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Abstract: In this study, blueberry and blackcurrant powder were chosen as the phenolic-rich en-
richments for oat bran. A Rapid Visco Analyser was used to form blueberry and blackcurrant
enriched oat pastes. An in vitro digestion process evaluated the changes of phenolic compounds
and the in vitro antioxidant potential of extracts of pastes. The anthocyanidin profiles in the ex-
tracts were characterised by the pH differential method. The results showed that blueberry and
blackcurrant powder significantly increased the content of phenolic compounds and the in vitro
antioxidant capacity of pastes, while the total flavonoid content decreased after digestion compared
to the undigested samples. Strong correlations between these bioactive compounds and antioxi-
dant values were observed. Lipopolysaccharide-stimulated RAW264.7 macrophages were used to
investigate the intracellular antioxidant activity of the extracts from the digested oat bran paste
with 25% enrichment of blueberry or blackcurrant powder. The results indicated that the extracts of
digested pastes prevented the macrophages from experiencing lipopolysaccharide (LPS)-stimulated
intracellular reactive oxygen species accumulation, mainly by the Kelch-like ECH-associated protein 1
(Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signalling pathway. These findings suggest
that the bioactive ingredients from blueberry and blackcurrant powder enhanced the in vitro and
intracellular antioxidant capacity of oat bran pastes, and these enriched pastes have the potential to
be utilised in the development of the functional foods.

Keywords: antioxidant; in vitro digestion; phenolic compounds; reactive oxygen species; macrophages

1. Introduction

Oxidative stress plays a central role in the initiation and progression of several chronic
diseases, including obesity and diabetes. Oxidative stress can damage cellular structures
along with the under-production of antioxidant mechanisms, leading to the progression of
obese or diabetic-related complications [1,2]. The ensuing cellular damage, such as DNA
cross-linking and apoptosis has been reported to be a result of oxidative stress, and it is
a fundamental pathological process in a variety of chronic diseases [3]. These diseases
have been shown to possess increased cellular levels of reactive oxygen species (ROS) and
ROS-induced DNA damage [4]. The Kelch-like ECH-associated protein 1 (KEAP1)/nuclear
factor erythroid 2-related factor 2 (Nrf2) stress response pathway is the principal inducible
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defence against oxidative stress [5]. This signalling pathway regulates the expression of
more than 100 genes and functions related to oxidative stress and cell survival, including
direct antioxidant proteins, electrophile detoxification enzymes, free radical metabolism,
the recognition of DNA damage, and the inhibition of inflammation [6,7].

With the growing number of people being diagnosed with these metabolic syndromes,
it is crucial to find a new solution. Epidemiological studies and randomised control
trials [8] have shown that dietary modification (in particular whole fruit and grains intake)
are protective against diabetes and obesity since the complex mixture of phytochemicals
from these foods has additive and synergistic effects [9]. Therefore, the consumption of
antioxidant molecules has been shown to be effective as a strategy to prevent, or reduce,
the risk of these diseases.

Research [10] has indicated the benefits of natural antioxidants, such as polyphenols
derived from natural plants, compared with synthetic antioxidants. However, the inten-
sified accumulation, safe consumption, and toxic effects of these polyphenols should be
considered [11]. Polyphenols have been studied in cell culture and animal studies for
their protective role. Various coloured berries, especially blueberry and blackcurrant—
widely distributed in New Zealand [12]—contain a large number of polyphenols, such as
phenolic acids and flavonoids [13]. Anthocyanin is a major subclass of flavonoids [14].
The major anthocyanins identified in blueberries are 3-glycosidic derivatives of cyanidin,
delphinidin, and malvidin, in which the most common derivatives detected are based on
sugars, such as glucose [15]. The major anthocyanins in blackcurrant are delphinidin-3-O-
glucoside, cyanidin-3-O-glucoside, and cyanidin-3-O-rutinoside [16,17]. These bioactive
compounds have been found to protect cells from oxidative stress [18] and to improve the
ability of plasma antioxidants, thus reducing the risk of different human chronic diseases,
including obesity and type 2 diabetes [19,20]. This increase in plasma antioxidant capacity
following the consumption of polyphenol-rich food may be responsible either for the pres-
ence of the metabolites of polyphenols in plasma, or for their preservative effects on other
reducing agents, such as endogenous antioxidants, or for their effect on the absorption of
pro-oxidative food components, such as iron [21].

A whole grain oat diet has been credited in conferring health-promoting benefits.
Oat bran is particularly high in antioxidants compared to other parts of the oat grain [22].
Recent studies have also shown that the health benefits of oats are mainly due to the
antioxidants found in the bran—in addition to the phenolic compounds, such as potent
avenanthramides, which are a family of antioxidants unique to oats [23]. Avenanthramides
are substituted N-cinnamoyl anthranilic acids, consisting of anthranilic acid and cinnamic
acid moieties. These bioactive compounds in oat bran have been demonstrated to have the
potential to reduce inflammation, possess anticancer properties, and lower blood sugar
levels [24]. A concentrated extract of oat bran can be used as a natural antioxidant for foods,
protecting the long-chain fatty acids from oxidative stress and from creating off-flavours in
foods, since oat bran is a good source of antioxidants [25].

Consumer’s interest in naturally coloured foods is growing. Free-flowing dried fruit
powder can be easily incorporated into foods in a mixed form. Dehydrated fruit powders,
such as blueberry and blackcurrant, can be mixed with oatmeal to prepare breakfast
cereals [20,26,27]. A study of Schmidt, et al. [28] revealed that dried wild blueberry powder
did not decrease the in vitro anti-proliferation activity in comparison to that of the fresh
fruit. However, few studies have reported the use of combinations of berry fruits with
oat bran, and no studies have focused on the potential synergistic effect on the food
matrix of combining berries and oat bran. Therefore, in this study, blueberry powder
and blackcurrant powder were chosen as the phenolic-rich enrichments for the oat bran.
An in vitro digestion process was performed to observe the food matrix effects on the
changes in their phenolic contents and in vitro antioxidant potential. The pH differential
method was conducted to identify the major anthocyanidins in blueberry and blackcurrant
enriched pastes. Furthermore, lipopolysaccharide-stimulated RAW264.7 macrophages
were employed to investigate the intracellular antioxidant activity of the extracts from
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blueberry and blackcurrant enriched pastes. The potential mechanisms of this intracellular
activity elicited by the extracts were also studied.

2. Materials and Methods
2.1. Chemicals and Materials

Blueberry powder and blackcurrant powder were purchased online (Viberi, Timaru,
New Zealand). Oat bran was obtained from the local supermarket (Sun Valley, Christchurch,
New Zealand). Pepsin (EC 3.4.23.1) pancreatin (EC 232-468-9), α-amyloglucosidase (EC 3.2.1.3),
invertase (EC 3.2.1.26), 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium
salt (ABTS), 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ), 2-Diphenyl-1-picrylhydrazyl (DPPH), 3,5-
Dinitrosalicylic acid (DNS, 98%, ACROS Organics™, Waltham, MA, USA ), Folin and Ciocal-
teu’s phenol reagent, 2,7 dichlorodihydrofluorescein-diacetate (DCFH-DA), gallic acid, rutin,
and trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) were all purchased from
Sigma-Aldrich (St. Louis, MO, USA). Other chemicals in this study were of analytical grade.

2.2. Preparation of the Pastes

Oat bran (OB), blueberry (BB) powder and blackcurrant (BC) powder were the raw
materials used for the preparation of food matrices. Pastes were made using a Rapid Visco
Analyser (RVA-Super 4, Perten instruments, Sydney Australia) [29]. The equations (1)
and (2) were used to determine the weight of water and raw materials. OB (5.28 g, 2.34%,
moisture basis) supplemented with 0, 10, 15, and 25% (w/w) BB powder or BC powder
was prepared to develop the pastes. The slurry was heated from 50 to 95 ◦C at a rate of
6 ◦C/min, held at 95 ◦C for 5 min, then cooled at a rate of 6 ◦C/min to 50 ◦C, and finally
held at 50 ◦C for 2 min. The spindle speed was kept at 160 rpm, except for the first 10 s
where it was increased to 960 rpm to disperse the mixture. The pastes were coded as OBP
(nothing added, control group); ABB10, ABB15, and ABB25 (oat bran paste enriched with
10%, 15%, and 25% BB powder, respectively), and ABC10, ABC15, and ABC25 (oat bran
paste enriched with 10%, 15%, and 25% BC powder, respectively). All the pastes were
stored at 4 ◦C overnight.

Equivalent sample and water mass can be calculated using the following formu-
las [30]. This is normalised for the moisture of the oat flour at 14% (gives a factor of 86 in
the equation):

S =
86 × 6.0
100 − M

W = 25 + (6.0 − S)

where S = corrected sample weight (g), W = corrected water weight (g) and M = actual
moisture content of sample (in %).

2.3. Extraction of Phenolics from Raw Materials and Pastes

All the pastes were freeze dried at −30 to −40 ◦C using pilot scale lyophilization
system (Millrock Technology, Inc., Kingston, NY, USA) for 72 h, and then the lyophilised
samples were put in vacuum-incubators, and stored at 4 ◦C. Afterwards, the extraction
procedure was performed with two solvent systems [31]: acidic methanol/water (50:50 v/v,
pH = 2) and acetone/water (70:30 v/v, pH = 2), respectively, followed with the step
of vortexing, sonication, centrifugation and evaporation. The final extracts were stored
at −80 ◦C.

2.4. Simulation of the In Vitro Digestion

The in vitro digestion method was modified according to a previous study [32]. The en-
tire procedure was performed in a 37 ◦C incubator with constant shaking table at 120 r/min.
A total of 2 g of each lyophilised sample was mixed well with 30 mL of distilled water for
10 min, and then the pH value of the mixture was adjusted to 2.0 with 6 N HCl. Pepsin was
added at a concentration of 0.05 g/mL of the sample, and the mixture was incubated for 1 h.
After finishing the gastric digestion, a 1 mL of aliquot from each sample was taken (time 0)
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and added to 4 mL of absolute ethanol to stop further reactions. The pH of the digest
was adjusted to 6.0 by the dropwise addition of 0.9 M NaHCO3. After the pH adjustment,
0.1 mL of α-amyloglucosidase (3000 U/mL) was added. The digestion time began as soon
as 5 mL of pancreatin-bile solution (3 g/mL pancreatin and 0.025 g/mL bile salts in 0.1 M
NaHCO3, pH = 7.4) was added. After incubating for 120 min, aliquots from the digesta of
each sample were individually treated with ethanol and centrifuged at 2500 g for 20 min.
The supernatants were collected. The digested samples were extracted, followed by the
extraction procedure in Section 2.3, and then filtered through 0.22 µm Millipore filters and
stored at −80 ◦C for further analysis.

2.5. Determination of the Total Phenol Content (TPC)

The total phenol content (TPC) of the extracts from undigested and digested samples
was measured as described by Kim and Lee [33], with some modifications. A total of 0.5 mL
of each sample was placed in tubes and 2.5 mL of 0.2 N Folin–Ciocalteu reagent and 2.0 mL
of 7.5% Na2CO3 were added to each tube. These tubes were mixed well and incubated
in a water bath at 40 ◦C for 30 min. Once the mixture was cooled to room temperature,
the absorbance was measured at 760 nm by a spectrophotometer. Gallic acid was used
as a standard to determine TPC of the extract and digesta as mg gallic acid equivalent
(GAE)/g sample.

2.6. Determination of the Total Flavonoid Content (TFC)

Total flavonoid content (TFC) was measured using aluminium chloride reagent [34].
A total of 250 µL of each sample was mixed with 75 µL of sodium nitrite solution (5%, w/v),
followed by 150 µL of aluminium chloride (10%, w/v), 500 µL of sodium hydroxide
(1 mol/L), and finally, 775 µL of distilled water. The mixture was shaken and incubated
at room temperature for 30 min. The absorbance of the mixture was measured at 415 nm.
Results are expressed as mg rutin equivalents (RE)/g sample.

2.7. Determination of the Total Monomeric Anthocyanins Content (TMAC)

Total monomeric anthocyanins content (TMAC) was determined by the pH differen-
tial method [35]. Extracts were diluted separately with 0.025 mol/L hydrochloric acid–
potassium chloride buffer (pH = 1) and 0.4 mol/L sodium acetate buffer (pH = 4.5).
These dilutions were allowed to balance for 15 min. The absorbance of the mixture was
measured at 530 nm and 700 nm, respectively, using a UV–Vis spectrophotometer (UV1800,
Shimadzu, Kyoto, Japan). The absorbance of the diluted sample was calculated according
to the equation:

A = (A530 nm − A700 nm)pH1.0 − (A530 nm − A700 nm)pH4.5

The TMAC was expressed as mg cyanidin-3-glucoside equivalents (Cy-3GE)/g sample
as in the equation:

Anthocyanidin pigment (mg/L) =
A × MW × DF ×V × 1000

ε × l × m

where A is the absorbance, MW is the molecular weight of cyanidin-3-glucoside (449.2 g/mol),
DF is the dilution factor, V is the solvent volume (mL), ε is the molar absorptivity
(26,900 L·mol−1·cm−1) [36], l is the cell path length (1 cm) and m is the sample weight.

2.8. In Vitro Antioxidant Activity Assay
2.8.1. DPPH Assay

The radical scavenging capacity of the extract was determined by the DPPH assay,
as described by Floegel et al. [37]. A total of 1 mL of freshly prepared 0.1 mM methanolic
DPPH solution was added into 0.5 mL of the extract, or digesta, and incubated for 30 min
in the dark. The absorbance of the reaction mixture was measured at 517 nm. Trolox was
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used as standard and the DPPH radical scavenging capacity was expressed as µmoL trolox
equivalent (TE)/g sample.

2.8.2. ABTS Assay

The ABTS assay was adapted from a previous study [37]. The ABTS·+ cation radical
solution was produced by reacting 9.5 mL of 7 mM ABTS stock solution and 245 µL of
100 mM K2S2O8 solution and incubating this solution in the dark at room temperature for
16 h before use. The ABTS·+ radical cation solution was diluted with PBS (pH = 7.4) to an
absorbance of 0.70 ± 0.02 at 734 nm. The diluted ABTS·+ radical cation solution (3 mL)
was thoroughly mixed with 0.3 mL extract or digesta. The mixture was kept in the dark for
6 min at room temperature. Absorbance values were measured at 734 nm. Trolox was used
as the standard. Results are expressed as µmoL trolox equivalent (TE)/g sample.

2.8.3. FRAP Assay

The reducing ability and antioxidant power activity of each extract was determined
using a Ferric Reducing Antioxidant Power (FRAP) reagent solution [38]. The fresh FRAP
reagent solution was prepared with 300 µmol/L acetate buffer (pH = 3.6), 10 mmol/L
TPTZ (dissolved in 40 mmol/L HCl) and 20 mM FeCl3 at a ratio of 10:1:1 (v/v/v). A total of
2.5 mL of FRAP reagent solution was thoroughly mixed with 250 µL extract. The mixture
was incubated in the dark for 2 h at 37 ◦C and the absorbance was measured at 593 nm.
FeSO4 solution was used as the standard. Results are expressed as µmoL Fe3+ equivalent
(Fe3+ E)/g sample.

2.9. Cell Culture

The RAW264.7 macrophage was purchased from the Cell Bank of the Shanghai Insti-
tute of Cell Biology and Biochemistry, Chinese Academy of Sciences (Shanghai, China).
The cells were maintained in DMEM containing 100 U/mL penicillin, 100 µg/mL strepto-
mycin, 2 mmol/L glutamine, and 10% fetal bovine serum. The cell was cultured at 37 ◦C a
humidified atmosphere of 5% CO2.

2.10. Determination of Cell Viability

The intestinal digested extracts of OBP, ABB25, and ABC25 were selected to study the
effects of bioactive compounds from the extracts of pastes on the intracellular antioxidant
activity of RAW264.7 macrophages. RAW264.7 macrophages were treated with digested ex-
tracts (OBP, ABB25, and ABC25) individually and plated at a density of 3.0 × 104 cells/well
in 96-well culture plates for 48 h. Cell viability was determined using a Cell Counting
Kit-8 (CCK-8) assay kit (Dalian Meilun Biotechnology Co., Ltd., Dalian, China) according
to the instructions of the manufacturer. Absorbance was calculated for all samples at
450 nm (OD450). The relative cell viability was presented after normalised to untreated
cells (control). Cell viability rates were measured after 24 h and were calculated based on
OD450 values. Cell viability rate (%) = OD450 (test)/OD450 (control) × 100%.

2.11. Induction of Intracellular ROS Generation

The intracellular changes in ROS generation were detected by staining the cells with
2,7 dichlorodihydrofluorescein-diacetate (DCFH-DA) [39]. RAW264.7 macrophages were
seeded at a density of 4.0 × 105 cells/well in a 12-well culture plate, and were treated
with extracts of OBP, ABB25, and ABC25 (100 and 200 µg/mL) for 24 h, and then 10 µL of
lipopolysaccharide (LPS, 250 ng/mL) was added followed by 30 min incubattion. The cells
were harvested and washed twice with cold PBS, then, cells were further incubated with
10 µM DCFH-DA at 37 ◦C for 30 min. Subsequently, the cells were washed two times using
PBS. Prior to ROS measurement, 100 µL of PBS was added to each well. ROS generation
was assessed by flow cytometry.
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2.12. Luciferase Reporter Nrf2 Gene Assay

RAW264.7 cells were seeded at a density of 2 × 105 cells/well in a 24-well plate in
serum free DMEM (did not contain antibiotics), and incubated at 37 ◦C for 5 h. Cells were
then transfected with Nrf2 using lipofectamine 2000 transfection reagent (invitrogen) and
incubated for a further 4 h [40]. Afterwards, cells were treated with the extracts OBP, ABB25,
and ABC25 (100 and 200 µg/mL) for 24 h, and then 10 µL of LPS (250 ng/mL) was added
to incubate for 30 min. Luciferase activities were measured using Dual-Glo luciferase assay
kit (Promega, Southampton, UK) according to the manufacturer’s instructions.

2.13. Western Blotting Assay

After treatments with extracts individually for 24 h, the cells were harvested, collected
as cell pellets, and lysed in RIPA cell lysis buffer on ice for 1 h. Protein concentrations were
determined using a BCA Protein Assay Kit (Thermo, MA, USA). Equal proteins from each
treatment were separated on a 10% SDS denaturing polyacrylamide gel and electrophoreti-
cally (SDS-PAGE) transferred to PVDF membranes. After blocking with 5% non-fat milk,
the membranes were incubated with primary antibodies (1:1000; Cell Signalling Technol-
ogy) overnight at 4 ◦C. Specific primary antibodies against Keap1, Nrf2, HO1 and β-actin
were purchased from Beyotime (Shanghai, China). After washing thrice (10 min for each)
with TBS solution, the PVDF membranes were incubated with corresponding secondary
antibodies (Jackson ImmunoResearch Laboratories, West Grove, USA) for 1 h. The blots
were washed thrice (10 min for each) with TBS solution. Signals were detected by using an
Enhanced Chemiluminescence (ECL) detection (Thermo, MA, USA) and Image J (Bethesda,
MD, USA) software were used to quantify the blot density [40].

2.14. Statistical Analysis

The results are presented as the mean value ± standard deviation. Unless stated else-
where, experiments were performed in triplicate. One-way analysis of variance (ANOVA)
was carried out. Pearson’s correlation was conducted by using GraphPad Prism software
version 8.0 (GraphPad Software, Inc., San Diego, CA, USA).

3. Results
3.1. Changes in TPC and TFC during In Vitro Digestion

Table 1 shows the TPC in extracts of raw materials and pastes at different digestion
phases. Overall, although there was a decline in the TPC content of both raw materi-
als and pastes after intestinal digestion, compared with the TPC after gastric digestion,
the polyphenol concentration of each digested sample was higher than that of the corre-
sponding undigested sample (p < 0.01 or p < 0.05). Before digestion, BC powder yielded
the highest TPC value of 97.15 mg GAE/g, followed by BB powder (84.91 mg GAE/g),
while OBP showed the lowest TPC value of 0.43 mg GAE/g. All of the BC-enriched pastes
had higher TPC values than those of the BB-enriched pastes. The difference became more
evident as the level of BB or BC powder increased in the pastes. The TPC in the extract of
undigested ABC25 was 10-fold higher than that of undigested ABB25 and the ratio reduced
to 2.4-fold after the intestinal digestion. Thus, ABC25 had the highest TPC value among all
pastes (p < 0.01).

The TFC of the samples illustrated that BB powder displayed the highest TFC across
the whole digestion, while OB had the lowest TFC value. The TFC value of all samples
firstly increased after the gastric digestion, then decreased after the intestinal digestion.
In OB, the TFC value after the intestinal digestion was so low that it could not be detected.
BB-enriched pastes exhibited higher levels of TFC than those of BC-enriched pastes. For in-
stance, before digestion, the TFC value of ABB25 was 45.12% higher than that of ABC25
(p < 0.01). After intestinal digestion, the TFC of ABB25 was 30% lower than the correspond-
ing undigested sample, although it was still 9.4% higher than that of the intestinal digested
extracts of ABC25 (p < 0.01). The TFC trend of BB powder > BC powder > BB-enriched
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pastes > BC-enriched pastes > OB > OBP was maintained for TFC throughout the whole
digestion process.

Table 1. The total phenol content (TPC) and total flavonoid content (TFC) of raw materials and pastes.

Group
In Vitro Digestion Phase Total Variation

Extraction Gastric Intestinal Samples (A) Digestion Phase (B) A*B

Raw material 6.83% (p < 0.001) 86.10% (p < 0.001) 7.03% (p < 0.001)
OB 1.49 ± 0.01 Cc 5.02 ± 0.02 Ac 2.26 ± 0.0 4 Bc

BB 84.91 ± 2.63 Cb 103.17 ± 1.15 Ab 91.23 ± 0.54 Bb

BC 97.15 ± 5.31 Ca 186.70 ± 0.23 Aa 122.78 ± 0.67 Ba

Paste 28.50% (p < 0.001) 65.20% (p < 0.001) 6.14% (p < 0.001)
OBP 0.43 ± 0.01 Cm 4.26 ± 0.00 Am 2.25 ± 0.09 Bn

ABB10 0.53 ± 0.07 Cm 5.22 ± 0.14 Al 3.53 ± 0.05 Bm

ABB15 0.74 ± 0.06 Cl 5.24 ± 0.14 Al 3.92 ± 0.02 Bl

ABB25 1.60 ± 0.06 Ck 6.21 ± 0.23 Ak 4.98 ± 0.09 Bk

ABC10 2.93 ± 0.17 Cj 14.08 ± 0.65 Aj 7.52 ± 0.27 Bj

ABC15 5.85 ± 0.18 Ci 15.89 ± 0.40 Ai 10.44 ± 0.31 Bi

ABC25 10.82 ± 0.36 Ch 18.06 ± 0.19 Ah 11.96 ± 0.08 Bh

In Vitro Digestion Phase Total Variation

Extraction Gastric Intestinal Samples (A) Digestion Phase (B) A*B

Raw material 18.20% (p < 0.001) 74.70% (p < 0.001) 6.80% (p < 0.001)
OB 2.82 ± 0.42 Bc 4.77 ± 0.51 Ac ND
BB 48.25 ± 2.31 Ba 65.48 ± 1.23 Aa 27.77 ± 2.39 Ca

BC 36.51 ± 0.93 Bb 43.32 ± 1.22 Ab 18.84 ± 1.40 Cb

Paste 32.30% (p < 0.001) 52.50% (p < 0.001) 13.50% (p < 0.001)
OBP 0.96 ± 0.07 Bm 2.00 ± 0.19 An ND

ABB10 5.82 ± 0.39 Bk 10.07 ± 0.47 Al 2.13 ± 0.09 Cl

ABB15 11.17 ± 0.90 Bi 21.27 ± 0.87 Aj 5.26 ± 0.06 Cj

ABB25 24.51 ± 6.15 Bh 37.62 ± 2.71 Ah 7.66 ± 0.19 Ch

ABC10 2.46 ± 0.10 Bl 7.95 ± 0.08 Am 1.55 ± 0.26 Cm

ABC15 7.29 ± 0.76 Bj 17.04 ± 0.44 Ak 3.10 ± 0.50 Ck

ABC25 16.89 ± 2.07 Bh 27.95 ± 0.61 Ai 6.94 ± 0.08 Ci

Mean ± SD are presented (n = 3). Raw materials and pastes were compared separately. Comparison within the same raw material is
expressed by uppercase letters, while comparison within the same column is expressed by lowercase letters. Values with different letters,
per sample, are statistically different (p < 0.05). Abbreviations: TPC = total phenolic content; TFC = total flavonoid content; OB = oat bran;
BB = blueberry powder; BC = blackcurrant powder; OBP = pure oat bran paste; ABB10, ABB15 and ABB25 = oat bran paste enriched with 10,
15 and 25% blueberry powder, respectively; ABC10, ABC15 and ABC25 = oat bran paste enriched with 10, 15 and 25% blackcurrant powder,
respectively. All values are based on dry basis.

Research has illustrated the instability of TPC in a simulated digestion [41]. Herein,
Both raw materials and pastes displayed increased TPC after the gastric phase, which sub-
sequently declined after the intestinal phase, albeit above the undigested levels. Cebeci
and Şahin-Yeşilçubuk [42] reported that combinations with milk generally resulted in a
decrease in TPC and TFC as well as inhibition of antioxidant activities when evaluating
the matrix effect of blueberry, oatmeal and milk on their polyphenols and antioxidant
activities after in vitro digestion. This discrepancy might be related to differences in the
food matrix characteristics and the in vitro conditions of the digestion. However, Sengul,
Surek and Nilufer-Erdil [32] observed a higher recovery of TPC after the gastric digestion
of the fruit extract. This finding was possibly due to an increase in flavylium cations in the
acidic solution during the gastric phase of digestion, which is in agreement with results
from this study. Therefore, it can be assumed that the increased values of TPC and TFC
during the gastric phase are due to the acidic hydrolysis of phenolic glycosides to their
aglycones. Furthermore, the decline in TFC values, subsequently resulted in the decreased
TPC values in the intestinal phase. This is attributed to the degradation of phenolic com-
pounds in the weak alkaline environment (pH = 7.4), particularly flavonoids, which are
highly sensitive to alkaline conditions. According to the study from Fawole and Opara [43]
the decrease in phenolic compounds—notably anthocyanins in the intestinal phase of
the in vitro digestion—was attributed to the transformation of the flavylium cation to the
colourless chalcone when the digestion medium became alkaline.
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Changes in TPC and TFC of the extracts were influenced by the combined effects of
dietary supplements and the phases of in vitro digestion, and the effects were considered
extremely significant (p < 0.01). Crucially, these results show that the changes in TPC in
extracts from raw materials and pastes were not constant throughout the in vitro digestion
procedure. According to the percentage of total variation, for TPC and TFC, the digestion
phase accounted for the most significant variation, indicating that the digestion process
most likely contributes to the release of bioactive compounds due to the actions of the
digestive enzymes, temperature, and pH conditions [44].

3.2. The Changes in TMAC of the Extracts during In Vitro Digestion

The anthocyanin pigment experiences a reversible structural transformation with
changes of the pH value, and these changes are reflected in the absorption spectrum. Thus,
the pH differential method could measure the values rapidly and accurately, even when
the degraded polymerised pigments and other interfering compounds were present [15].
Table 2 illustrates the changes in the TMAC values in the extracts of raw materials and
pastes during in vitro digestion. Amongst the extracts from undigested samples, the extract
of BC powder had the highest TMAC (36.27 mg Cy-3GE/100 g), followed by the extract
of BB powder (14.96 mg Cy-3GE/100 g). TMAC in the OB extract was low, 0.03 mg Cy-
3GE/100 g. In terms of the extracts from pastes, the TMAC in the extract of OBP was too
low to be detected. TMAC in the extracts of BB- and BC-enriched pastes varied from 0.25 to
0.66 mg Cy-3GE/100 g. The extract of BC-enriched paste was given more TMAC compared
to the corresponding extract of BB-enriched paste (p < 0.01). TMAC in all extracts decreased
after undergoing in vitro digestion. TMAC in the extracts of BB and BC powder decreased
by over 95% compared to the corresponding undigested extracts (p < 0.01). TMAC in the
OB extract could not be detected in both the gastric and intestinal phase. Even though
the TMAC in the extracts from the pastes experienced a decrease after in vitro digestion,
BC-enriched pastes still exhibited higher TMAC values compared with the corresponding
BB-enriched pastes. Among these extracts from intestinal digested pastes, ABC25 had the
highest TMAC value (0.35 mg Cy-3GE/100 g) (p < 0.01).

Table 2. The changes in TMAC values of the extracts during in vitro digestion (mg/100 g sample).

TMAC (mg Cy-3GE/100 g Sample)

Group
In Vitro Digestion Phase

Extraction Gastric Intestinal

Raw material
Oat bran 0.03 ± 0.01 Ac ND ND

Blueberry powder 14.96 ± 1.48 Ab 0.99 ± 0.03 Bb 0.62 ± 0.02 Cb

Blackcurrant powder 36.27 ± 1.69 Aa 3.90 ± 0.03 Ba 3.43 ± 0.04 Ca

Paste
OBP ND ND ND

ABB10 0.25 ± 0.02 Al 0.11 ± 0.02 Bk ND
ABB15 0.30 ± 0.01 Ak 0.13 ± 0.02 Bk 0.04 ± 0.01 Ck

ABB25 0.41 ± 0.00 Aj 0.16 ± 0.02 Bj 0.08 ± 0.00 Cj

ABC10 0.40 ± 0.01 Ai 0.18 ± 0.03 Bj 0.12 ± 0.01 Ci

ABC15 0.64 ± 0.00 Ah 0.40 ± 0.03 Bi 0.13 ± 0.02 Ci

ABC25 0.66 ± 0.03 Ah 0.62 ± 0.02 Bh 0.35 ± 0.01 Ch

Values are mean ± standard deviation, n = 3. Raw materials and pastes were compared separately. Values
with different uppercase letters, in the same row, are statistically different (p < 0.05), while values with different
lowercase letters, in the same column are statistically different (p < 0.05). TMAC = total monomeric anthocyanins
content; OBP = pure oat bran paste; ABB10, ABB15 and ABB25 = oat bran paste enriched with 10, 15 and 25%
blueberry powder, respectively; ABC10, ABC15 and ABC25 = oat bran paste enriched with 10, 15 and 25%
blackcurrant powder, respectively; ND = no data. All values are based on the dry basis.



Antioxidants 2021, 10, 388 9 of 18

The instability of these extracts could be responsible for the change of the pH values
during the digestion. As a food colorant, anthocyanin is very sensitive to a higher pH
(alkaline conditions). Therefore, the decline in the TMAC values after the intestinal phase
was less pronounced than the decrease after the gastric phase. In addition to the influence
of pH values, the temperature may have had a significant effect on the degradation of antho-
cyanins. Refrigeration has been shown to be an effective means of preserving anthocyanins.
Muche et al. [45] compared the amount of anthocyanidin content lost in blackcurrant juice
stored at 4 and 37 ◦C, observing that blackcurrant anthocyanidin contents lost 40% at
4 ◦C, while no measurable amounts of blackcurrant anthocyanidin were found at 37 ◦C.
The short-term high temperature treatment could improve the stability of anthocyanin by
facilitating the inactivation of native enzymes that are harmful to anthocyanins. Herein,
the decline in the TMAC in the extracts of the pastes was less than those in the extracts of
raw materials. This could because during the formation of the pastes, samples experienced
a short-term high temperature procedure (95 ◦C for 10 min), which may have prevented
anthocyanins from degrading to some extent [46].

In addition, the freeze-drying technique is widely used in high-quality food prepa-
ration, as this technique has been proven to be able to preserve the bioactive compounds
effectively [47]. Therefore, in this study, all the pastes were treated with freeze-drying for
72 h to preserve the bioactive ingredients in these pastes.

3.3. Changes in Antioxidant Activity during In Vitro Digestion

The radical scavenging activity of the samples prior to digestion, as measured by
scavenging DPPH and ABTS free radicals, reflected the same trend as the TPC levels in all
samples, with BC powder > BB powder > BC-enriched pastes > BB-enriched pastes > OB
> OBP (Figure 1a,b). After the gastric phase, the radical scavenging activity of both raw
materials and pastes decreased, varying from a 13 to 33% reduction in the DPPH assay and
from a 20 to 89% reduction in the ABTS assay (p < 0.01). The radical scavenging activity
of all raw materials after the intestinal phase was lower than that of the corresponding
undigested extracts. Both BB- and BC-enriched pastes seemed to be effective in scavenging
the DPPH and ABTS·+ free radical, and contrary to the raw materials, the radical scavenging
activity of these pastes was higher after the intestinal digestion compared to the radical
scavenging activity exhibited by the undigested pastes (p < 0.01). The DPPH values of
the intestinal digesta of BB- and BC-enriched pastes increased between 1- and 1.54-fold
compared with the undigested extracts (p < 0.01). The same trend was observed for
the ABTS assay results, with the scavenging values of intestinally digested BB- and BC-
enriched pastes being higher by 14 to 53%, compared to the corresponding undigested
pastes (p < 0.01).

The reducing antioxidant powers measured by FRAP of the raw materials and pastes
were consistent with the TPC measured in the undigested paste (Figure 1c). Overall,
BC powder showed the highest antioxidant power (714 mmol FeSO4/g), followed by BB
powder (282 mmol FeSO4/g). In terms of the pastes, OBP showed the lowest antioxidant
power (13 mmol FeSO4/g). With increasing levels of enrichments, the FRAP value of BB-
and BC-enriched pastes increased, ranging between 0.9- and 6.2-fold compared with OBP
(p < 0.01). BC-enriched pastes showed stronger reducing power than BB-enriched pastes.
Interestingly, the FRAP values increased significantly at the gastric phase for all samples,
perhaps as a result of the TPC at this phase. However, the reducing powers then generally
decreased (p < 0.01) by 7 to 76 % at the intestinal phase, with larger decreases observed in
the raw materials values compared with those observed for the pastes. Although there was
a decrease after the final phase, FRAP values after the intestinal digestion remained higher
than the undigested extracts (p < 0.01).

The fluctuation of the reducing power, in all of the samples, could be due to the pH of
the medium. The pH of a substance is known to influence molecule racemisation, possibly
creating two chiral enantiomers with different reactivities. Therefore, some antioxidants
could be more sensitive at acidic pH in the gastric phase and less reactive at alkaline pH
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in the intestinal phase. Bouayed, et al. [48] reported a similar trend of reducing powder
in apple varieties. They found that the reducing antioxidant capacity present in apple
varieties, as determined in methanolic extracts, was significantly higher compared to
those found in gastric digesta for all apple varieties, while the reducing power present
in the intestinal digesta of apple varieties was lower than those found in gastric digesta.
Regarding the change in reduction of antioxidant power from the gastric phase to the
intestinal phase, the phenolics responsible for ferric reduction may reduce or convert to
certain metabolites with different chemical properties, as these polyphenols are highly
sensitive to alkaline conditions [49].
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The DPPH and ABTS assays are based on the ability of antioxidants to scavenge the
DPPH and ABTS·+ radicals activities. The DPPH and ABTS values of the pastes showed a
different behaviour from the FRAP value, displaying a decline in the gastric phase, followed
by an increase after the intestinal phase in relation to the gastric phase. The decline in DPPH
and ABTS values in the gastric phase could be related to the degradation of anthocyanins
responsible for the scavenging activities due to the acidic environment. The increased
DPPH and ABTS values could be to the deprotonation of the hydroxyl groups present
on the aromatic rings, facilitating the hydrogen donation reactions and decreasing the
ionization potential, consequently increasing the electron donation capacity. In addition,
the formation of new metabolites from anthocyanins that can become antioxidant radicals
could lead to the increased DPPH and ABTS values.

Çelik, et al. [50] reported that once cereal products are consumed, a large propor-
tion of insoluble antioxidants bound to dietary fibres reach the colon, without digestion
occurring, and become bound to antioxidant radicals themselves. Meanwhile, soluble
antioxidants regenerate bound antioxidant radicals, thereby prolonging their antioxidant
action. Masisi et al. [51] also reported that after the consumption of breakfast cereals, an-
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tioxidant activities increased significantly after in vitro digestion compared to the chemical
solvent extraction procedure used for undigested samples. These reports explain the in-
creased reducing power of all blueberry and blackcurrant enriched pastes. Antioxidant
activities of foods varies depending on the content of phenolic compounds, flavonoids,
proteins, lipids and carbohydrates [52].

3.4. Pearson’s Correlations between Phenolic Compounds and Three Antioxidant Assays

The correlation coefficients between TPC, TFC, and the anthocyanidin content (Table 3)
and antioxidant activity values—analysed by the three assays—were recorded before and
after in vitro digestion. Strong positive correlations were observed between these phenolic
compounds and antioxidant activity values. The anthocyanidin content had stronger
correlations with antioxidant activity values compared to TPC and TFC. As shown in
Table 3, the correlation coefficients between the anthocyanin content and DPPH values
were all larger than 0.97 in the undigested (R2 = 0.992, p < 0.01), gastric digested (R2 = 0.982,
p < 0.01), and digested samples (R2 = 0.979, p < 0.01), followed by the FRAP values,
which had stronger correlations in the undigested and gastric digested samples (R2 = 0.996,
p < 0.01) when compared to the intestinal digested samples. In our previous study [53],
four types of anthocyanidins, including delphinidin, cyanidin, petunidin, and malvidin,
were identified in the extract of blueberry powder-enriched paste, while delphinidin and
cyanidin were detected in the extract of blackcurrant powder-enriched paste. Therefore,
these anthocyanidins could be responsible for the radical scavenging activity and reducing
power in the sample extracts. However, the functionality of the food is not only dependent
on the bioactive compounds in food system, but is also highly influenced by the other sur-
rounding compounds, such as lipids, proteins and fibres. Therefore, the whole food matrix
should be taken into consideration. In our previous study, the nutritional components in
the raw materials and pastes, and the negative correlations were observed between antioxi-
dant activity (DPPH, ABTS·+ and FRAP) and nutritional components, including fat, protein
and total starch content, while strong positive correlations were found between antioxi-
dant activity and p-coumaric acid content and garlic acid content. Previously, metabolites
formed as a result of structural changes brought about by the alkaline conditions have
been shown to have a different reactivity in the FRAP assay [54]. However, some insoluble
antioxidant compounds remaining in indigestible materials may be underestimated by the
three assays [55].

Table 3. Pearson’s correlation between phenolic compounds and three antioxidant assays values.

Before Digestion Gastric Intestinal

Pearson’s Correlation between TPC and Three Antioxidant Assays Values
DPPH values 0.8708 ** 0.9783 ** 0.8641 **
ABTS values 0.6867 ** 0.7748 ** 0.6941 **
FRAP values 0.8449 ** 0.9382 ** 0.9279 **

Pearson’s Correlation between TFC and Three Antioxidant Assays Values
DPPH values 0.5724 * 0.3737 0.4996 *
ABTS values 0.4333 * 0.2707 0.4245 *
FRAP values 0.5080 * 0.3279 0.7968 **

Pearson’s Correlation between TMAC and Three Antioxidant Assays Values
DPPH values 0.9922 ** 0.9820 ** 0.9790 **
ABTS values 0.9551 ** 0.9650 ** 0.9188 **
FRAP values 0.9951 ** 0.9962 ** 0.8376 **

* p < 0.05, ** p < 0.01, n = 3. TPC = total phenolic content; TFC = total flavonoid content; TMAC = total monomeric
anthocyanins content.

3.5. The Extracts of BB- and BC-Enriched Pastes Reduced the Intracellular ROS Level in
LPS-Stimulated RAW264.7

A CCK-8 assay was performed to evaluate the effects of the extracts from intestinal
digested blueberry and blackcurrant enriched pastes on RAW264.7 cell viability. As shown
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in Figure 2, the extracts of digested 25% blueberry and 25% blackcurrant enriched pastes
exhibited stronger inhibitory activity against cell growth of RAW264.7, compared to the
extract of digested OBP (p < 0.01). In order to make sure the cell viability was more than
90%, the concentrations of 100 and 200 µg/mL extracts of digested pastes were chosen for
subsequent analyses.

Antioxidants 2021, 10, x FOR PEER REVIEW 13 of 18 
 

 
Figure 2. RAW264.7 cell viability after treating with varying concentrations of extracts from di-
gested oat bran paste (a), 25% blueberry-enriched paste (b), and 25% blackcurrant-enriched paste 
(c) for 48 h. The values represent the mean ± SD of three independent experiments. * p  <  0.05, ** p 
<  0.01 compared to the control group. 

LPS-induced intracellular ROS accumulation was monitored within cells using a 
DCFH2-DA fluorescence microscopic analysis. As shown in Figure 3, the incubation of 
LPS-stimulated RAW264.7 cells with the extract of OBP (100 and 200 μg/mL) showed no 
significant reduction in the intracellular ROS, while co-treatment with the extracts of BB- 
and BC-enriched pastes (100 and 200 μg/mL) resulted in a considerable (p < 0.05) dose-
dependent reduction in ROS accumulation in LPS-induced RAW264.7 cells. Among these, 
the 200 μg/mL extract of ABC25 exhibited the most significant reduction of ROS concen-
tration, reducing the ROS level by approximately four-fold compared to the control group 
(p < 0.01). Therefore, it can be suggested that the enrichment of BB or BC powder for oat 
bran could suppress LPS-induced ROS generation in macrophages. 

 

Figure 2. RAW264.7 cell viability after treating with varying concentrations of extracts from digested
oat bran paste (a), 25% blueberry-enriched paste (b), and 25% blackcurrant-enriched paste (c) for 48 h.
The values represent the mean ± SD of three independent experiments. * p < 0.05, ** p < 0.01
compared to the control group.

LPS-induced intracellular ROS accumulation was monitored within cells using a
DCFH2-DA fluorescence microscopic analysis. As shown in Figure 3, the incubation of
LPS-stimulated RAW264.7 cells with the extract of OBP (100 and 200 µg/mL) showed
no significant reduction in the intracellular ROS, while co-treatment with the extracts of
BB- and BC-enriched pastes (100 and 200 µg/mL) resulted in a considerable (p < 0.05)
dose-dependent reduction in ROS accumulation in LPS-induced RAW264.7 cells. Among
these, the 200 µg/mL extract of ABC25 exhibited the most significant reduction of ROS
concentration, reducing the ROS level by approximately four-fold compared to the control
group (p < 0.01). Therefore, it can be suggested that the enrichment of BB or BC powder for
oat bran could suppress LPS-induced ROS generation in macrophages.

ROS are created by a variety of cellular processes as part of cellular signalling events.
A number of studies have suggested that ROS participate in inflammation, and LPS-
induced ROS generation has been widely reported in various in vitro and in vivo stud-
ies [56]. In particular, ROS are major oxidative products that are primarily released
by the mitochondria, peroxisomes, and inflammatory cell activation by endotoxins in
macrophages. Moreover, ROS production is an important component of the initiation
and enhancement of cell death via apoptosis or autophagy [57]. In this study, stimulation
of LPS enhanced intracellular ROS accumulation in RAW264.7 macrophages, and this
elevated intracellular ROS accumulation was significantly inhibited by the extracts of BB-
and BC-enriched pastes (bioactive compounds from BB and BC powder).
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3.6. The Extracts of BB- and BC-Enriched Pastes Activated the Antioxidant Gene Nrf2 in
LPS-Stimulated RAW264.7 via Keap1/Nrf2/HO-1 Signalling Pathway

Nrf2 is a transcription factor that serves as a sensor for oxidative stress, and coor-
dinates the expression of antioxidant stress response genes upon exposure to oxidative
stimulation [58]. Herein, we hypothesised that the protective effects of the extracts of
digested BB- and BC-enriched pastes against LPS-stimulated oxidative stress (intracellular
ROS accumulation) were regulated by the induction of antioxidant genes through the Nrf2
gene. The results of the luciferase reporter gene assay (Figure 4) showed that the extracts of
BB- and BC-enriched pastes (100 and 200 µg/mL) significantly increased the expression of
the Nrf2 gene compared to the extract of OBP (p < 0.05). Among these extracts, the extract
of 200 µg/mL ABC25 led to the most significant increase in the expression of the Nrf2 gene.
This result is in agreement with the concentration of intracellular ROS accumulation in
RAW264.7 macrophages. Collectively, these findings suggest that the bioactive compounds
from BB and BC powder could promote the activation of the Nrf2 gene in macrophages.
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Figure 4. The Luciferase activity (Nrf2) of lipopolysaccharide (LPS)-stimulated RAW264.7
macrophages treated with or without the extracts of OBP, ABB, and ABC. The values are represented
by mean± SD. Values with different letters indicate statistically significant differences (p < 0.05, n = 3).
OBP = pure oat bran paste; ABB = 25% of blueberry powder enriched oat bran paste; ABC = 25% of
blackcurrant powder enriched oat bran paste.
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To further confirm this protective effect, the extracts of ABB25 (62.5, 125, and 250 µg/mL)
and ABC25 (50, 100, and 200 µg/mL) were selected to perform a Western blotting assay to
investigate the mechanism of the activation of the Nrf2 gene by the extracts. As shown in
Figure 5, the extracts of ABB25 and ABC25 significantly activated the Nrf2 signalling pathway
by down-regulation of the protein expressions of Keap1, and up-regulation of the protein
expression of Nrf2 and its downstream factor heme oxygenase 1 (HO1) in a dose-dependent
manner (p < 0.05).
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extracts of many plants contain anti-inflammatory agents inhibited the intracellular ROS 
accumulation through the activation of Nrf2 cascades in macrophages. These results 
demonstrate that the protective effect of the extracts is mediated primarily by Nrf2 acti-
vation. Thus, the bioactive compounds in the extracts protected the macrophages from 
LPS-stimulated intracellular ROS accumulation, mainly by elevating the intracellular anti-

Figure 5. The protein expression of KEAP1, Nrf2, and HO-1 of LPS-stimulated RAW264.7 macrophages treated with or
without the varying concentrations of the extracts of ABB25 (a) and ABC25 (b). The values are represented by mean ± SD,
n =3. Bars with ** mean there is difference from lipopolysaccharide (LPS) group (** p < 0.01). ABB25 = 25% of blueberry
powder enriched oat bran paste; ABC25 = 25% of blackcurrant powder enriched oat bran paste.

The Keap1/Nrf2 pathway is the main cytoprotective regulator in responses to en-
dogenous and exogenous stresses induced by ROS [59]. Transcription factor Nrf2, a key
signalling protein within the pathway, binds with small Maf proteins to the antioxidant re-
sponse element (ARE) in the regulatory regions of target genes. Keap1 is a repressor protein
that binds to Nrf2 and promotes its degradation via the ubiquitin proteasome pathway [60].
It has been documented that Keap1/Nfr2-mediated antioxidant genes are stimulated by
various external stimuli and by plant-derived natural products [61]. Activated Nrf2 binds
the DNA at ARE binding motifs to activate the transcription of various detoxifying en-
zymes, including HO-1 [62]. HO-1 is a well-known antioxidant enzyme which plays a
major in the defence against LPS-stimulated ROS generation in macrophages. HO-1 ex-
pression has also been shown to be driven by Nrf2 [63]. These antioxidant enzymes are
important in the prevention of cell carcinogenesis, and in the protection from oxidative
stress and electrophile toxicity. The induction of these antioxidant genes has been as-
sumed to be the mechanism through which Nrf2 inhibits LPS-stimulated inflammation [64].
A previous study [65] revealed that induction of antioxidant enzyme (HO-1) expression
can reduce intracellular ROS levels, creating an improved intracellular environment, and
maintaining Nrf2 in its augmented configuration. In this study, the expression of the Nrf2
gene in macrophages significantly increased in the presence of the extracts of ABB25 and
ABC25, suggesting that the elimination of intercellular ROS may be due to the activation of
Nrf2 by the extracts. This is consistent with previous studies, revealing that the extracts of
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many plants contain anti-inflammatory agents inhibited the intracellular ROS accumulation
through the activation of Nrf2 cascades in macrophages. These results demonstrate that the
protective effect of the extracts is mediated primarily by Nrf2 activation. Thus, the bioactive
compounds in the extracts protected the macrophages from LPS-stimulated intracellular
ROS accumulation, mainly by elevating the intracellular anti-oxidative enzymes via en-
hancing the accumulation of Nrf2, and thus, dramatically inducing the expression of the
antioxidant gene HO-1, in response to LPS stimulation.

4. Conclusions

In conclusion, incorporation of 10, 15, and 25% of blackcurrant or blueberry powder
with oat bran increased the content of bioactive compounds. The bioactive compounds
from BB- and BC-enriched pastes mainly contributed to their in vitro antioxidant activities.
Furthermore, the enrichment of 25% blueberry and 25% blackcurrant powder into oat
bran was chosen to investigate the intracellular antioxidant activities in LPS-stimulated
RAW264.7 macrophages. The results indicated that the extracts of intestinal digested
ABB25 and ABC25 (bioactive compounds in the extracts) prevented the macrophages from
experiencing LPS-stimulated intracellular ROS accumulation, mainly via the Keap1/Nrf2
signalling pathway, enhancing the accumulation of the Nrf2 gene and consequently in-
ducing the expression of the antioxidant genes HO-1, in response to LPS stimulation.
In addition, after experiencing the digestion, the extract from the 25% blackcurrant pow-
der enriched paste still exhibited stronger protective effects of in vitro and intracellular
antioxidant activity than that of the 25% blueberry powder enriched paste. For future
work, a combination of a cell line study with an in vivo study in a mouse model should
be developed. We recommend this study focusses on the production of the metabolites of
polyphenols that are dominant in the circulation. Taken together, the findings in this study
signify the importance of the intake of polyphenol-rich cereal food products.

Author Contributions: Conceptualization, X.D.H., C.S.B. and G.W.; methodology, X.D.H. and
D.H.; software, X.D.H.; validation, X.D.H., G.W. and X.G.; formal analysis, X.D.H.; investigation,
X.D.H. and D.H.; resources, X.D.H.; data curation, G.W.; writing—original draft preparation, X.D.H.;
writing—review and editing, X.D.H., G.W., X.G., X.Y.W., S.Z.T., M.A.B. and C.S.B.; visualization,
X.D.H.; supervision, C.S.B.; project administration, C.S.B.; funding acquisition, X.Y.W., S.Z.T., M.A.B.
and C.S.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Oguntibeju, O.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int. J. Physiol.

Pathophysiol. Pharmacol. 2019, 11, 45–63. [PubMed]
2. Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and

Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [CrossRef] [PubMed]
3. Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and

downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009, 7, 65–74. [CrossRef]
4. Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related

Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid. Med. Cell. Longev. 2016, 2016,
3164734. [CrossRef] [PubMed]

5. Roos, N.J.; Aliu, D.; Bouitbir, J.; Krähenbühl, S. Lapatinib Activates the Kelch-Like ECH-Associated Protein 1-Nuclear Factor
Erythroid 2-Related Factor 2 Pathway in HepG2 Cells. Front. Pharmacol. 2020, 11, 944. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/31333808
http://doi.org/10.1089/met.2015.0095
http://www.ncbi.nlm.nih.gov/pubmed/26569333
http://doi.org/10.2174/157015909787602823
http://doi.org/10.1155/2016/3164734
http://www.ncbi.nlm.nih.gov/pubmed/26881021
http://doi.org/10.3389/fphar.2020.00944


Antioxidants 2021, 10, 388 16 of 18

6. Cai, M.; Tong, L.; Dong, B.; Hou, W.; Shi, L.; Dong, H. Kelch-like ECH-associated Protein 1-dependent Nuclear Factor-E2–
related Factor 2 Activation in Relation to Antioxidation Induced by Sevoflurane Preconditioning. Anesthesiology 2017, 126,
507–521. [CrossRef]

7. Katarína, S.; Mikó, E.; Kovács, T.; Leguina-Ruzzi, A.; Sipos, A.; Bai, P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating
Cancer Metabolism. Antioxid. Redox Signal. 2020, 33, 966–997.

8. Chabot, G.G.; Touil, Y.S.; Pham, M.H.; Dauzonne, D. Flavonoids in Cancer Prevention and Therapy: Chemistry, Pharmacology,
Mechanisms of Action, and Perspectives for Cancer Drug Discovery. In Alternative and Complementary Therapies for Cancer;
Springer: Boston, MA, USA, 2010; pp. 583–612.

9. Jurkiewicz-Przondziono, J.; Lemm, M.; Kwiatkowska-Pamuła, A.; Ziółko, E.; Wójtowicz, M.K. Influence of diet on the risk of
developing endometriosis. Ginekol. Pol. 2017, 88, 96–102. [CrossRef]

10. Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry
Applications. Molecules 2019, 24, 4132. [CrossRef]
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42. Cebeci, F.; Şahin-Yeşilçubuk, N. The matrix effect of blueberry, oatmeal and milk on polyphenols, antioxidant activity and
potential bioavailability. Int. J. Food Sci. Nutr. 2014, 65, 69–78. [CrossRef]

43. Fawole, O.A.; Opara, U.L. Stability of total phenolic concentration and antioxidant capacity of extracts from pomegranate
co-products subjected to in vitro digestion. BMC Complement. Altern. Med. 2016, 16, 358. [CrossRef]

44. Bhatt, A.; Patel, V. Antioxidant activity of garlic using conventional extraction and in vitro gastrointestinal digestion.
Free Radic. Antioxid. 2013, 3, 30–34. [CrossRef]

45. Muche, B.M.; Speers, R.A.; Rupasinghe, H.P.V. Storage Temperature Impacts on Anthocyanins Degradation, Color Changes and
Haze Development in Juice of “Merlot” and “Ruby” Grapes (Vitis vinifera). Front. Nutr. 2018, 5, 100. [CrossRef]

46. Waterhouse, G.I.N.; Sun-Waterhouse, D.; Su, G.; Zhao, H.; Zhao, M. Spray-Drying of Antioxidant-Rich Blueberry Waste Extracts;
Interplay Between Waste Pretreatments and Spray-Drying Process. Food Bioprocess Technol. 2017, 10, 1074–1092. [CrossRef]

47. Silva-Espinoza, M.A.; Ayed, C.; Foster, T.; Camacho, M.D.M.; Martínez-Navarrete, N. The Impact of Freeze-Drying Conditions on
the Physico-Chemical Properties and Bioactive Compounds of a Freeze-Dried Orange Puree. Foods 2019, 9, 32. [CrossRef]

48. Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated
gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21.
[CrossRef] [PubMed]

49. Del Rio, D.; Borges, G.; Crozier, A. Berry flavonoids and phenolics: Bioavailability and evidence of protective effects. Br. J. Nutr.
2010, 104, S67–S90. [CrossRef]

50. Çelik, E.E.; Gökmen, V.; Fogliano, V. Soluble Antioxidant Compounds Regenerate the Antioxidants Bound to Insoluble Parts of
Foods. J. Agric. Food Chem. 2013, 61, 10329–10334. [CrossRef] [PubMed]

51. Masisi, K.; Beta, T.; Moghadasian, M.H. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies.
Food Chem. 2016, 196, 90–97. [CrossRef]

52. Dulf, F.V.; Vodnar, D.C.; Dulf, E.-H.; Pintea, A. Phenolic compounds, flavonoids, lipids and antioxidant potential of apricot (Prunus
armeniaca L.) pomace fermented by two filamentous fungal strains in solid state system. Chem. Cent. J. 2017, 11, 92. [CrossRef]

53. Hui, X.; Wu, G.; Han, D.; Gong, X.; Stipkovits, L.; Wu, X.; Tang, S.; Brennan, M.A.; Brennan, C.S. Bioactive compounds
from blueberry and blackcurrant powder alter the physicochemical and hypoglycaemic properties of oat bran paste. LWT
2021, 111167. [CrossRef]
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