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The powers of the low frequency (LF) and high frequency (HF) components of heart

rate variability (HRV) have become the de facto standard metrics in the assessment

of the stress response, and the related activities of the sympathetic nervous system

(SNS) and the parasympathetic nervous system (PNS). However, the widely adopted

physiological interpretations of the LF and HF components in SNS /PNS balance are

now questioned, which puts under serious scrutiny stress assessments which employ

the LF and HF components. To avoid these controversies, we here introduce the novel

Classification Angle (ClassA) framework, which yields a family of metrics which quantify

cardiac dynamics in three-dimensions. This is achieved using a finite-difference plot of

HRV, which displays successive rates of change of HRV, and is demonstrated to provide

sufficient degrees of freedom to determine cardiac deceleration and/or acceleration.

The robustness and accuracy of the novel ClassA framework is verified using HRV

signals from ten males, recorded during standardized stress tests, consisting of rest,

mental arithmetic, meditation, exercise and further meditation. Comparative statistical

testing demonstrates that unlike the existing LF-HF metrics, the ClassA metrics are

capable of distinguishing both the physical and mental stress epochs from the epochs

of no stress, with statistical significance (Bonferroni corrected p-value ≤ 0.025); HF was

able to distinguish physical stress from no stress, but was not able to identify mental

stress. The ClassA results also indicated that at moderate levels of stress, the extent

of parasympathetic withdrawal was greater than the extent of sympathetic activation.

Finally, the analyses and the experimental results provide conclusive evidence that

the proposed nonlinear approach to quantify cardiac activity from HRV resolves three

critical obstacles to current HRV stress assessments: (i) it is not based on controversial

assumptions of balance between the LF and HF powers; (ii) its temporal resolution when

estimating parasympathetic dominance is as little as 10 s of HRV data, while only 60 s to

estimate sympathetic dominance; (iii) unlike LF and HF analyses, the ClassA framework

does not require the prohibitive assumption of signal stationarity. The ClassA framework

is unique in offering HRV based stress analysis in three-dimensions.
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1. INTRODUCTION

The endeavor to objectively discern states of stress from rest
using only heart rate variability (HRV) has long been a subject
of research. Despite the existence of many qualitative stress
assessments, such as questionnaires, the inherent subjectivity of
these measures restricts their use in practical applications. For
example, a subjective measure of stress cannot be relied upon
to assess whether a soldier is fit for deployment, neither can
a subjective measure be used to assess if subjects with poor
verbalization (such as neonates) are experiencing excessive levels
of stress or trauma. The ability to objectively and quantitatively
identify an individual’s stress state would therefore facilitate the
creation of readily deployable tools for stress monitoring and
management in every-day life.

Attempts to quantitatively identify stress from physiological
signals have included temporal (Castrillión et al., 2017), spectral
(Montano et al., 1994), and nonlinear (Vuksanovic and Gal,
2007) measures, however, conventional algorithms have not been
able to achieve an accurate and precise discernment of stress
states from rest. This is a reflection of the complexity of the
human stress response, for which the causes are manifold, and
the manifestations are yet to be fully understood. A pioneer in
stress research, Cannon (1915), was the first to coin the phrase
“fight-or-flight” to describe a generic physiological response to
combat stress. Fight-or-flight encapsulates the phenomenon of
physiological energization to overcome a stressor, and is largely
driven by the sympathetic nervous system (SNS). However,
it is now well established that the responses to stress are
not exclusively sympathetic; stress reactions driven by the
parasympathetic nervous system (PNS) include the production
of tears and the emptying of the bladder (Berntson et al., 1991;
Avnon et al., 2004). Yet, despite the known PNS responses to
stressors, many of the traditional quantitative measures of stress
are dependent upon detecting changes in the activity of the
SNS; for example, heart rate, the most basic measure of stress,
is expected to rise as a result of sympathetic activation. Other
traditional measures of stress include temporal methods, such
as the standard deviation of beat-to-beat intervals (SDNN), the
spectral components of HRV, and nonlinear signal measures
(Malik et al., 1996).

The spectral analyses of HRV to determine SNS and PNS

dynamics are the most widely used technique in the quantitative
assessment of stress, and have been inspired by the known

differences in the speed of PNS and SNS activations. Given
that the parasympathetic nerves elicit a much faster (≤ 1 s)

response than those of sympathetic nerves (≥ 5 s) (Nunan
et al., 2010), the power of the 0.04–0.15 Hz and the 0.15–0.4
Hz bands of HRV, respectively, defined as the powers of the low
frequency (LF) and high frequency (HF) bands, have been used to
characterize the stress response. The use of the LF and HF powers
in stress analysis dates back to work published by Montano
et al. (1994), where the orthostatic tilt of study participants was
found to positively correlate with the power in the LF band, and
negatively correlate with the power in the HF band. It was thus
concluded that the power of the LF band reflected activity of the
sympathetic nervous system (PNS), whilst the power of the HF

band reflected the activity of the parasympathetic nervous system
(PNS) (Montano et al., 1994). These findings were supported in
many subsequent studies which used nerve activities as references
of SNS and PNS activities (Pagani et al., 1997). However, in
spite of growing concerns over the validity of the use of spectral
powers to assess autonomic dynamics (Eckberg, 1997), the LF
and HF components were rapidly accepted to become the de
facto measures of stress. The widespread use of the LF and HF
powers continued until Billman (2013) produced a thorough
critique of the method, highlighting that the SNS was not the
sole contributor to the LF peak of HRV spectra, and that it is
the PNS which is the biggest contributor to the variability of the
LF peak. Billman (2013) also reported that the PNS is not the
sole contributor to the HF peak in HRV spectra. Other findings
have suggested that other physiological modalities, such as slow
breathing, influence the LF component of HRV (Brown et al.,
1993). Typical breathing rates have been found to influence the
HF component of HRV, whilst the myogenic contractions of the
muscles in blood vessels have also been found to influence the
LF band in HRV (Kenwright et al., 2008). These findings provide
conclusive evidence that the use of the powers of the LF and
HF components to assess SNS and PNS activities is in general
erroneous, and not advisable for future eHealth applications.

Nonlinear measures are now increasingly employed to
identify stress. The rise in the popularity of nonlinear measures
can be attributed to research findings that physiological signals
can contain nonlinearities (Gautama et al., 2004).

Measures of entropy are common nonlinear methods of signal
analysis, and the measurement of signal entropy is analogous
to the assessment of irregularity in a signal; Bornas et al.
(2006), Vuksanovic and Gal (2007), Williamon et al. (2013),
and Chanwimalueang et al. (2016) all reported stress-induced
reductions in signal entropy. Although such measures may be
able to identify instances of stress, they can be computationally
inefficient, or leave poor temporal resolution, in addition to not
indicating the physiological mechanisms which lead to the stress
response. Symbolic measures of stress have also been proposed in
which the occurrence of specific symbols, or patterns, in a signal
are counted; Porta et al. (2007) introduced a symbolic measure
which successfully identified SNS and PNS dynamics from HRV
during tilt tests. However, Porta et al. (2007) also pointed out that
despite their reporting of SNS dynamics, the length of symbols
employed in their analysis may have been too short to accurately
capture long-range SNS dynamics.

Model-based algorithms have also been recently introduced
to assess autonomic responses to tilt; Valenza et al. (2018)
introduced two measures to discern SNS and PNS dynamics,
these were derived using kernels generated from a dataset of HRV
signals. However, the accuracy of such model-based approaches
is dependent upon the fit of the model (Valenza et al., 2018).

In light of the above described inaccuracies associated with
current stress measures, we set out to investigate the usefulness
of second-order-difference-plots to assess cardiac deceleration
and acceleration from HRV signals. The developed framework
aims to assess the spread of the finite-differences in HRV series,
and introduces a family of stress metrics, collectively termed
Classification Angle (ClassA). A multiscale analysis is employed
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to account for the long-range variations in SNS activity and the
short-range variations of the PNS; this means that the metrics
pertaining to the SNS and PNS do not assume balance, and
are therefore able to provide insight into the separate dynamics
of the SNS and PNS. The Classification Angle framework
is comprised of four metrics, three of which offer a three-
dimensional assessment of stress, capable of separating different
stress states:

• Real Angle Sum (RAS). The mean of the sum of the angles
between HRV rates of change and the abscissa in a scatter plot
of finite-differences;

• Cardiac Deceleration Proportion (PQ1). The proportion of
HRV rates of change which fall into the first quadrant of a
scatter plot of finite-differences;

• HRV Balance Proportion (PQ2,4). The proportion of HRV
rates of change which fall into the second and fourth quadrants
of a scatter plot of finite-differences;

• Cardiac Acceleration Proportion (PQ3). The proportion of
rates of change of coarse-grained HRVwhich fall into the third
quadrant of a scatter plot of finite-differences.

For rigor, we perform a comprehensive comparison of the
results from the ClassA analyses of HRV signals, acquired from
ten males during a standardized stress test, to those from
traditional temporal, spectral and nonlinear analyses. This serves
to conclusively demonstrate the superior statistical performance
of ClassA in the ability to discern stress epochs from rest epochs;
two of the ClassA metrics are shown to be significantly more
accurate in the characterization of stress than the current state-
of-the-art measures of heart rate, the standard deviation of beat-
to-beat intervals, the power of the LF component of HRV, the
power of the HF component of HRV, and the nonlinear measures
of sample entropy and permutation entropy.

2. CLASSIFICATION ANGLE

2.1. Second-Order-Difference-Plots
The Classification Angle framework is based on a scatter plot of
HRV finite-differences, a second-order-difference-plot (SODP),
first introduced by Cohen et al. (1996). The original SODP is a
plot of (x(n + 2) − x(n + 1)) against (x(n + 1) − x(n)), where
x(n) is a point in an HRV series at a time instant n. The SODP
is therefore a plot of successive HRV rates of change against one
another, and its physical interpretation is the correlation between
successive HRV rates (Cohen et al., 1996; Kamath, 2012; dos
Santos et al., 2015). The SODP was first introduced as a means
to assess the degree of variability within HRV signals, and has
been found to be more robust than the more commonly used
Poincaré plot (Cohen et al., 1996). Extensions of the SODP, such
as the measure of dispersion called the central tendency measure
have also been found to be able to characterize other physiological
signals, such as intracranial pressure signals (Cohen et al., 1996;
Sanatmarta et al., 2012). Furthermore, as it has been found that
HRV can be nonlinear (Gautama et al., 2004), the use of standard
“Gaussian" mathematical models is not guaranteed to provide the
best descriptors of HRV dynamics (Cohen et al., 1996), and HRV
should therefore be analyzed using a nonlinear method, such as

an SODP (Cohen et al., 1996; dos Santos et al., 2015; Makowiec
et al., 2017). The spectral methods typically used in HRV analyses
(to compute the LF and HF powers) are however linear.

The dispersion of points in an SODP, as shown later,
also conveys physical meaning, as the quadrants of an
SODP can be interpreted physiologically; the first quadrant
represents cardiac deceleration, the second and fourth quadrants
represent a balanced HRV sequence, whilst the third quadrant
represents cardiac acceleration (Kamath, 2012) (see Figure 1).
The physiological interpretation of the SODP quadrants, at two
temporal scales, forms the basis of the ClassA framework.

The use of a data-point dispersion method (although not an
SODP) in the assessment of autonomic functioning is supported
by findings from Makowiec et al. (2017). Makowiec et al. (2017)
used a visualization network tool, similar to a Poincaré plot, to
assess HRV increments and autonomic drive, and reported that
autonomic supervision caused larger increments in HRV, when
compared to hearts functioning without autonomic supervision.

2.2. Classification Angle Framework
Finite differencing is a means to estimate the first derivative
of a signal (Mandic and Goh, 2009), with the first-difference
method employed by Cohen et al. (1996), (x(n + 1) − x(n)),
being the most common. However, the use of (x(n+ 1)− x(n)) is
not as accurate as other approximations of the derivative;
for example, an SODP using the three-point forward
approximation of [(4x(n+ 2)− 3x(n+ 1)− x(n+ 3))/2]
against [(4x(n+ 1)− 3x(n)− x(n+ 2))/2] is a more accurate
approximation (Butt, 2010). Therefore, we employ the three-
point forward derivative approximation in the ClassA
framework, which is given in Framework 1. To summarize
the framework, ClassA computes the proportion of points in the
quadrants of an SODP for an HRV series at two temporal scales.

Signal fluctuations over different temporal scales are common
for physiological systems (Zhang, 1991; Costa et al., 2002),
and signal analysis at two different temporal scales is of
particular relevance in HRV analysis due to the faster speed of
parasympathetic nerves compared to sympathetic nerves (Nunan
et al., 2010). The coarse-graining procedure employed in the
ClassA framework consists of averaging adjacent data-points in
nonoverlapping windows, where a signal, x(n) of length N, is
accessed at temporal scale, τ , to produce a coarse-grained signal,
y(i), with the indices of the coarse-grained signal denoted by i, as
shown below (Costa et al., 2002).

y(i) =
1

τ

iτ
∑

n=(i−1)τ+1

x(n) 1 ≤ i ≤ N/τ (1)

The signal at its original temporal scale of one retains its original
length; it should be treated as beat-to-beat HRV and contains
short-range PNS dynamics. The longer-range SNS dynamics are
evident at higher temporal scales of the HRV signal, however,
as the process of coarse-graining inevitably shortens a signal, a
longer window of analysis must be used to analyse the signal at
the higher temporal scale. Therefore, as a rule, the HRV signal
must be coarse-grained to a scale that is sufficiently high to
capture longer range SNS dynamics, but which also retains a
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FIGURE 1 | Physiological interpretation of the quadrants of the second-order-difference-plot (inspired by Kamath, 2012), employed in the Classification Angle (ClassA)

framework.

FIGURE 2 | Angle between each data-point on the Classification Angle

(ClassA) second-order-difference-plot and the abscissa.

comparable number of data-points to that of the windowed signal
at its original temporal scale. The points in the first quadrant, and
the points in the second and fourth quadrants of the SODP for an
HRV signal are found at the original temporal scale to represent
the degree of PNS dominance and the degree of HRV balance,
respectively. Whilst the points in the third quadrant of the SODP
for the HRV signal at a higher temporal scale represent the degree
of SNS dominance, and thus, is at a different temporal resolution
to the measure of PNS dominance.

The ClassA framework also allows for the computation of
a trend detection measure, the Real Angle Sum (RAS), which

is the mean of the sum of the angles in the anti-clockwise
direction between every data-point in the SODP and the abscissa;
for illustration of the principle see Figure 2. The Real Angle
Sum is measured in degrees (◦) and is interpreted using the
quadrants of an SODP; the value of RAS indicates the overall
trend in data where a RAS between 0 and 90◦ indicates a
predominantly increasing sequence, a RAS between 90–180◦ and
270–360◦ designates a predominantly balanced sequence, and a
RAS between 180 and 270◦ reflects a predominantly decreasing
sequence. We shall use RAS to quantify stress levels with a single
value, where we hypothesize that RAS will tend to a value in the
range of 180–270◦ during stress.

3. MATERIALS AND METHODS

3.1. Subjects
The performance of the ClassA framework was verified on 10
HRV signals, recorded from 10 males, with a mean age of 28.6
(standard deviation: 5.6, range: 23–38). A dataset size of 10 is
supported by Ristic-Djurovic et al. (2018), who report that the
minimum dataset size required to produce statistically significant
results in a biomedical study is nine.

3.2. Stress Test
The participants in this study completed a standardized stress
test in pairs. The test was inspired by the Trier Social Stress Test
(Birkett, 2011), and consisted of 15min of rest, 15min of amental
arithmetic test, 15 min of meditation, 15 min of a step-exercise,
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FrameWork 1: Classification Angle (ClassA) Framework.

1) Create a scatter plot of first differences within HRV by
plotting [(4x(n+ 2)− 3x(n+ 1)− x(n+ 3))/2] against
[(4x(n+ 1)− 3x(n)− x(n+ 2))/2] for a signal, x.

2) Compute, in the anti-clockwise direction, the angle, αn,
that each point in the scatter plot makes with the abscissa,
such that data-points in the first quadrant of the scatter plot
will make acute angles with the abscissa, those in the second
quadrant will make obtuse angles, and those in the third and
fourth quadrants will make reflex angles.

3) Sum the angles, αn, computed in Step 2, and divide the total
by the number of data-points,N, in the HRV signal. Designate

this total as the Real Angle Sum (RAS), RAS =
∑

αn
N .

4) Count the number of points in the scatter plot which fall
within the first quadrant, and denote this by Q1N.

5) Divide Q1N by N to find the proportion of the total number
of points that lie in the first quadrant, PQ1 , that is PQ1 =

Q1N
N .

6) Repeat Steps 4 and 5 to compute the proportion of points in
the second and fourth quadrants together, PQ2,4 .

7) Course-grain the HRV signal to access the signal at a higher
temporal scale, and repeat Steps 4 and 5 to compute the
proportion of points in the third quadrant, PQ3 .

8) The metrics RAS, PQ1 , PQ2,4 and PQ3 are the four outputs of
ClassA.

9) Create a three-dimensional plot of PQ2,4 against PQ3 against
PQ1 to identify different states of stress. The overall trend in
the data is indicated by RAS.

and a final 15 min of meditation. To increase the level of stress
induced by the arithmetic test, the subjects were told that the test
was a competition, and that their scores would be recorded. There
was a 1-min interval between each test epoch; an outline of the
test protocol is shown in Figure 3.

The stress test was explained both verbally and in writing,
and full consent was obtained from all subjects. Approval for
physiological sensing for stress assessment has been granted
by the Imperial College Healthcare Trust Clinical Governance
Department.

3.3. Data Acquisition
The electrocardiograms (ECGs) of the subjects were recorded
whilst they completed the stress test, using a custom-made
portable data-logger, called the iAmp (Goverdovsky et al., 2017;
Kanna et al., 2018). The ECGs were recorded using adhesive
surface electrodes in the Lead I configuration, at a sampling rate
of 1000 Hz.

All signal analyses were undertaken using the MATLAB
programming environment. The R-peaks within the ECGs
were detected to extract HRV, using the robust algorithm
introduced in Chanwimalueang et al. (2015); the HRV signals
were then re-sampled at 4 Hz. It has been suggested that the re-
sampling of HRV can alter the frequency content of HRV power
spectra, however this effect is minimized when signals are clean
(Moody, 1993).

The ClassA framework was applied to each recorded signal,
and the results were segmented in accordance with the test
epochs. For the purposes of comparison, temporal, spectral and
nonlinear analyses were also undertaken, to compute heart rate,
the SDNN, the powers of the LF and HF components, sample
entropy and permutation entropy from the HRV signals.

The ClassA analyses to obtain PQ1 , PQ2,4 and RAS were
undertaken within a 10-s window, with a 1-s increment, whilst
the ClassA analyses to obtain PQ3 were computed in a 60-s
window with a 1-s increment, whereby HRV signals were coarse-
grained to a τ of seven. Therefore, regarding the respective
windows of analyses, PQ1 , PQ2,4 and RAS were computed from
40 data-points, and PQ3 was computed from 34 data-points. All
other analyses were undertaken within a 5-min window, with a
1-s increment. The use of a 5-min window is in accordance with
the recommendations made by the Task Force of the European
Society of Cardiology and the North American Society of Pacing
and Electrophysiology, for the accurate computation of the
traditional HRVmetrics (Malik et al., 1996).Within each window
of analysis, outliers in the HRV were replaced with the median of
the interquartile range of the data; outliers were defined as data
values which are either 1.5 times smaller than the 25th percentile
of the data, or 1.5 times greater than 75th percentile of the data.

3.4. Temporal Analyses
Heart rate (HR) in beats-per-minute (bpm) was computed
from the HRV signals using Equation (2), where x(n) and N,
respectively, designate an HRV data-point and the total number
of data-points in the window of analysis, that is

HR =

∑N
n=1(

60
x(n)

)

N
(2)

The SDNN in milliseconds (ms) is expected to decrease in the
presence of stress (Kim et al., 2018), and was computed as

SDNN =

√

∑N
n=1(x(n)− x(n))2

N − 1
(3)

where x(n) represents the mean.

3.5. Spectral Analyses
The spectral measures of the absolute powers of the low
frequency (0.04–0.15 Hz) and high frequency (0.15–0.4 Hz)
components of HRVwere computed, and are denoted by aLF and
aHF, respectively, with units of milliseconds squared (ms2) (Burr,
2007). The powers were estimated using the MATLAB function
“bandpower,” which uses the periodogram method.

The periodogram is a method to estimate spectral power
from the Discrete Fourier Transform (DFT) of a signal (the
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FIGURE 3 | Protocol for the stress test employed in this study.

DFT represents a discrete signal as a periodic signal) (Akin and
Kiymik, 2000). The Fourier coefficients from the DFT are then
used to determine the frequency components of the signal and
the respective powers (Akin and Kiymik, 2000).

A Hamming window of the same length as the signal was used
to compute the spectral powers; Equations 4 and 5 describe the
computation of the periodogram (Akin andKiymik, 2000), where
the DFT, X(ωk), for a signal, x, is computed for time, t, where ωk

denotes the angular frequency, j denotes the imaginary number
and N represents the length of the signal.

X(ωk) =

N−1
∑

t=0

x(t)e
−jωkt

N (4)

The spectral power, P(fk), is computed for a frequency, fk, with
fs as the signal sampling frequency (Akin and Kiymik, 2000)
as follows

P(fk) =
fs

N

∣

∣X(k)
∣

∣

2
(5)

However, it must be noted that absolute values of the LF and HF
power are greatly affected by the total power in an HRV signal
(Malik et al., 1996). For example, although tachycardia is caused
by sympathetic excitation, it can also cause a decrease in total
power, and hence also reduces the absolute LF power (Malik et al.,
1996); aLF and aHF powers are therefore often normalized.

The absolute powers of LF and HF were normalized
by the power of the 0.04–0.5 Hz band, Np, as shown in
Equations (6) and (7). The normalized low frequency and high
frequency powers will be referred to as nLF and nHF, and are
reported as percentages.

nLF =
aLF

Np
(6)

nHF =
aHF

Np
(7)

The power in the 0.04–0.5 Hz band of HRV, Np, was used for
the normalization for the following reasons: (i) there is no clear
physiological interpretation for frequencies below 0.04 Hz (Malik
et al., 1996) and (ii) the minimal rate at which the heart muscle
can contract is typically 1 Hz (60 beats per minute), and thus,
in accordance with the Nyquist theorem, the useful information
content of HRV is contained below 0.5 Hz (Kuusela, 2004).

3.6. Nonlinear Analyses
The results from ClassA were also compared to the results
from two nonlinear measures; sample entropy and permutation
entropy. Vuksanovic and Gal (2007),Williamon et al. (2013), and
Chanwimalueang et al. (2016) have all reported stress induced
decreases in the entropy of HRV.

3.6.1. Sample Entropy
Sample entropy (SE) was introduced by Richman and Moorman
(2000) as an improvement to approximate entropy from Pincus
(1991). Sample entropy can be described as the negative natural
logarithm of the likelihood that a sequence of length m from a
signal, x(n), will remain similar, within a given tolerance, r, to
the sequence of length (m + 1) (Richman and Moorman, 2000).
Sample entropy is limited by its dependence on the user-defined
parameters ofm and r; SE is often unstable whenm is larger than
four, and the tolerance r is best recommended to be a multiple
of the standard deviation (Pincus and Keefe, 1992), meaning
it is not suited to nonstationary physiological signals. The SE
computation employed in this study is outlined in Algorithm 1
in the Appendix. An embedding dimension of 2 and a tolerance
of 0.15 multiplied by the standard deviation were used.

3.6.2. Permutation Entropy
Permutation entropy (PE) is a symbolic measure similar to that
employed by Porta et al. (2007), which measures the occurrence
of unique patterns, of length m, in a signal. The algorithm was
introduced by Bandt and Pompe (2002) as a robust measure of
regularity. The embedding dimension m is the only user defined
parameter in the PE algorithm, and is recommended to be a value
in the range of 3 to 7, such that m! ≤ N (Bandt and Pompe,
2002). The computation of PE is described in Algorithm 2 in
the Appendix (Bandt and Pompe, 2002; Bian et al., 2012). An
embedding dimension of 6 was used.

As described in section 3.2 and shown in Figure 3, the
standardized stress test used in this study consisted of the five
epochs of rest, mental arithmetic, meditation 1, exercise and
meditation 2, which means that the epoch of mental stress
(arithmetic) is preceded by an epoch of no stress, and the epoch
of physical stress (exercise) is also preceded by an epoch of no
stress. The results from the above described metrics were then
segmented to correspond with the test epochs.

The mean of the ClassA metrics of RAS, PQ1 , PQ2,4 , and
PQ3 , and the mean HR, SDNN, aLF, aHF, nLf, nHF, SE and
PE from all five epochs of recorded data were compared using
the multiple comparisons Kruskal-Wallis test, which indicates
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whether the computed measures from the five test epochs came
from distributions with the same mean (Kanji, 2006). The mean
metrics from the arithmetic epochs were then compared to those
from the rest epochs, and the mean metrics from the exercise
epochs were compared to those from the meditation 1 epochs in
a pairwise comparison, to ensure that the results from each stress
epoch were compared to those from an epoch of no stress. The
Kruskal-Wallis test, with a significance level of 0.05 was used to
assess these comparisons, and a Bonferroni-corrected statistical
significance level of 0.025 was assumed in the pairwise Kruskal-
Wallis tests; a corrected significance level of 0.05/2, accounts for
two pairwise comparisons (rest vs. arithmetic, and meditation 1
vs. exercise).

Correlations between the ClassA metrics and the traditional
measures were computed using Spearman’s rho; a Bonferroni-
corrected statistical significance level of 0.0016 is assumed to
account for 32 pairwise comparisons between the four ClassA
metrics and the eight traditional measures.

4. RESULTS

4.1. Multiple Comparisons of All Five
Epochs Within the Stress Test
The p-values from the Kruskal-Wallis multiple comparison tests
of the traditional HRV measures are shown in Table 1. Multiple
comparisons of the HR results produced a statistically significant
p-value of 0.013, whilst the corresponding p-value for SDNN
was only marginally significant at 0.057. The significant p-values
are shown in bold. Median HR increased in response to stress,
peaking during exercise, at 92 beats per minute (bpm), and was
joint lowest during rest and meditation 1, at 75 bpm. Median
SDNN peaked during the arithmetic test and was at its lowest
during exercise, at 74 ms and 40 ms, respectively. Median aLF
reached a peak at 0.0011 ms2 during the arithmetic test, and
was lowest during exercise, at 0.00044 ms2, whilst Median aHF
peaked during rest, at 0.00036 ms2, and was lowest at 0.00012
ms2, during exercise. Conversely, median nLF peaked during
arithmetic at 73%, and was lowest at 61%, during rest. Median
nHF peaked during rest at 37%, and was at its lowest at 23%
during exercise. Median SE peaked at 0.70 during exercise and
was at a minimum during arithmetic at 0.59. Median PE peaked
at 0.57 during exercise, and was at a minimum during meditation
1, at 0.46.

The p-values from the Kruskal-Wallis multiple comparison
tests of the ClassA metrics are shown in Table 2. The multiple
comparisons of the PQ1 , PQ2,4 , PQ3 and RAS results all produced
statistically significant p-values of 7.4 × 10−5, 1.2 × 10−5, 0.002,
and 1 × 10−4, respectively. These values are shown in bold in
Table 2. Median PQ1 peaked at 0.44 during rest, and was lowest
at 0.36 during exercise. Median PQ2,4 peaked during exercise, at
0.26, and was joint lowest at 0.18 during the rest and meditation
1 epochs. Median PQ3 peaked at 0.27 during exercise, and was
lowest at 0.19 during rest. Themedian RAS peaked at 148◦ during
exercise, and was lowest at 135◦ during rest.

Figures 4, 5 show the box-plots which display the traditional
HRV measures and the ClassA metrics, respectively. Statistically

TABLE 1 | The p-values from the Kruskal-Wallis tests of the comparisons of the

traditional HRV measures across all five test epochs.

Traditional HRV Measures: p-values

Measure p-value

HR (bpm) 0.013

SDNN (ms) 0.057

aLF (ms2) 0.41

aHF (ms2) 0.13

nLF (%) 0.37

nHF (%) 0.09

SE 0.026

PE 9.3 × 10−5

Significant p-values are shown in bold (p ≤ 0.05).

TABLE 2 | The p-values from the Kruskal-Wallis tests of the comparisons of the

ClassA metrics, across all five test epochs.

ClassA metrics: p-values

Metric p-value

PQ1 7.4 × 10−5

PQ2,4 1.2 × 10−5

PQ3 0.002

RAS (◦) 1 × 10−4

Significant p-values are shown in bold (p ≤ 0.05).

significant differences between results from the different
test epochs are indicated by horizontal lines, where the
nodes on the lines specify the two epochs which were
statistically different.

Furthermore, the PQ1 , PQ2,4 , and PQ3 values from all subjects
were individually averaged over nonoverlapping windows of
30 s in length, to produce averaged trajectories of PQ1 ,
PQ2,4 and PQ3 for the stress test. Figure 6 displays the
resulting trajectories.

4.2. Multiple Comparisons of Epochs of
Stress and Epochs of No Stress
Tables 3, 4 display the p-values from the pairwise Kruskal-
Wallis tests. The traditional HRV measures computed from the
arithmetic epochs were compared to those from the baseline rest
epochs, whilst the values from the exercise epochs were compared
to those from the preceding meditation 1 epochs. All statistically
significant p-values are shown in bold.

4.3. Correlations Between the
Classification Angle Metrics and the
Traditional Measures
Table 5 displays the Spearman rho correlations and the
associated p-values from the correlation analyses of the ClassA
metrics and the traditional measures. Significant correlations are
shown in bold (p ≤ 0.0016, Bonferroni correction of 0.05/32).
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FIGURE 4 | Box-plots of the traditional heart rate variability measures computed from all five test epochs. Heart rate (A), the standard deviation of beat-to-beat

intervals (B), absolute power of the LF band (C), absolute power of the HF band (D), normalized power of the LF band (E), normalized power of the HF band (F),

sample entropy (G), permutation entropy (H). The horizontal lines indicate statistically significant differences, and the red crosses indicate values which are 1.5 times

outside the interquartile range of the boxplot.

5. DISCUSSION

5.1. Performance of Traditional Measures
5.1.1. Temporal Measures
The p-values displayed in Table 1 show that for separability
across all five test epochs, the temporal measure of HR produced
a statistically significant p-value of 0.013, and thus exhibited
greater separability than SDNN.

Heart rate is the most basic cardiac measure to indicate
the function of the autonomic nervous system (ANS), it is
therefore not surprising that HR was the best performing of
the temporal measures. The increased HR seen during the
arithmetic test and exercise indicate a sympathetic stress reaction,
which is to be expected amongst a study cohort of males—there

is growing evidence to suggest that the feminizing hormone
estrogen enhances parasympathetic activity, leading to females
exhibiting parasympathetic reactions to stress (Dart et al., 2002;

Adjei et al., 2018). It also comes as no surprise that HR
outperformed SDNNwhen using an analysis window of 5 min, as

the performance of SDNN has been found to be dependent upon
data-length (Shaffer and Ginsberg, 2017). Shaffer and Ginsberg
(2017) reviewed temporal, spectral and nonlinear cardiac metrics

and concluded that SDNN produces meaningful results for data

in which circadian rhythms are present. When using 24-h HRV,

SDNN is known to be an excellent predictor of mortality and

morbidity, whilst the accuracy of HR is unaffected by data-length

(Shaffer and Ginsberg, 2017).
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FIGURE 5 | Box-plots of the proposed Classification Angle (ClassA) metrics computed from all five test epochs. The proportion of HRV rates of change representing

cardiac deceleration (A), HRV balance (B), cardiac acceleration (C) and the Real Angle Sum (D). The horizontal lines indicate statistically significant differences, and

the red crosses indicate values which are 1.5 times outside the interquartile range of the boxplot.

The box-plots shown in Figure 4 provide insight into the p-

values displayed in Table 1. Figure 4A shows that, as expected,
both mental and physical stress (the arithmetic test and exercise,
respectively) caused increases in HR, with the median HR

during exercise being nearly 5 bpm higher than that during
the arithmetic test. However, the SDNN during the mental and

physical stress epochs produced very different results, with the
median SDNN during the arithmetic test being the highest of all
the epochs at 74ms, whilst the median SDNN during the exercise
epoch was the smallest of all the epochs at 40ms. The latter trend
of stress-induced decreases in SDNN is the expected response
to stress, as a low SDNN indicates a highly regular HRV (Kim
et al., 2018). High regularity within HRV is synonymous with
ill-health as it indicates a lack of quick adaptation of the ANS,
which is required to face new challenges (Shaffer and Ginsberg,
2017). Therefore, the high SDNN seen during the arithmetic
test indicates the activation of a stress response that retains
the capacity to adapt to more stress. The disparity between the
median SDNN from the arithmetic epoch and that from the
exercise epoch also shows that the two forms of stress do not elicit
the exact same response. Indeed, differences have been found
in the physiological responses to physical and mental stress; for
example, it has been found that mental stress causes a greater
and faster release of the stress hormone cortisol, than exercise
stress (Lovallo et al., 2006). The large SDNN seen during the
arithmetic test indicates that HRV continued to vary during the
test (Castrillión et al., 2017), and did not reach a plateau, whereas
the low SDNN seen during exercise indicates that HRV reached a
plateau, and ceased to vary.

Table 3 illustrates the good performance of HR in the
separation of the different epochs of stress, as HR produced a

statistically significant difference between the “stress vs. no stress”
epochs (Bonferroni corrected p-value ≤0.025). The HR p-value
for “Med. 1 vs. Exc.” was significant at 0.01, though the p-value
for “Rest vs. Arith.” was only marginally significant, at 0.028; the
p-values from the SDNN comparisons were not significant.

5.1.2. Spectral Measures
The better separability of the five test epochs using the HF
metrics compared to the LF metrics is remarkable. The poorest
traditional measure was aLF, with a large and statistically
insignificant p-value of 0.41, followed by nLF, with a smaller,
but also statistically insignificant p-value of 0.37. Figures 4C,E
verify this poor performance of the LF powers as they show
that although the interquartile ranges of the measures decreased
during exercise, the arithmetic and exercise boxes still overlapped
with those from the other epochs. The HF boxes for exercise
(shown in Figures 4D,F) had negligible overlap with those of the
other epochs, which implies that the HF band provides greater
information pertaining to physical stress than the LF band. The
difference in the effectiveness of the LF and HF bands to discern
physical stress also suggests that LF and HF do not have a strictly
reciprocal relationship.

Whilst the p-values from the pairwise LF comparisons were
not significant, the p-values from the pairwise HF comparisons of
“Med. 1 vs. Exc.” were significant, at 0.019 (although those from
the HF comparisons of “Rest vs. Arith.” were not statistically
significant). As PNS activity is known to diminish at the onset of
physical stress, but not necessarily during mental stress, the small
p-values forHF indicate a large difference in the cardiac dynamics
of “Med. 1 vs. Exc.,” and hence, could support the theory that HF
is heavily influenced by the PNS (Malik et al., 1996).
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FIGURE 6 | Trajectories of PQ1 , PQ2,4 and PQ3 values, averaged across all subjects, for every epoch in the stress test.

TABLE 3 | Pairwise “stress vs. no stress” comparisons: P-values from the Kruskal-Wallis tests of traditional HRV measures.

“Stress vs. No Stress” Kruskal-Wallis tests of traditional HRV measures: p-values

Epochs HR (bpm) SDNN (ms) aLF (ms2) aHF (ms2) nLF (%) nHF (%) SE PE

Rest vs. Arith. 0.028 0.041 0.36 0.55 0.20 0.23 0.049 0.096

Med. 1 vs. Exc. 0.010 0.17 0.13 0.019 0.13 0.019 0.15 0.0002

Significant p-values are shown in bold (p ≤ 0.025, Bonferroni correction of 0.05/2).

TABLE 4 | Pairwise “stress vs. no stress” comparisons: P-values from the

Kruskal-Wallis tests of the ClassA metrics.

“Stress vs. No Stress” Kruskal-Wallis tests of the proposed ClassA

metrics: p-values

Epochs PQ1 PQ2,4 PQ3 RAS (◦)

Rest vs. Arith. 0.0065 0.016 0.023 0.013

Med. 1 vs. Exc. 0.0012 0.0002 0.0082 0.0012

Significant p-values are shown in bold (p ≤ 0.025, Bonferroni correction of 0.05/2).

The large overlaps amongst the LF boxes in Figures 4C,E

indicate relatively small changes in LF throughout the stress
test. The lack of separability of the epochs provides insight into
whether LF represents the activity of the SNS, since a measure
that truly represented the SNS would undoubtedly separate the
epochs of stress from the epochs of rest and meditation. The poor
performance of LF proves that it cannot be solely controlled by
the SNS, andmust be influenced by other physiological functions,
supporting the theories which suggest that LF is influenced by
multiple factors, ranging from the PNS and slow breathing, to
vascular contractions (Brown et al., 1993; Kenwright et al., 2008;
Billman, 2013).

The suggestion that the LF band is influenced by many
physiological functions is further supported by the finding that
there was a considerably greater proportion of power in the
LF band, compared to the HF band. The greater power in
the LF band is shown in Figures 4C,E, and when compared
to Figures 4D,F, the greater power of LF is noticeable as HF
would be expected to dominate during the epochs of rest
and meditation.

In summary, aLF, aHF, nLF and nHF did not perform
as well as the simpler methods of HR and SDNN in the
discernment of stress across all five test epochs, although HF
was able to discern physical stress from no stress in the
pairwise epoch comparisons. However, the LF metrics of aLF
and nLF were not able to significantly discern either of the
stress epochs from the preceding epochs of no stress; the prolific
use of LF in the literature to assess ANS dynamics therefore
appears erroneous.

5.1.3. Nonlinear Measures
The performances of SE and PE in the discernment of stress
were very different to one another. Despite the widespread
use of SE, its performance was not as good as that of
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TABLE 5 | Spearman rho correlations Between the Classification Angle metrics and the traditional measures.

“Stress vs. No Stress” Kruskal-Wallis tests of the proposed ClassA metrics: Spearman’s Rho [p-value]

Metric PQ1 PQ2,4 PQ3 RAS (◦)

HR (bpm) −0.64[1.2 × 10−6] 0.62[2.8 × 10−6] 0.72[1.7 × 10−8] 0.60[7.5 × 10−6]

SDNN (ms) 0.097[0.50] −0.31[0.027] −0.23[0.11] −0.081[0.57]

aLF (ms2) 0.11[0.45] −0.41[0.0031] −0.16[0.27] −0.083[0.57]

aHF (ms2) 0.40[0.0042] −0.56[3.19 × 10−5] −0.48[4.3 × 10−4] −0.37[0.0093]

nLF (%) −0.60[6.5 × 10−6] 0.29[0.04] 0.78[0] 0.57[1.9 × 10−5]

nHF (%) 0.69[1.2 × 10−7] −0.42[0.0024] −0.85[0] −0.66[3.7 × 10−7]

SE 0.20[0.17] 0.16[0.26] −0.38[0.0066] −0.16[0.25]

PE −0.57[2.3 × 10−5] 0.92[0] 0.46[9.18 × 10−4] 0.55[4 × 10−5]

Significant p-values are shown in bold (p ≤ 0.0016, Bonferroni correction of 0.05/32).

the lesser known PE algorithm. Sample entropy was able to
significantly between the test epochs across all five epochs,
but did not produce any significant results in the pairwise
epoch comparisons. Moreover, the trend in Figure 4G suggests
that mental and physical stress elicited different SE responses;
mental stress, in the form of the arithmetic test, produced
comparatively low SE values, whilst physical stress, in the
form of exercise, produced comparatively high SE values. The
reductions in SE during mental stress are supported by findings
from Vuksanovic and Gal (2007), Williamon et al. (2013),
and Chanwimalueang et al. (2016). In contrast, PE, produced
higher values during both the arithmetic and exercise epochs.
The differing trends in the SE and PE results suggest that
SE and PE were not measuring the same dynamic within
the signals. Although sample entropy was introduced as a
measure which reaches a minimum when a signal is regular
(Pincus, 1991; Richman and Moorman, 2000), and PE was
introduced as a measure which is at a minimum when a
signal is predictable (Bandt and Pompe, 2002), the results
presented here suggest that they are measuring different signal
dynamics. For example, the multiscale sample entropies from
1/f noise (so-called pink noise) have been found to remain
stable as temporal scale increases (Costa et al., 2002), whilst
the multiscale permutation entropies from pink noise have been
found to decrease as temporal scale increases (Deng et al.,
2017). Whilst these differences have been cited as limitations
of the PE algorithm in measuring entropy (Deng et al., 2017),
the greater separability of epochs offered by PE in this present
study, and the results produced by the implementation of a
symbolic method very similar to PE in Porta et al. (2007) suggest
that the identification of patterns in HRV signals is useful in
assessing stress.

Across all epochs, PE produced the most significant p-value
of the traditional measures at p = 9.3 × 10−5, and along with
HR and the HF metrics, was able to produce a statistically
significant p-value in the comparison of “Med. 1 vs. Exc.,”
though the p-value from the comparison of “Rest vs. Arith.”
was not significant. It must also be noted that in spite of the
good performance of PE in discerning stress, neither PE nor
SE were able to provide information on the functioning of the
SNS and PNS.

It is noticeable that none of the traditional measures were able
to significantly discern mental stress from no stress.

5.2. Performance of the Proposed
Classification Angle Metrics
The p-values displayed in Table 2 demonstrate the effectiveness
of the ClassA metrics in distinguishing between the epochs of
the stress test, with exceptionally small p-values of 7.4 × 10−5,
1.2 × 10−5 and 1 × 10−4 for PQ1 , PQ2,4 and RAS, respectively,
and a larger, but still significant p-value of 0.002 for PQ3 . The
significance of these p-values is verified by Figure 5, which shows
that the boxes from the stress epochs had negligible overlap with
those from the epochs of no stress. It is also evident that the boxes
related to exercise also had negligible overlap with the boxes
related to the arithmetic test, with the exercise epoch results being
the most distinct from the rest and meditation epochs.

Figure 5A shows that both mental and physical stress were
associated with a reduction in PQ1 ; physical stress caused a greater
reduction. Taking PQ1 to represent cardiac deceleration, and
hence parasympathetic dominance, the stress-induced decreases
of PQ1 show that PNS withdrawal contributed greatly to the
stress-induced increase in HR. The conventional understanding
of the stress response often assumes a reciprocal relationship
between the PNS and SNS, where rises in HR are caused by
coupled SNS activation and PNS withdrawal (Billman, 2013).
However, assuming that PQ3 represents cardiac acceleration,
and hence SNS dominance, the box-plots of PQ3 in Figure 5C

show increases in cardiac acceleration during the stress epochs
which were smaller than the corresponding decreases in PQ1 .
For example, PQ1 was 0.4 and 0.36, respectively, during the

arithmetic and exercise epochs, whilst the corresponding PQ3

values were 0.25 and 0.27, respectively. An increase in HR
caused by coupled PNS withdrawal and SNS activation, is termed
reciprocal sympathetic activation (Berntson et al., 1991). However,
greater parasympathetic withdrawal is not often associated
with the stress response, though an uncoupled parasympathetic
withdrawal response to physical stress had been widely reported
as far back as 1966, when Robinson et al. (1966) reported initial
heart rate increases caused by parasympathetic withdrawal in
response to exercise in the supine position. Robinson et al.
(1966) only reported sympathetic activation after prolonged
exercise. Though the speed of parasympathetic nerves (≤ 1
s) is only marginally faster than that of sympathetic nerves
(≥5 s) (Nunan et al., 2010), the aggregated effects of a slower
release of sympathetic hormones, such as norepinephrine, could
explain the predominance of PNS withdrawal in the initial HR
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response to exercise (Gordan et al., 2015). The PQ1 and PQ3 results
reported here could therefore reflect this predominance of PNS
withdrawal over SNS activation during a short bout of exercise.
The ClassA signal metrics can thus be used to identify whether the
activities of the PNS and SNS are coupled.

The phenomenon of HR increases due to greater PNS
withdrawal is supported by the biological understanding of
cardiac dynamics. Biologically, intrinsic HR is in the region of
100 bpm, but neural or hormonal influences slow the contractions
of the heart from its intrinsic rate to a typical resting HR of 60-
90 bpm (Gordan et al., 2015). Therefore, sympathetic activation
is not required to initially increase HR from resting levels, since
PNS withdrawal alone is sufficient to increase HR by as much
as 40 bpm (Gordan et al., 2015). The activation of the SNS to
increaseHR in the “fight-or-flight” responsemay not be as instant
as it is often assumed to be.

The box-plots shown in Figure 5B display the opposite trend
to that seen in Figure 5A, and a similar trend to that seen in
Figure 5C. This similarity between PQ2,4 and PQ3 is unexpected as
PQ2,4 was computed from the first temporal scale of HRV, whilst
PQ3 was computed from the seventh temporal scale. Nevertheless,
this similarity suggests that whilst the sympathetic nerves are
slow acting, their effect can be seen beat-to-beat, quantified
by PQ2,4 .

The separation abilities of PQ1 , PQ2,4 , PQ3 and RASwere verified
through the p-values obtained from the pairwise comparisons
between each epoch of stress and its preceding epoch of no stress
(see Table 4). It is evident that PQ1 , PQ2,4 , PQ3 and RAS were
able to separate the states with statistical significance (Bonferroni
corrected p-value ≤0.025). Noticeably, PQ3 produced the highest
p-values of all the measures shown in Table 4, although they
were still statistically significant. This comparatively poorer
performance of PQ3 could be due to the choice to compute PQ3

from the seventh temporal scale of HRV. Heuristically, it was
found that temporal scale seven provided the best compromise
between the ability to capture longer-range SNS dynamics, whilst
still retaining high temporal resolution. This trade-off in deciding
upon the temporal scale at which to compute PQ3 is a limitation
of the ClassA framework.

The separation ability of the fourth ClassA metric of RAS was
next verified. The RAS metric provides a single value to describe
the overall trend of HRV and although, if used alone, it could
not indicate the degree of PNS and SNS dominance, it was able
to separate the two stress epochs from the preceding epochs
of no stress with significant p-values of 1.3 × 10−2 and 1.2 ×

10−3 (Bonferroni corrected p-value ≤0.025). The RAS results
shown in Figure 5D indicate that during rest and meditation,
HRV was largely balanced but tended toward increasing (cardiac
deceleration), whilst during stress, HRVwas still largely balanced,
but tended toward decreasing (cardiac acceleration). The ability
of RAS to quantify the trend of the dynamics within a signal with
a single value is unique. This metric therefore has the potential
to be employed when stress must be identified, irrespective of the
underlying autonomic mechanisms; this is not dissimilar to the
use of the entropy measures to detect stress. Nevertheless, when
compared to the entropy measures, RAS has the advantage that it
is computationally inexpensive.

The computational efficiency of the ClassA framework is
extremely advantageous as it enables an increase in the temporal
resolution of stress studies. Not only have the results presented
here demonstrated the effectiveness of ClassA on 10 s of
HRV data to assess PNS dynamics, and when evaluated on
60-s, to assess SNS dynamics, but also, the framework is not
mathematically complicated, and could be evaluated and fine-
tuned by a clinician or practitioner who is new to programming.

The intuitive computation of the ClassA metrics is reflected
in the results from the correlation analyses displayed in
Table 5, where it is shown that all four of the ClassA metrics
were significantly correlated to heart rate. The metric PQ1

produced a significant negative correlation with heart rate, whilst
the other three ClassA metrics produced significant positive
correlations. However, as already outlined, the ClassA metrics
offered greater overall separability of the test epochs compared
to heart rate. All four ClassA metrics were also significantly
correlated to the results from the less computationally efficient
PE analysis. Furthermore, unlike the one-dimensional analyses
offered by both heart rate and PE, the ClassA metrics provided a
multidimensional analysis of autonomic function.

The multidimensional separation ability of the ClassA metrics
are demonstrated in Figure 6, which show that the three metrics
of PQ1 , PQ2,4 , and PQ3 were able separate the epochs of stress
from those of rest and meditation. The three-dimensional plot
of the averaged trajectories of these metrics, across all subjects
throughout the stress test, demonstrates that there are clear
regions within the plot which represent the different stress states.
This three-dimensional representation therefore has the potential
to be used to identify an individual’s psychophysiological status.

A limitation of this current study is that the respiratory rates
of the subjects were not recorded, so the effect of respiration
on the HRV signals could not be evaluated. In future studies,
respiration must be recorded to enable an assessment of all the
stress measures in the absence of respiratory effects. Also, the
effectiveness of the ClassA framework to discern stress should
be validated on female subjects. Females have been found to
exhibit a different stress response to that seen in males, whereby,
as mentioned in section 5.1.1, high levels of estrogen have been
linked to enhancing PNS activity (Dart et al., 2002). Furthermore,
since estrogen levels in females are dependent on the menstrual
cycle, a stress study including females will have to involve
analyses of the subjects based on their age and stage of the
menstrual cycle at the time of participation. Such a detailed and
thorough study will enable the assessment of the representation
of stress in females using the ClassA framework, and is beyond
the scope of this work.

6. CONCLUSION

The Classification Angle (ClassA) framework has been
introduced to accurately capture stress-specific dynamics of
the autonomic nervous system using heart rate variability
(HRV). This has been achieved based on a second-order-
difference-plot of HRV, which makes it possible to assess cardiac
dynamics. The framework has been shown to identify which
branch of the autonomic nervous system is dominating, without
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inheriting any of the controversies associated with the low- and
high- frequency components of HRV. The Classification Angle
framework is comprehensive and has been designed to produce
four metrics to assess autonomic dynamics.

All four ClassA metrics have been able to distinguish between
epochs of mental stress and physical stress, and the preceding
epochs of no stress; this was established over experiments on
10 males, with statistically significant p-values in the range of
2×10−4 to 2.3×10−2 (Bonferroni corrected p-value≤0.025). Out
of the standard temporal, spectral and nonlinear HRV metrics
(heart rate, standard deviation of beat-to-beat intervals, low
frequency and high frequency components, sample entropy and
permutation entropy of HRV) applied on the same data, heart
rate, the high frequency components of HRV and permutation
entropy were able to discern between epochs of physical stress
from the preceding epochs of no stress, with p-values in the range
of 2 × 10−4 to 1 × 10−2. None of the traditional measures have
been able to discern between the epochs of mental stress and the
preceding epochs of no stress.

Furthermore, unlike the traditional heart rate variability
measures, the proposed classification angle metrics offer a three-
dimensional interpretation of parasympathetic and sympathetic
dynamics, together with the nature of their interaction, e.g.,
uncoupled or coupled.AnHRVmeasure that can indicate whether
the activities of the sympathetic and parasympathetic nervous
system are coupled has the potential to transform quantitative
stress research, with the ClassA framework having been verified as
one such metric.

In summary, the proposed ClassA framework has been
demonstrated to be robust and accurate in discerning stress
from periods of no stress, and offers a three-dimensional
analysis; its unique and desirable features include operations
on nonstationary data, and its metrics admit physiological
interpretation. The framework is also computationally
inexpensive, and can be computed over as little as 10 s of
heart rate variability data, a substantial increase of temporal
resolution over the current 5-min standard.

ETHICS STATEMENT

Approval for physiological sensing for stress assessment has
been granted by the Imperial College Healthcare Trust Clinical
Governance Department. All subjects gave full consent in
accordance with the Declaration of Helsinki.

AUTHOR CONTRIBUTIONS

The physiological data were recorded by TA and WvR. The
data analysis was completed by TA, TN, and TC, under the
supervision of DM. The paper was written by TA and DM.

FUNDING

This work was funded by the Rosetrees Trust, EPSRC Pathways to
Impact: Grant PSA256, and MURI/EPSRC: Grant EP/P008461.

REFERENCES

Adjei, T., Xue, J., and Mandic, D. P. (2018). The female heart: sex differences

in the dynamics of ECG in response to stress. Front. Physiol. 9:1616.

doi: 10.3389/fphys.2018.01616

Akin, M., and Kiymik, M. K. (2000). Application of periodogram and

AR spectral analysis to EEG signals. J. Med. Syst. 24, 247–256.

doi: 10.1023/A:1005553931564

Avnon, Y., Nitzan, M., Sprecher, E., Rogowski, Z., David, and Yarnitsky (2004).

Autonomic asymmetry in migraine: augmented parasympathetic activation in

left unilateral migraineurs. Brain 127, 2099–2108. doi: 10.1093/brain/awh236

Bandt, C., and Pompe, B. (2002). Permutation entropy: a natural

complexity measure for time series. Phys. Rev. Lett. 88:174102.

doi: 10.1103/PhysRevLett.88.174102

Berntson, G. G., Cacioppo, J. T., and Quigley, K. S. (1991). Autonomic

determinism: the modes of autonomic control, the doctrine of autonomic

space, and the laws of autonomic constraint. Psychol. Rev. 98, 459–487.

doi: 10.1037/0033-295X.98.4.459

Bian, C., Qin, C., Ma, Q. D. Y., and Shen, G. (2012). Modified permutation-

entropy analysis of heartbeat dynamics. Phys. Rev. E 85:021906.

doi: 10.1103/PhysRevE.85.021906

Billman, G. E. (2013). The LF/HF ratio does not accurately measure cardiac

sympatho-vagal balance. Front. Physiol. 4:26. doi: 10.3389/fphys.2013.00026

Birkett, M. A. (2011). The trier social stress test protocol for inducing psychological

stress. J. Visual. Exp. 56:e3238. doi: 10.3791/3238

Bornas, X., Llabres, J., Noguera, M., Lopez, A. M., Gelabert, J. M., and

Vila, I. (2006). Fear induced complexity loss in the electrocardiogram of

flight phobics: a multiscale entropy analysis. Biol. Psychol. 73, 272–279.

doi: 10.1016/j.biopsycho.2006.05.004

Brown, T. E., Beightol, L. A., Koh, J., and Eckberg, D. L. (1993). Important

influence of respiration on human R-R interval power spectra is largely ignored.

J. Appl. Physiol. 75, 2310–2317. doi: 10.1152/jappl.1993.75.5.2310

Burr, R. L. (2007). Interpretation of normalized spectral heart rate

variability indices in sleep research: a critical review. Sleep 30, 913–919.

doi: 10.1093/sleep/30.7.913

Butt, R. (2010). Introduction to Numerical Analysis Using MATLAB. Sudbury, MA:

Jones and Bartlett Publishers.

Cannon, W. B. (1915). Bodily Changes in Pain, Hunger, Fear and Rage. New York,

NY: D. Appleton and Company.

Castrillión, C. I. M., Miranda, R. A. T., Cabral-Santos, C., Vanzella, L. M.,

Rodrigues, B., Vanderlei, L. C. M., et al. (2017). High-intensity intermittent

exercise and autonomic modulation: effects of different volume sessions. Int.

J. Sports Med. 38, 468–472. doi: 10.1055/s-0042-121898

Chanwimalueang, T., Aufegger, L., von Rosenberg, W., and

Mandic, D. P. (2016). “Modelling stress in public speaking:

evolution of stress levels during conference presentations,”

in Proceedings of the 2016 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP) (Shanghai: IEEE),

814–818.

Chanwimalueang, T., von Rosenberg, W., and Mandic, D. P. (2015). “Enabling

R-peak detection in wearable ECG: combining matched filtering and hilbert

transform,” in Poceedings of the 2015 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP) (Singapore: IEEE), 134–138.

Cohen, M. E., Hudson, D. L., and Deedwania, P. C. (1996). Applying continuous

chaotic modeling to cardiac signal analysis. IEEE Eng. Med. Biol. Mag. 15,

97–102. doi: 10.1109/51.537065

Costa, M., Goldberger, A. L., and Peng, C.-K. (2002). Multiscale entropy analysis

of complex physiologic time series. Phys. Rev. Lett. 89:068102.

Frontiers in Physiology | www.frontiersin.org 13 April 2019 | Volume 10 | Article 505

https://doi.org/10.3389/fphys.2018.01616
https://doi.org/10.1023/A:1005553931564
https://doi.org/10.1093/brain/awh236
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1037/0033-295X.98.4.459
https://doi.org/10.1103/PhysRevE.85.021906
https://doi.org/10.3389/fphys.2013.00026
https://doi.org/10.3791/3238
https://doi.org/10.1016/j.biopsycho.2006.05.004
https://doi.org/10.1152/jappl.1993.75.5.2310
https://doi.org/10.1093/sleep/30.7.913
https://doi.org/10.1055/s-0042-121898
https://doi.org/10.1109/51.537065
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Adjei et al. The Classification Angle Framework

Dart, A. M., Du, X.-J., and Kingwell, B. A. (2002). Gender, sex hormones and

autonomic nervous control of the cardiovascular system. Cardiovasc. Res. 53,

678–687. doi: 10.1016/S0008-6363(01)00508-9

Deng, B., Cai, L., Li, S., Wang, R., Yu, H., Chen, Y., et al. (2017). Multivariate multi-

scale weighted permutation entropy analysis of EEG complexity for Alzheimer’s

disease. Cogn. Neurodyn. 11, 217–231. doi: 10.1007/s11571-016-9418-9

dos Santos, L., Barroso, J. J., Macau, E. E. N., and de Godoy, M. F. (2015).

Assessment of heart rate variability by application of central tendency measure.

Med. Biol. Eng. Comput. 53, 1231–1237. doi: 10.1007/s11517-015-1390-8

Eckberg, D. L. (1997). Sympathovagal balance. Circulation 96, 3224–3232.

doi: 10.1161/01.CIR.96.9.3224

Gautama, T., Mandic, D. P., and van Hulle, M. M. (2004). A novel method for

determining the nature of time series. IEEE Trans. Biomed. Eng. 51, 728–736.

doi: 10.1109/TBME.2004.824122

Gordan, R., Gwathmey, J. K., and Xie, L.-K. (2015). Autonomic and

endocrine control of cardiovascular function. World J. Cardiol. 7, 204–214.

doi: 10.4330/wjc.v7.i4.204

Goverdovsky, V., von Rosenberg, W., Nakamura, T., Looney, D., Shard, D. J.,

Papavassiliou, C., et al. (2017). Hearables: multimodal physiological in-ear

sensing. Nature 7:6948. doi: 10.1038/s41598-017-06925-2

Kamath, C. (2012). A new approach to detect congestive heart failure using

Teager energy nonlinear scatter plot of R–R interval series.Med. Eng. Phys. 34,

841–848. doi: 10.1016/j.medengphy.2011.09.026

Kanji, G. K. (2006). 100 Statistical Tests. London: Sage Publications.

Kanna, S., von Rosenberg, W., Goverdovsky, V., Constantinides, A. G., and

Mandic, D. P. (2018). Bringing wearable sensors into the classroom:

a participatory approach. IEEE Signal Process. Mag. 35, 110–130.

doi: 10.1109/MSP.2018.2806418

Kenwright, D. A., Bahraminasab, A., Stefanovska, A., and McClintock, P.

V. E. (2008). The effect of low-frequency oscillations on cardio-respiratory

synchronization. Eur. Phys. J. B 65, 425–433. doi: 10.1140/epjb/e2008-00199-4

Kim, H.-G., Cheon, E.-J., Bai, D.-S., Lee, Y. H., and Koo, B.-H. (2018).

Stress and heart rate variability: a meta-analysis and review of

the literature. Psychiatr. Investigat. 15, 235–245. doi: 10.30773/pi.

2017.08.17

Kuusela, T. (2004). “Methodological aspects of heart rate variability analysis,” in

Heart Rate Variability (HRV) Signal Analysis: Clinical Applications, eds M. V.

Kamath, M.Watanabe, and A. Upton (Thousand Oaks, CA: Sage Publications),

9–42.

Lovallo, W. R., Farag, N. H., Vincent, A. S., Thomas, T. L.,

and Wilson, M. F. (2006). Cortisol responses to mental stress,

exercise, and meals following caffeine intake in men and women.

Pharmacol. Biochem. Behav. 83, 441–447. doi: 10.1016/j.pbb.2006.

03.005

Makowiec, D., Graff, B., Kaczkowska, A., Graff, G., Wejer, D., Wdowczyk, J., et al.

(2017). “Chapter 6: visualization of short-term heart period variability with

network tools as a method for quantifying autonomic drive,” in ECGTime Series

Variability Analysis, eds H. F. Jelinek, D. J. Cornforth, and A. H. Khandoker

(Boca Raton, FL: CRC Press), 141–158.

Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss,

A. J., et al. (1996). Heart rate variability: standards of measurement,

physiological interpretation, and clinical use. Circulation 93, 1043–1065.

doi: 10.1161/01.CIR.93.5.1043

Mandic, D. P., andGoh, V. S. L. (2009).Complex Valued Nonlinear Adaptive Filters:

Noncircularity, Widely Linear and Neural Models. Chichester: Wiley.

Montano, N., Ruscone, T. G., Porta, A., Lombardi, F., Pagani, M., and

Malliani, A. (1994). Power spectrum analysis of heart rate variability

to assess the changes in sympathovagal balance during graded

orthostatic tilt. Circulation 90, 1826–1831. doi: 10.1161/01.CIR.90.

4.1826

Moody, G. B. (1993). “Spectral analysis of heart rate without resampling,” in

Proceedings of Computers in Cardiology Conference (London: IEEE), 715–718.

Nunan, D., Sandercock, G. R. H., and Brodie, D. A. (2010). A quantitative

systematic review of normal values for short-term heart rate

variability in healthy adults. Pacing Clin. Electrophysiol. 33, 1407–1417.

doi: 10.1111/j.1540-8159.2010.02841.x

Pagani, M., Montano, N., Porta, A., Malliani, A., Abboud, F. M., Birkett, C.,

et al. (1997). Relationship between spectral components of cardiovascular

variabilities and direct measures of muscle sympathetic nerve activity in

humans. Circulation 95, 1441–1448. doi: 10.1161/01.CIR.95.6.1441

Pincus, S. M. (1991). Approximate entropy as a measure of system complexity.

Proc. Natl. Acad. Sci. U.S.A. 88, 2297–2301. doi: 10.1073/pnas.88.6.2297

Pincus, S. M., and Keefe, D. L. (1992). Quantification of hormone pulsality via an

approximate entropy algorithm. Amer. J. Physiol. 262, E741–E754.

Porta, A., Tobaldini, E., Guzzetti, S., Furlan, R., Montano, N., and Gnecchi-

Ruscone, T. (2007). Assessment of cardiac autonomic modulation

during graded head-up tilt by symbolic analysis of heart rate

variability. Amer. J. Physiol. Heart Circul. Physiol. 293, H702–H708.

doi: 10.1152/ajpheart.00006.2007

Richman, J. S., and Moorman, J. R. (2000). Physiological time-series analysis using

approximate entropy and sample entropy. Eur. Heart J. 278, H2039–H2049.

doi: 10.1152/ajpheart.2000.278.6.H2039

Ristic-Djurovic, J. L., Cirkovic, S., Mladenovic, P., and Romcevic, N. (2018).

Analysis of methods commonly used in biomedicine for treatment versus

control comparison of very small samples. Comput. Methods Prog. Biomed. 157,

153–162. doi: 10.1016/j.cmpb.2018.01.026

Robinson, B. F., Epstein, S. E., Beiser, G. D., and Braunwald, E. (1966). Control of

heart rate by the autonomic nervous system: studies in man on the interrelation

between baroreceptor mechanisms and exercise. Circul. Res. 19, 400–411.

doi: 10.1161/01.RES.19.2.400

Sanatmarta, D., Abasolo, D., Martínez-Madrigal, M., and Hornero, R. (2012).

Characterisation of the intracranial pressure waveform during infusion studies

by means of central tendency measure. Acta Neurochirurgica 154, 1595–1602.

doi: 10.1007/s00701-012-1441-y

Shaffer, F., and Ginsberg, J. P. (2017). An overview of heart rate variability metrics

and norms. Front. Public Health 5:258. doi: 10.3389/fpubh.2017.00258

Valenza, G., Citi, L., Saul, J., and Barbieri, R. (2018). Measures of sympathetic and

parasympathetic autonomic outflow from heartbeat dynamics. J. Appl. Physiol.

125, 19–39. doi: 10.1152/japplphysiol.00842.2017

Vuksanovic, V., and Gal, V. (2007). Heart rate variability in mental stress

aloud. Med. Eng. Phys. 29, 344–349. doi: 10.1016/j.medengphy.2006.

05.011

Williamon, A., Aufegger, L., Wasley, D., Looney, D., and Mandic, D. P.

(2013). Complexity of physiological responses decreases in high-stress

musical performance. J. R. Soc. Interface 10:20130719. doi: 10.1098/rsif.

2013.0719

Zhang, Y.-C. (1991). Complexity and 1/f noise. A phase space approach. J. de

Physique I 1, 971–977. doi: 10.1051/jp1:1991180

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Adjei, von Rosenberg, Nakamura, Chanwimalueang and Mandic.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Physiology | www.frontiersin.org 14 April 2019 | Volume 10 | Article 505

https://doi.org/10.1016/S0008-6363(01)00508-9
https://doi.org/10.1007/s11571-016-9418-9
https://doi.org/10.1007/s11517-015-1390-8
https://doi.org/10.1161/01.CIR.96.9.3224
https://doi.org/10.1109/TBME.2004.824122
https://doi.org/10.4330/wjc.v7.i4.204
https://doi.org/10.1038/s41598-017-06925-2
https://doi.org/10.1016/j.medengphy.2011.09.026
https://doi.org/10.1109/MSP.2018.2806418
https://doi.org/10.1140/epjb/e2008-00199-4
https://doi.org/10.30773/pi.2017.08.17
https://doi.org/10.1016/j.pbb.2006.03.005
https://doi.org/10.1161/01.CIR.93.5.1043
https://doi.org/10.1161/01.CIR.90.4.1826
https://doi.org/10.1111/j.1540-8159.2010.02841.x
https://doi.org/10.1161/01.CIR.95.6.1441
https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1152/ajpheart.00006.2007
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1016/j.cmpb.2018.01.026
https://doi.org/10.1161/01.RES.19.2.400
https://doi.org/10.1007/s00701-012-1441-y
https://doi.org/10.3389/fpubh.2017.00258
https://doi.org/10.1152/japplphysiol.00842.2017
https://doi.org/10.1016/j.medengphy.2006.05.011
https://doi.org/10.1098/rsif.2013.0719
https://doi.org/10.1051/jp1:1991180
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Adjei et al. The Classification Angle Framework

7. APPENDIX

Algorithm 1: Sample Entropy

1 A windowed signal, x, of length N is segmented using an
embedding dimension, m, to create (N − m + 1) segments.
Each such segment, Xm, is of length m. In this study, m was
defined asm = 2.

2 A tolerance level of r = 0.15 × std, where std is the standard
deviation in the data window, is defined.

3 The maximum difference, dmax, between the scalar
components of two consecutive segments, Xm(i) and
Xm(j), is computed as

dmax = max
k=0,...,m−1

(
∣

∣x(i+ k)− x(j+ k)
∣

∣) (8)

4 For each Xm(i), the event dmax < r is defined as a match, and
a count of such matches is denoted by Ai. The probability of
matches, Am

i (r), for Xm(i) is calculated as

Am
i =

Ai

N −m− 1
(9)

Note: The denominator,N−m−1, ensures the segment Xm+1(i)
can be included in the computation of the probability.

5 Then, the sum of the probability of matches for all segments,
8, is defined as

8m(r) =

∑N−m
i=1 Am

i (r)

N −m
(10)

6 The embedding dimension, m, is increased to (m + 1), and
Step 1 to Step 5 are repeated; the sum of the probability of
matches for all segments when m = m + 1 are defined as 9 ,
and the sample entropy, SE(m, r), is computed as

SE(m, r) = ln(
8

9
) (11)

7 Sample entropy for x is computed such that one SE value is
obtained for each data window.

Algorithm 2: Permutation Entropy

1 A windowed signal, x(n), of length N is segmented using an
embedding dimension, m, to create (N − m + 1) segments.
Each such segment, Xm, is of length m. In this study, m was
defined asm = 6.

2 The elements in Xm are ranked into ascending order,
x(n + j1 − 1) ≤ x(n + j2 − 1) ≤ · · · ≤ x(n + jm − 1)
where j is the time index of each element. Note that if
x(n + j1 − 1) = x(n + j2 − 1), the segments are ordered in
accordance with their time indices.

3 The time indices of the re-ordered vectors are then used to
map each segment onto a symbol,

A(n) = (j1, j2, . . . , jn) (12)

4 The total number of unique symbols is denoted as k, and the
relative frequency of each unique symbol, is found as Pn.

5 Permutation entropy (PermEn) is computed as the Shannon
entropy of the relative frequencies of the unique symbols,

PermEn(m) =

k
∑

n=1

PnlnPn (13)

6 The computed PermEn is then normalized to enable
comparisons with results from signals of different lengths. The
normalized PermEn is denoted by PE, and is given by,

PE =
PermEn(m)

ln(m!)
(14)
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