric (n + 1)-electrons wave function and yields the PD just given by the 
left-hand side of Eq. (13). Therefore, if we use the expression Eq. (32), then what we have to do in the concrete 
steps is to search a set of functions aα(xi, xn+1) that satisfy Eqs (33) and (34) instead of searching a set of functions 
that satisfy Eqs (11) and (12).
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Thus, various expressions for Ψ ⋅ ⋅ ⋅= + +x x( , , )N n n1 1 1  can be adopted. This means that the present method can 
provide various prescriptions to construct the N-representable LO-Jastrow PD.

Concluding remarks
In this paper, the sufficient conditions for the N-representability of the LO-Jastrow PD are discussed. Using the 
properties of the LO-Jastrow PD, we derive the sufficient conditions that are imposed on the correlation function 
of the Jastrow wave function. As shown in the previous section, additional steps to search the suitable correlation 
function, which satisfies the sufficient conditions, are attached to the computational scheme proposed previ-
ously17. Although the number of steps rapidly increases with that of electrons, the concrete steps that are pre-
sented in the previous section are feasible for a small-electron system. Of course, there is a possibility that the 
suitable correlation function cannot be found out. In this case, as mention in the previous section, we can adopt 
other expressions for Ψ ⋅ ⋅ ⋅= + +x x( , , )N n n1 1 1 , so that we may possibly find out a suitable correlation function. 
Otherwise, as mentioned in the previous paper, LO-Jastrow PDs are approximately N-representable in a sense 
that they satisfy four kinds of necessary conditions17, 42–47.
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