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Abstract: A concise and efficient synthesis of acenaphtho[1,2-b]indole derivatives via the domino
reactions of enaminones with acenaphthoquinone catalyzed by L-proline has been developed.
This protocol has the advantages of good yields, operational convenience and high regioselectivity.

Keywords: acenaphtho[1,2-b]indole; domino reaction; enaminone; acenaphthoquinone; L-proline

1. Introduction

The indole skeleton is often considered to be one of the most important and fascinating classes
of nitrogen-containing heterocycles, and it is often found in both natural products and biologically
active compounds [1]. Many indole derivatives have a wide range of biological activities, including
anticancer, antioxidant, anti-inflammatory and anti-HIV effects [2–7]. In addition, various polycyclic
indoles are privileged scaffolds in medicinal chemistry and drug discovery [8–11]. As a result of these
interesting biological activities, many powerful approaches have been developed for the construction of
polycyclic indole moieties [12–18]. However, many of these methods have drawbacks, such as limited
availability of starting materials, the use of expensive metal catalysts and the need for harsh reaction
conditions. Therefore, developing new and efficient methods for the synthesis of polycyclic indoles
and their functionalized derivatives using readily available starting materials is of great importance.
Enaminones are commercially available starting materials and have proven to be a useful synthons in
the construction of a variety of diverse heterocycles. This synthons has been used in the construction
of indole moiety via the condensation with α,β-dicarbonyl compounds under catalyst-free [19,20] or
acidic catalyst [21] conditions.

Domino (cascade) reactions are promising and powerful tools in organic and medical chemistry
because of their high atom economy, highly complex and diverse products, efficiency in forming
multiple bonds, and environmental friendliness [22]. Consequently, domino reactions have often been
used for the construction of complex heterocycles [23–28]. As part of our program to develop new
methods for the construction of important heterocycles by domino reactions [29–32], we report herein
an efficient synthesis of acenaphtho[1,2-b]indole derivatives via a domino reaction using L-proline as
the catalyst.
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2. Results and Discussion

We initially evaluated the domino reaction of enaminone 1a and acenaphthoquinone (2).
The reaction mixture of 1a and 2 (1:1 in mole) was subjected to a variety of different conditions
and the results are summarized in Table 1. Target product 3a was obtained in 19% yield when
the reaction was carried out under catalyst-free conditions in ethanol at reflux for 2 h followed by
dehydroxylation catalyzed by acid (Table 1, entry 1). To our delight, when L-proline (10 mol %) was
added, the yield increased to 41% (Table 1, entry 2). Next several other solvents were evaluated for
their ability to improve the yield further. The results indicated that toluene was superior to ethanol,
chloroform, THF, 1,4-dioxane, DMF, and water in providing much better results (Table 1, entries 2-8).
A number of different catalysts were also evaluated for their catalytic efficiency in this reaction. In all
cases, the reaction was carried out with 10 mol % of the catalyst in toluene at 80 ◦C for 2 h. The results
revealed that L-proline provided much better results than p-TSA, S-phenylalanine, phenylalanine,
pyrrolidine, piperidine, benzylamine and dibenzylamine (Table 1, entries 9–15). These results indicated
that the presence of both secondary nitrogen and a carboxylic acid group plays a crucial role in the
desird catalytic activity.

Table 1. Optimization of the reaction conditions.
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Reactions were performed using 1a (1 mmol), 2 (1 mmol) in solvent (5 mL).

After L-proline had been identified as the best organocatalyst for this reaction, we decided to test
the amount of this catalyst required for the full transformation to the desired compounds. The results
revealed that when the amount of L-proline increased from 5 mol % to 10 mol %, the yield also
increased from 45 to 65% (Table 1, entries 16 and 8). The use of 10 mol % of L-proline in toluene was
effective in pushing this reaction forward, and using larger amounts of the catalyst did not improve the
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yields (Table 1, entries 17–18). The optimization process revealed that the reaction could not proceed
in toluene at 40 ◦C (Table 1, entry 19). To identify the optimum reaction temperature, the reaction
was conducted in toluene in the presence of 10 mol % L-proline at 60 ◦C, 80 ◦C, and reflux, and these
reactions provided product 3a in yields of 25, 65 and 80% (Table 1, entries 20, 8 and 21), respectively.
On the basis of these results, the optimum reaction condition was identified as refluxing with 10 mol %
L-proline in toluene for 2 h. Compared with other catalysts (for example, p-TSA and TEA), this catalyst
has the advantages of higher catalytic efficiency, less toxicity, low cost and ready availability

After the reaction conditions were optimized, the substrate scope of this transformation was
also investigated. As shown in Table 2, acenaphthequinone and methyl, bromo, chloro, t-Bu and
fluoro substituents on the enaminone ring were well tolerated under the reaction conditions, yielding
products in satisfactory yields (up to 85%). However, when the enaminones with a bulkier group at the
2- or 2- and 6- positions were used, none of the desired products was obtained (Table 2, entries 15-16).

Table 2. Synthesis of acenaphtho[1,2-b]indole derivatives 3.
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Entry R1 R2 Product Yield (%)

1 CH3 4-CH3 3a 80
2 CH3 3-Cl-4-F 3b 82
3 CH3 4-CH3O 3c 85
4 CH3 4-Br 3d 76
5 CH3 4-NO2 3e 70
6 CH3 3,5-(CH3)2 3f 78
7 CH3 H 3g 80
8 CH3 2-Cl 3h 82
9 CH3 4-t-Bu 3i 80
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The structures of compounds 3 were characterized by IR, 1H-NMR, and 13C-NMR spectra as well
as HRMS. The structure of 3g was further confirmed using single-crystal X-ray diffraction analysis,
(Figure 1).

Although details of the mechanism of the domino reaction remain unclear, the formation of
compound 3 could be explained by the reaction sequence shown in Scheme 1. The initial reversible
reaction of acenaphthoquinone (2) with L-proline would give iminium ion A. Then, an aza-ene
addition of enaminone 1 to iminium ion A leads to intermediate B, which would undergo a rapid
tautomerization to give intermediate C. Intermediate E would be formed by the intramolecular
cyclization of intermediate C and the elimination of L-proline. Then, intermediate F would be generated
by the nucleophilic addition of water to intermediate E. In the last step, product 3 would be formed by
dehydroxylation of the intermediate catalyzed by H2SO4 in acetic acid solution.



Molecules 2018, 23, 3045 4 of 9

Molecules 2017, 22, x FOR PEER REVIEW  4 of 9 

 

 

Figure 1. Crystal structure of compound 3g 

 

Scheme 1. Proposed mechanism of the synthesis of acenaphtho[1,2-b]indole derivatives 3 

To support the proposed reaction mechanism, several control experiments were performed 

(Scheme 2). For example, intermediate Fa was obtained in 84% yield from the reaction of 1a with 2 in 

refluxing toluene for 2 h catalyzed by 10 mol % L-proline. Desired product 3a was obtained in 90% 

yield when intermediate Fa was reacted at 80 °C for 2 h in acetic acid catalyzed by H2SO4. 

 

Scheme 2. Preliminary mechanism study 

3. Experimental 

Figure 1. Crystal structure of compound 3g.

Molecules 2017, 22, x FOR PEER REVIEW  4 of 9 

 

 

Figure 1. Crystal structure of compound 3g 

 

Scheme 1. Proposed mechanism of the synthesis of acenaphtho[1,2-b]indole derivatives 3 

To support the proposed reaction mechanism, several control experiments were performed 

(Scheme 2). For example, intermediate Fa was obtained in 84% yield from the reaction of 1a with 2 in 

refluxing toluene for 2 h catalyzed by 10 mol % L-proline. Desired product 3a was obtained in 90% 

yield when intermediate Fa was reacted at 80 °C for 2 h in acetic acid catalyzed by H2SO4. 

 

Scheme 2. Preliminary mechanism study 

3. Experimental 

Scheme 1. Proposed mechanism of the synthesis of acenaphtho[1,2-b]indole derivatives 3.

To support the proposed reaction mechanism, several control experiments were performed
(Scheme 2). For example, intermediate Fa was obtained in 84% yield from the reaction of 1a with 2 in
refluxing toluene for 2 h catalyzed by 10 mol % L-proline. Desired product 3a was obtained in 90%
yield when intermediate Fa was reacted at 80 ◦C for 2 h in acetic acid catalyzed by H2SO4.
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3. Experimental

3.1. General Information

All chemicals were obtained commercially and used without further purification. Melting points
were measured using an XT-5 micro melting point apparatus from Beijing Tech Instrument Co., Ltd.,
(Beijing, China) and are uncorrected. NMR spectra were recorded in DMSO-d6 or CDCl3 solution on
Inova-300 or 400 MHz spectrometers (Varian, Palo Alto, CA, USA). Chemical shifts values are given in
ppm and referred as the internal standard to TMS (tetramethylsilane). The coupling constants (J) are
reported in hertz (Hz). High-resolution mass spectra (HRMS) were obtained using a MicrOTOF-Q II
instrument from Bruker (Billerica, MA, USA). X-ray crystal diffraction analysis was performed with a
Mercury CCD X-ray diffractometer (Rigaku, Akishima, Tokyo, Japan).

3.2. General Procedure for the Synthesis of Acenaphtho[1,2-b]indole Derivatives 3

A mixture of enaminone 1 (1.0 mmol), acenaphthoquinone (2, 1.0 mmol), L-proline (0.1 mmol)
and toluene (5 mL) was refluxed for 1–3 h. After the completion of the reaction (confirmed by TLC),
the reaction mixture was concentrated in vacuo. Then, acetic acid (15 mL) and conc. H2SO4 (0.5 mL)
were added. The reaction mixture was stirred at 80 ◦C for 1–2 h. After completion of the reaction
(confirmed by TLC), the reaction mixture was then cooled to room temperature and concentrated
in vacuo. The crude mixture was purified by column chromatography on silica gel using ethyl
acetate/petroleum ether 1:3 as the eluents to give the corresponding product 3.

9,9-Dimethyl-7-(p-tolyl)-9,10-dihydro-7H-acenaphtho[1,2-b]indol-11(8H)-one (3a). White solid, Rf = 0.56,
m.p. 214–216 ◦C. IR (KBr, cm−1) ν: 3063, 2951, 1724, 1630, 1504, 1483, 1323, 1259, 1156, 1140, 860, 771,
722, 679. 1H-NMR (400 MHz, CDCl3) δ 8.11 (d, J = 6.4 Hz, 1H, ArH), 7.56 (t, J = 8.8 Hz, 2H, ArH), 7.47
(t, J = 6.8 Hz, 1H, ArH), 7.35–7.33 (m, 4H, ArH), 7.21 (t, J = 7.6 Hz, 1H, ArH), 7.04 (d, J = 6.8 Hz, 1H,
ArH), 2.56 (s, 2H, CH2), 2.42 (s, 3H, CH3), 2.40 (s, 2H, CH2), 1.05 (s, 6H, 2 × CH3). 13C-NMR (75 MHz,
CDCl3) δ 192.8, 145.5, 138.1, 137.7, 133.7, 131.0, 130.8, 129.3, 128.2, 128.0, 127.1, 125.6, 125.3, 125.0, 124.7,
124.6, 122.8, 117.9, 115.2, 51.1, 36.1, 34.8, 27.6, 20.3. HRMS (ESI) m/z: Calcd. for C27H23NONa [M + Na]+

400.1677. Found: 400.1705.

7-(3-Chloro-4-fluorophenyl)-9,9-dimethyl-9,10-dihydro-7H-acenaphtho[1,2-b]indol-11(8H)-one (3b). White
solid, Rf = 0.61, m.p. 248–250 ◦C. IR (KBr, cm−1) ν: 3027, 2939, 1721, 1494, 1343, 1174, 895, 818. 1H-NMR
(400 MHz, CDCl3) δ 8.18 (d, J = 6.8 Hz, 1H, ArH), 7.69–7.65 (m, 3H, ArH), 7.56 (t, J = 7.6 Hz, 1H, ArH),
7.44–7.31 (m, 3H, ArH), 7.10 (d, J = 6.8 Hz, 1H, ArH), 2.57 (s, 2H, CH2), 2.43 (s, 2H, CH2), 1.12 (s, 6H, 2
× CH3). 13C-NMR (75 MHz, CDCl3) δ 193.7, 156.3, 146.2, 138.8, 131.7, 131.6, 129.3, 128.5, 128.2, 128.2,
126.7, 126.5, 126.3, 125.9, 125.8, 124.2, 118.7, 117.9, 117.6, 116.6, 51.9, 37.0, 35.9, 28.6. HRMS (ESI) m/z:
Calcd. for C26H19ClFNONa [M + Na]+ 438.1037. Found: 438.1020.

7-(4-Methoxyphenyl)-9,9-dimethyl-9,10-dihydro-7H-acenaphtho[1,2-b]indol-11(8H)-one (3c). White solid,
Rf = 0.57, m.p. 240–242 ◦C. IR (KBr, cm−1) ν: 3037, 2944, 1723, 1511, 1443, 1078, 816. 1H-NMR (400 MHz,
CDCl3) δ 8.10–8.08 (m, 1H, ArH), 7.58–7.54 (m, 2H, ArH), 7.48–7.46 (m, 1H, ArH), 7.37–7.35 (m, 2H,
ArH), 7.23–7.17 (m, 1H, ArH), 7.01–7.00 (m, 3H, ArH), 3.84–3.83 (m, 3H, CH3O), 2.52 (s, 2H, CH2), 2.46
(s, 2H, CH2), 1.04 (s, 6H, 2 × CH3). 13C-NMR (75 MHz, CDCl3) δ 193.8, 159.6, 146.8, 139.3, 132.1, 131.8,
130.0, 129.2, 129.0, 128.1, 127.1, 126.7, 126.3, 125.9, 125.5, 123.7, 118.8, 116.1, 114.9, 55.6, 52.0, 36.9, 35.7,
28.6. HRMS (ESI) m/z: Calcd. for C27H23NO2Na [M + Na]+ 416.1626. Found: 416.1629.

7-(4-Bromophenyl)-9,9-dimethyl-9,10-dihydro-7H-acenaphtho[1,2-b]indol-11(8H)-one (3d). White solid, Rf =
0.60, m.p. 230–232 ◦C. IR (KBr, cm−1) ν: 3049, 2952, 1652, 1609, 1494, 1079, 819, 769. 1H-NMR (400 MHz,
CDCl3) δ 8.17 (d, J = 6.4 Hz, 1H, ArH), 7.73–7.71 (m, 2H, ArH), 7.67–7.62 (m, 2H, ArH), 7.54 (t, J =
7.6 Hz, 1H, ArH), 7.41–7.39 (m, 2H, ArH), 7.29 (t, J = 7.2 Hz, 1H, ArH), 7.10 (d, J = 6.8 Hz, 1H, ArH),
2.55 (s, 2H, CH2), 2.41 (s, 2H, CH2), 1.10 (s, 6H, 2 × CH3). 13C-NMR (75 MHz, CDCl3) δ 193.7, 146.2,
138.6, 136.3, 133.0, 131.8, 131.7, 129.3, 128.7, 128.2, 127.4, 126.7, 126.5, 126.2, 126.1, 124.0, 122.4, 118.9,
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116.5, 51.9, 37.0, 35.8, 28.6. HRMS (ESI) m/z: Calcd. for C26H20BrNONa [M + Na]+ 464.0626. Found:
464.0633.

9,9-Dimethyl-7-(4-nitrophenyl)-9,10-dihydro-7H-acenaphtho[1,2-b]indol-11(8H)-one (3e). Yellow solid,
Rf = 0.63, m.p. 240–242 ◦C. IR (KBr, cm−1) ν: 3036, 2953, 2350, 1728, 1592, 1505, 1329, 1068, 842.
1H-NMR (400 MHz, CDCl3) δ 8.60 (d, J = 7.2 Hz, 1H, ArH), 8.52 (d, J = 8.4 Hz, 1H, ArH), 8.31–8.26
(m, 3H, ArH), 8.09 (d, J = 6.8 Hz, 1H, ArH), 7.84–7.80 (m, 3H, ArH), 7.67 (d, J = 8.0 Hz, 1H, ArH), 2.72
(s, 1H, CH2), 2.51 (s, 1H, CH2), 2.17 (s, 1H, CH2), 1.64 (s, 1H, CH2), 1.25 (s, 3H, CH3), 1.16 (s, 3H, CH3).
13C-NMR (75 MHz, CDCl3) δ 187.1, 159.5, 146.1, 145.0, 141.8, 134.3, 132.4, 131.6, 127.5, 127.4, 126.4,
125.8, 125.6, 125.5, 125.3, 124.4, 123.4, 121.0, 117.9, 117.7, 50.9, 35.0, 28.7, 27.6. HRMS (ESI) m/z: Calcd.
for C26H20N2O3Na [M + Na]+ 431.1372. Found: 431.1355.

7-(3,5-Dimethylphenyl)-9,9-dimethyl-9,10-dihydro-7H-acenaphtho[1,2-b]indol-11(8H)-one (3f). White solid,
Rf = 0.57, m.p. 220–221 ◦C. IR (KBr, cm−1) ν: 3076, 2956, 1728, 1638, 1510, 1474, 1383, 1181, 1080, 870,
836, 801, 767. 1H-NMR (400 MHz, CDCl3) δ 8.18 (d, J = 6.4 Hz, 1H, ArH), 7.66–7.62 (m, 2H, ArH),
7.55 (t, J = 7.2 Hz, 1H, ArH), 7.30 (t, J = 7.6 Hz, 1H, ArH), 7.18–7.15 (m, 3H, ArH), 7.11 (d, J = 6.8 Hz,
1H, ArH), 2.65 (s, 2H, CH2), 2.48 (s, 2H, CH2), 2.46 (s, 6H, 2 × CH3), 1.15 (s, 6H, 2 × CH3). 13C-NMR
(75 MHz, CDCl3) δ 193.9, 146.5, 139.7, 139.1, 137.2, 132.1, 130.3, 129.2, 129.1, 128.1, 126.7, 126.3, 126.0,
123.8, 123.4, 118.9, 116.2, 52.1, 37.2, 35.9, 28.6, 21.4. HRMS (ESI) m/z: Calcd. for C28H25NONa [M +
Na]+ 414.1834. Found: 414.1847.

9,9-Dimethyl-7-phenyl-9,10-dihydro-7H-acenaphtho[1,2-b]indol-11(8H)-one (3g). White solid, Rf = 0.55, m.p.
200–202 ◦C. IR (KBr, cm−1) ν: 3042, 2958, 1649, 1520, 1500, 1394, 1081, 821, 774, 706. 1H-NMR (400 MHz,
CDCl3) δ 8.13 (d, J = 6.0 Hz, 1H, ArH), 7.60–7.50 (m, 8H, ArH), 7.23 (dd, J = 14.0, 6.8 Hz, 1H, ArH), 7.05
(d, J = 6.4 Hz, 1H, ArH), 2.59 (s, 2H, CH2), 2.42 (s, 2H, CH2), 1.09 (s, 6H, 2 × CH3). 13C-NMR (75 MHz,
CDCl3) δ 193.8, 146.5, 138.9, 137.3, 132.0, 131.8, 129.8, 129.2, 128.9, 128.7, 128.1, 126.7, 126.3, 126.1, 125.8,
123.8, 118.9, 116.3, 52.0, 37.0, 35.8, 28.6. HRMS (ESI) m/z: Calcd. for C26H21NONa [M + Na]+ 386.1521.
Found: 386.1503.

7-(2-Chlorophenyl)-9,9-dimethyl-9,10-dihydro-7H-acenaphtho[1,2-b]indol-11(8H)-one (3h). White solid,
Rf = 0.59, m.p. 210–212 ◦C. IR (KBr, cm−1) ν: 3041, 2957, 1651, 1518, 1491, 1458, 1069, 821, 771.
1H-NMR (400 MHz, CDCl3) δ 8.15 (d, J = 6.8 Hz, 1H, ArH), 7.67–7.59 (m, 3H, ArH), 7.53–7.49 (m, 4H,
ArH), 7.23 (d, J = 6.4 Hz, 1H, ArH), 6.76 (d, J = 6.8 Hz, 1H, ArH), 2.52–2.46 (m, 4H, 2 × CH2), 1.14–1.11
(m, 6H, 2 × CH3). 13C-NMR (75 MHz, CDCl3) δ 193.8, 147.5, 139.5, 135.1, 132.3, 132.1, 131.7, 131.0,
130.8, 129.3, 129.2, 128.7, 128.2, 128.1, 126.7, 126.4, 126.0, 125.5, 124.0, 118.4, 116.2, 52.2, 36.4, 35.9, 29.0,
28.2. HRMS (ESI) m/z: Calcd. for C26H20ClNONa [M + Na]+ 420.1131. Found: 420.1169.

7-(4-(tert-Butyl)phenyl)-9,9-dimethyl-9,10-dihydro-7H-acenaphtho[1,2-b]indol-11(8H)-one (3i). White solid,
Rf = 0.56, m.p. 250–252 ◦C. IR (KBr, cm−1) ν: 3021, 2940, 1700, 1452, 1339, 1057, 893, 767. 1H-NMR
(400 MHz, CDCl3) δ 8.18 (d, J = 5.6 Hz, 1H, ArH), 7.64–7.54 (m, 5H, ArH), 7.47–7.45 (m, 2H, ArH),
7.31–7.29 (t, J = 4.8 Hz, 1H, ArH), 7.13 (d, J = 6.0 Hz, 1H, ArH), 2.67 (s, 2H CH2), 2.48 (s, 2H, CH2), 1.44
(s, 9H, C(CH3)3), 1.14 (s, 6H, 2 × CH3). 13C-NMR (75 MHz, CDCl3) δ 193.8, 151.8, 146.6, 139.0, 134.7,
132.0, 131.9, 129.2, 129.1, 128.1, 126.6, 126.3, 126.0, 125.2, 123.8, 119.0, 116.3, 52.1, 37.2, 35.8, 34.9, 31.4,
28.6. HRMS (ESI) m/z: Calcd. for C30H28NO [M − H]+ 418.2171. Found: 418.2147.

7-Phenyl-9,10-dihydro-7H-acenaphtho[1,2-b]indol-11(8H)-one (3j). White solid, Rf = 0.57, m.p. 208–210 ◦C.
IR (KBr, cm−1) ν: 3038, 2956, 1720, 1698, 1498, 1341, 1136, 837, 734. 1H-NMR (400 MHz, CDCl3) δ 8.10
(d, J = 6.0 Hz, 1H, ArH), 7.56–7.43 (m, 8H, ArH), 7.18 (d, J = 7.2 Hz, 1H, ArH), 7.01 (d, J = 6.0 Hz, 1H,
ArH), 2.67 (s, 2H, CH2), 2.51 (s, 2H, CH2), 2.07 (s, 2H, CH2). 13C-NMR (75 MHz, CDCl3) δ 194.4, 147.6,
138.7, 137.4, 132.0, 131.9, 129.8, 129.2, 128.9, 128.6, 128.1, 126.6, 126.4, 126.1, 126.0, 125.7, 123.9, 119.0,
117.4, 38.1, 24.0, 23.3. HRMS(ESI) m/z: Calcd. for C24H16NO [M − H]+ 334.1232. Found 334.1234.

7-(2-Chlorophenyl)-9,10-dihydro-7H-acenaphtho[1,2-b]indol-11(8H)-one (3k). White solid, Rf = 0.39, m.p.
193–194 ◦C. IR (KBr, cm−1) ν: 3051, 2943, 1723, 1656, 1522, 1072, 820, 773, 745. 1H-NMR (400 MHz,
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CDCl3) δ 8.10 (d, J = 6.4 Hz, 1H, ArH), 7.55–7.51 (m, 3H, ArH), 7.47–7.38 (m, 4H, ArH), 7.16 (t, J = 7.2 Hz,
1H, ArH), 6.71 (d, J = 6.8 Hz, 1H, ArH), 2.61–2.50 (m, 4H, 2 × CH2), 2.09–2.05 (m, 2H, CH2). 13C- NMR
(75 MHz, CDCl3) δ 194.4, 148.6, 139.3, 135.0, 132.1, 131.7, 131.0, 130.8, 129.2, 129.1, 128.7, 128.2, 128.1,
126.7, 126.4, 126.0, 125.7, 123.9, 118.5, 117.4, 38.1, 23.8, 22.6. HRMS (ESI) m/z: Calcd. for C24H16ClNONa
[M + Na]+ 392.0818. Found: 392.0830.

7-(2,4-Dimethylphenyl)-9,10-dihydro-7H-acenaphtho[1,2-b]indol-11(8H)-one (3l). White solid, Rf = 0.35, m.p.
264–267 ◦C. IR (KBr, cm−1) ν: 3037, 2943, 1724, 1690, 1461, 1337, 1156, 788. 1H-NMR (400 MHz, CDCl3)
δ 8.21–8.19 (m, 1H, ArH), 7.66–7.56 (m, 5H, ArH), 7.51–7.44 (m, 2H, ArH), 7.31 (t, 1H, J = 4.8 Hz, ArH),
7.15 (d, J = 6.0 Hz, 1H, ArH), 2.84–2.79 (m, 2H, CH2), 2.64–2.58 (m, 2H, CH2), 2.22–2.15 (m, 2H, CH2),
1.42 (s, 9H, 3 × CH3). 13C-NMR (75 MHz, CDCl3) δ 194.5, 151.8, 147.8, 138.7, 134.6, 132.1, 131.9, 129.2,
129.0, 128.1, 126.6, 126.3, 126.0, 125.1, 123.8, 119.1, 117.3, 38.1, 34.9, 31.4, 24.0, 23.4. HRMS calcd for
C28H25NONa [M + Na]+ 414.1834, found 414.1834.

7-(4-(tert-Butyl)phenyl)-9,10-dihydro-7H-acenaphtho[1,2-b]indol-11(8H)-one (3m). White solid, Rf = 0.36,
m.p. 190–192 ◦C. IR (KBr, cm−1) ν: 3049, 2953, 1655, 1521, 1082, 819, 773. 1H-NMR (400 MHz, CDCl3)
δ 8.17 (d, J = 6.4 Hz, 1H, ArH), 7.64–7.59 (m, 2H, ArH), 7.53 (t, J = 7.2 Hz, 1H, ArH), 7.25–7.22 (m,
3H, ArH), 7.17 (d, J = 8.0 Hz, 1H, ArH), 6.76 (d, J = 6.8 Hz, 1H, ArH), 2.67 (t, J = 10.4 Hz, 1H, CH2),
2.62–2.59 (m, 2H, CH2), 2.53 (t, J = 5.6 Hz, 1H, CH2), 2.44 (s, 3H, CH3), 2.18–2.15 (m, 2H, CH2), 2.07
(s, 3H, CH3). 13C-NMR (75 MHz, CDCl3) δ 194.3, 148.1, 139.5, 135.2, 133.7, 132.3, 132.1, 131.8, 129.2,
129.0, 128.2, 127.9, 127.2, 126.7, 126.2, 125.8, 123.7, 118.3, 117.0, 38.2, 24.0, 22.6, 21.3, 17.4. HRMS (ESI)
m/z: Calcd. for C26H21NONa [M + Na]+ 386.1521. Found: 386.1566.

7-(3,5-Dimethylphenyl)-9,10-dihydro-7H-acenaphtho[1,2-b]indol-11(8H)-one (3n). White solid, Rf = 0.34,
m.p. 222–224. IR (KBr, cm−1) ν: 3043, 2940, 1721, 1660, 1521, 1071, 1034, 852, 815, 767. 1H-NMR
(400 MHz, CDCl3) δ 8.19–8.17 (m, 1H, ArH), 7.66–7.62 (m, 2H, ArH), 7.56–7.51 (m, 1H, ArH), 7.31–7.28
(m, 1H, ArH), 7.17–7.11 (m, 4H, ArH), 2.81 (t, J = 5.2 Hz, 2H, CH2), 2.63–2.59 (m, 2H, CH2), 2.44 (s, 6H,
2 × CH3), 2.19 (t, J = 5.6 Hz, 2H, CH2). 13C-NMR (75 MHz, CDCl3) δ 194.5, 147.7, 139.6, 138.8, 137.2,
132.1, 131.9, 130.2, 129.2, 129.1, 128.1, 126.7, 126.3, 126.0, 123.8, 123.3, 118.9, 117.3, 38.1, 24.0, 23.4, 21.4.
HRMS (ESI) m/z: Calcd. for C26H20NO [M − H]+ 363.1545. Found: 363.1557.

3.3. General Procedure for the Synthesis of Tetrahydroacenaphtho[1,2-b]indole Derivatives Fa

A mixture of enaminone (1a) (1.0 mmol), acenaphthoquinone (2) (1.0 mmol), L-proline (0.1 mmol)
and toluene (5 mL) was refluxed for 3 h. After the completion of the reaction (confirmed by
TLC), the reaction mixture was concentrated in vacuo. The crude mixture was purified by
column chromatography on silica gel using ethyl acetate/petroleum ether 1:1 as the eluents to give
corresponding product Fa.

6b,11b-Dihydroxy-9,9-dimethyl-7-(p-tolyl)-8,9,10,11b-tetrahydro-6bH-acenaphtho[1,2-b]indol-11(7H)-one (Fa).
White solid, Rf = 0.23, m.p. 240–242 ◦C. IR (KBr, cm−1) ν: 3598, 2961, 2870, 1790, 1606, 1511, 1436, 1406,
1283, 1038, 783. 1H NMR (300 MHz, DMSO-d6) δ 7.94–6.93 (m, 10H, ArH), 6.46 (s, 1H, OH), 5.80 (s,
1H, OH), 2.38–1.79 (m, 7H, CH3 + 2 × CH2), 1.01 (s, 3H, CH3), 0.83 (s, 3H, CH3). 13C NMR (100 MHz,
DMSO-d6) δ 194.5, 168.6, 149.7, 145.7, 142.4, 140.9, 139.8, 136.0, 135.0, 134.9, 134.2, 133.8, 132.7, 130.1,
128.6, 126. 6, 124.8, 115.9, 107.8, 91.9, 56.3, 42.3, 38.7, 34.7, 32.3, 26.2. HRMS (ESI) m/z: Calcd. for
C27H25NO3Na [M + Na]+ 434.1732. Found: 434.1734.

4. Conclusions

In summary, we have developed an efficient protocol for the construction of
acenaphtho[1,2-b]indole derivatives via the domino reaction of enaminones with acenaphthoquinone
catalyzed by L-proline. This protocol has the advantages of mild reaction conditions, high yields and
operational convenience.
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