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1  |   INTRODUCTION

Prostate cancer (PCa) is the second most commonly diagnosed 
and the fifth leading death of cancer in men worldwide.1 It is 
observed that the incidence of PCa has been growing glob-
ally, particularly in Asia, Northern and Western Europe.2 The 
metastasis of PCa is the dominant factor of PCa-related death, 
resulting in the 5-year mortality over 70%.3 As a significant 
sign of prognosis, biochemical recurrence (BCR), defined as 

the return of prostate-specific antigen (PSA), occurs in 27%-
53% of patients after radical prostatectomy and radiotherapy,4 
and tends to happen months or years ahead of other clinical 
symptoms of PCa recurrence 5 and increases the risk of devel-
oping distant metastases, PCa-specific, and overall mortality.6 
Although extensive research has been conducted on the mech-
anisms of carcinogenesis, the etiology of PCa still remains 
unclear. Therefore, it is significant to explore biomarkers for 
early diagnosis, prognosis, and personalized therapy of PCa.
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Abstract
Prostate cancer (PCa) is one of the most deadly urinary tumors in men globally, and 
the 5-year over survival is poor due to metastasis of tumor. It is significant to explore 
potential biomarkers for early diagnosis and personalized therapy of PCa. In the pre-
sent study, we performed an integrated analysis based on multiple microarrays in 
the Gene Expression Omnibus (GEO) dataset and obtained differentially expressed 
genes (DEGs) between 510 PCa and 259 benign issues. The weighted correlation 
network analysis indicated that prognostic profile was the most relevant to DEGs. 
Then, univariate and multivariate COX regression analyses were conducted and four 
prognostic genes were obtained to establish a four-gene prognostic model. And the 
predictive effect and expression profiles of the four genes were well validated in an-
other GEO dataset, The Cancer Genome Atlas and the Human Protein Atlas datasets. 
Furthermore, combination of four-gene model and clinical features was analyzed 
systematically to guide the prognosis of patients with PCa to a largest extent. In sum-
mary, our findings indicate that four genes had important prognostic significance in 
PCa and combination of four-gene model and clinical features could achieve a better 
prediction to guide the prognosis of patients with PCa.
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Various molecular aberrations and genetic mutations 
exist in the pathogenesis of PCa.7,8 In the meantime, cumu-
lative studies have been conducted to identify novel molec-
ular biomarkers and refine diagnosis and prognosis of PCa 
recently,5 nevertheless, not all molecular alternations influ-
ence the tumor outcome, and a single gene aberration does 
not necessarily have a good predictive value due to complex 
carcinogenesis and individual difference.9 It will be more 
valuable to explore multiple molecules combined with clini-
cal features for better prediction of diagnosis and prognosis in 
PCa. Nowadays, analysis of microarray and high-throughput 
sequencing technologies has advanced diagnosis and progno-
sis of various diseases.10 It provides an efficient tool to de-
cipher critical molecular alternations especially in cancer. A 
comprehensive understanding of molecular patterns of PCa 
as well as clinical traits would contribute to identifying the 
prognostic risk of patients and achieving personalized ther-
apy by a systematic model.

In this study, we performed an integrated analysis in mul-
tiple microarrays and identified hub genes affecting the prog-
nosis. Then, a four-gene prognostic model was constructed 
and patients of PCa were stratified based on risk score. The 
predictive value and gene profiles were validated success-
fully in other independent PCa datasets. Finally, combination 
of four-gene model and clinical features was analyzed sys-
tematically to guide the prognosis of patients with PCa to a 
largest extent. In summary, the study is aimed to add novel 
knowledge of PCa development and prognosis by analyzing 
the genetic changes and clinical traits comprehensively.

2  |   MATERIALS AND METHODS

2.1  |  Data acquisition

Transcriptome data of PCa was obtained from the Gene 
Expression Omnibus (GEO) datasets (https://www.ncbi.
nlm.nih.gov/geo) (GSE21034,11 GSE55945,12 GSE46602,13 
GSE62872,14 and GSE2907915) on April 3, 2020. Each eligi-
ble dataset incorporated at least twenty samples of tumor and 
benign issue. After screening, 510 tumor samples and 259 be-
nign samples were acquired for further analysis finally. This 
study were approved by our Institutional Research Ethics 
Committee.

2.2  |  Integrated analysis of 
microarray datasets

Raw transcriptome data in each dataset was normalized by 
“limma” package 16 in R software (Version 3.6.2). After av-
eraging the expression values of the genes corresponding 
to the multi-microarray probes and base-2 logarithm (log2) 

transformation, log2 fold-change (log2FC) values of differ-
entially expressed genes (DEGs) expressions were calculated 
between tumor and normal issues by “limma” package. Later, 
the integrated analysis was conducted across the five micro-
array datasets by robust rank aggregation algorithm with R 
package “RobustRankAggregation” based on a prioritized 
gene list.17 DEGs with |log2FC| > 1 and adjust P < .01 were 
regarded as statistical significance for further analysis.

2.3  |  Functional enrichment analysis

To identify the biological functions related to DEGs, the 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses of DEGs 
were conducted by R package “clusterProfiler” 18 with the 
thresholds of adjusted P <  .05 and q < 0.05. The GO and 
KEGG clusters were visualized by the R package “GOplot”.19

2.4  |  Evaluation of gene modules and 
correlation with clinical factors

To establish the gene interaction modules and assess the re-
lationship between DEGs and clinical factors as a whole, the 
weighted correlation network analysis (WGCNA) was con-
ducted for DEGs by R package “WGCNA”.20 Clinical data 
were extracted from GSE70769 dataset,21 which including 
clinical stage, T stage, Gleason score, prognostic conditions 
as well as gene expression profiles. The value of soft thresh-
old (power) was set to obtain the optimal scale free topol-
ogy fit model index (scale free R2) and mean connectivity 
in the meantime. Based on a topological overlap measure to 
determine the degree of dissimilarity among genes, cluster 
dendrogram of genes was obtained. After clustering modules 
and genes, clinical factors in GSE70769 were involved in 
correlation analysis with the module eigengenes. P < .05 was 
regarded as statistical significance.

2.5  |  Construction and assessment of 
prognostic model based on DEGs

Differentially expressed genes were applied for prognos-
tic analysis with clinical information in the GSE70769 
dataset. First, univariate Cox regression method was em-
ployed to obtain candidate genes related to prognosis with 
P <  .05 between patient BCR free survival and gene ex-
pression levels. Next, the LASSO Cox regression analy-
sis by R package “glmnet”22 was applied to further screen 
the candidate genes with more prognostic value based on 
penalty parameter tuning performed via 10-fold cross-val-
idation.23 Finally, the selected genes were involved in the 

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21034
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55945
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46602
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62872
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29079
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70769
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70769
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70769
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multivariate Cox regression model by a stepwise method. 
After these, a risk score tool was acquired based on the sum 
of gene expression level (Expi) and regression coefficient 
(βi) based on the multivariate Cox regression model (risk 
score  =  ΣExpi  ×  βi). The patients with clinical informa-
tion were classified into different risk groups according the 
medium value of risk score. Then, Kaplan-Meier (KM) sur-
vival curves by R package “survival,” receiver operational 
characteristic (ROC) curves by R package “timeROC”24 
and C-index were processed to evaluate the prognostic 
value of the multigene model. Finally, the model was vali-
dated in another GEO dataset (GSE11​6918) including 248 
patients and The Cancer Genome Atlas (TCGA) dataset 
including 499 patients (https://portal.gdc.cancer.gov/).25 
And the prognostic value of the multigene model was also 
evaluated compared with T stage in GSE70769.

2.6  |  Verification of the expression 
profiles of prognostic genes

To validate the value of prognostic genes above, the expres-
sion profiles of these genes were analyzed in TCGA pros-
tate adenocarcinoma cohort26 with the Mann-Whitney U test. 
P < .05 was regarded as statistical significance. Furthermore, 
to determine the clinical relevance of these genes, immu-
nohistochemical data were downloaded from the Human 
Protein Atlas (HPA) (https://www.prote​inatl​as.org/)27 to 
compare the levels of protein encoded by these genes. The 
results of immunohistochemistry in tumor and normal issues 
were shown by the same antibody.

2.7  |  Combination of prognostic genes and 
clinical data for prognostic evaluation

To assess the association between the prognostic genes and 
other clinical features (including risk score based on prog-
nostic genes, Gleason score, preoperative level of PSA, 
clinical stage, extra capsular extension, and positive surgical 
margins) and construct a more systematic prognostic model, 
univariate and multivariate Cox regression analyses were 
processed with BCR free survival as the dependent variable 
and prognostic genes as well as clinical features as the in-
dependent variables. Hazard value and P value (<.05) were 
obtained for assessment of prognosis. Based on the results, 
a new model combining prognostic genes and significant 
clinical features was constructed. Similarly, the KM survival 
curves, ROC curves, and C-index were shown. Furthermore, 
a nomogram was established to show prognostic profiles and 
calibration curves were drawn to verify the accuracy of the 
nomogram by R package “rms”.28

3  |   RESULTS

3.1  |  Identification of DEGs based on 
integrated analysis

The flow diagram in this study is illustrated in Figure 1. 
The information of five GEO datasets involved in this 
study is shown in Table S1. There were 510 PCa samples 
and 259 benign samples for further analysis. After normali-
zation and integrated analysis in each dataset (Figure S1), 
a total of 270 DEGs involving 148 downregulated and 122 
upregulated genes were identified by robust rank aggre-
gation algorithm. The top 20 DEGs in both of them are 
shown in Figure 2. AMACR, ACSM1, ERG, DNAH5, and 
CRISP3 were top five genes in upregulated sets and NEFH, 
SLC14A1, CD177, KRT5, and MME were top five genes 
in downregulated sets.

3.2  |  Identification of biological functions 
related to DEGs

GO and KEGG enrichment analyses were conducted to re-
veal the biological roles of DEGs. The GO profiles of DEGs 
are shown in Figure 3A. It revealed that these DEGs had a 
close relationship with metabolism and peptidase activi-
ties (Figure 3B and Table S2). The top five GO terms were 
enzyme inhibitor activity, peptidase regulator and inhibi-
tor activities, modified amino acid binding, and extracellu-
lar matrix binding. Similarly, KEGG profiles are shown in 
Figure 3C. These DGEs mainly participated in Wnt signaling 
pathway, glutathione metabolism, metabolism of drug, and 
xenobiotics by cytochrome P450. Also, PCa pathway was in-
volved significantly (Figure 3D and Table S3).

3.3  |  Weighted correlation network analysis

To evaluate the clinical profiles of DEGs, WGCNA analy-
sis was conducted to determine gene modules and correla-
tion with clinical traits. Based on the optimal soft threshold, 
seven gene modules were identified and cluster dendro-
gram was obtained (Figure S2). The relationships between 
modules and clinical features including BCR status, BCR 
free survival, Gleason score, PSA level, clinical stage, and 
pathological T stage are shown in Figure 4. Of all the mod-
ules, three modules correlated strongly with BCR status 
(P <  .05) and BCR free survival (P <  .01), respectively. 
One module had a negative correlation with Gleason score 
(P  <  .05), while there was no significant correlation be-
tween gene modules and the other clinical factors. Based 
on the results, clinical prognosis was considered as the 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116918
https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70769
https://www.proteinatlas.org/
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main association with DEGs. Prognosis analysis deserved 
to be conducted subsequently.

3.4  |  Prognostic analysis of DEGs

To determine the prognostic value of DEGs, a univariate Cox 
regression was conducted to investigate the relationship be-
tween DEGs and BCR free survival in GSE 70 769 (Table S4). 
Then, 73 candidate DEGs were involved in LASSO Cox re-
gression analysis and four effective DEGs were selected 
(Figure S3). Finally, ANO4, EZH2, PARM1, and SRD5A2 
were regarded as prognostic genes and four-gene prognos-
tic model was constructed in stepwise multivariate Cox re-
gression analysis. Risk scores for patients were calculated 
based on the integrated combination of gene expression 
level and corresponding regression coefficient. That is, risk 
score = (−1.25558 × expression of ANO4) + (1.337196 × ex-
pression of EZH2)  +  (−0.36793  ×  expression of 
PARM1)  +  (−0.73096  ×  expression of SRD5A2). Based 
on medium value of risk scores, patients in GSE70769 
were divided into low- and high-risk groups. Prognostic 
curves between BCR free survival and risk level were drawn 
(Figure 5A). It showed that low-risk group had a better BCR 
free survival than that in high-risk group (P < .0001). In the 
meantime, the AUCs of gene model corresponding to 1-, 3-, 
and 5-year BCR free survival calculated based on ROC curves 
were 0.83, 0.799, and 0.81 (Figure  5B). It suggested good 
specificity and sensitivity of the four-gene prognostic model.

3.5  |  External validation of four-gene model 
in another GEO and TCGA datasets

To assess the external predictive effect of four-gene model, 
clinical data in GSE11​6918 including 248 patients and TCGA 
dataset including 499 patients was analyzed. After calculating 
risk score for patients in GSE11​6918 and TCGA, patients were 
divided into low- and high-risk groups using the four-gene 
prognostic model. Consistent with prognostic information in 
GSE70769, BCR free survival was significantly better in the 
low-risk group than that in high-risk group in GSE11​6918 
(P  =  .00499) and TCGA (P  =  .00013), respectively. These 
findings indicated the predictive effect of four-gene model was 
well validated (Figure 5C-F). In addition, we compared the pre-
dictive effect of four-gene model with T stage in GSE70769. 
The patients were classified into different groups according the 
specific T stage. Patients with advanced T stage (T3 or higher) 
showed worse prognosis (P < .0001) compared with lower T 
stage. The AUCs of 0.816, 0.747, and 0.722 at 1, 3, and 5 years 
were similar with four-gene model (Figure  S4). Also, the 
C-index for four-gene model was 0.701(0.638, 0.764), which 
was comparable with T stage (0.708(0.634, 0.782)).

3.6  |  Validation of the expression of 
prognostic genes

Besides external validation of prognostic prediction in GEO 
dataset, the expression patterns of prognostic genes were also 

F I G U R E  1   The flow diagram of the 
study. GEO, Gene Expression Omnibus; 
GO, Gene Ontology; HPA, Human Protein 
Atlas; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; PCa, prostate cancer; TCGA, 
The Cancer Genome Atlas; WCGNA, 
weighted correlation network analysis

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70769
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116918
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http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70769
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F I G U R E  2   A heat map of the top 20 significantly upregulated and downregulated DEGs based on integrated analysis. The expression profile 
of genes in each dataset is shown by log2FC value in each column. The color layout from blue to red represents the expression level of DEGs from 
downregulation to upregulation. DEGs, differentially expressed genes; log2FC value, base-2 logarithm transformation fold-change value
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assessed in TCGA and HPA datasets. As shown in TCGA 
(Figure 6A), the expression levels of ANO4 and PARM1 were 
significantly lower and EZH2 was significantly higher in PCa 
issue compared with normal issue (P < .05). What is more, in 
the HPA database, EZH2 was strongly positive in PCa issue 
and negative in normal tissue, while PARM1 was moderately 
positive in normal issue and negative in PCa tissue (Figure 6B). 
ANO4 and SRD5A2 were not found in the HPA database. All 
of the results were consistent with data in GEO datasets.

3.7  |  Assessment of independent predictive 
value of gene model

Four-gene model and other clinical features including risk 
score, Gleason score, preoperative level of PSA, clinical stage, 

extra capsular extension, and positive surgical margins from 
GSE 70769 were involved in univariate Cox regression analy-
sis first. It showed that risk score, Gleason score, extra capsular 
extension, and positive surgical margins had a relationship with 
prognosis (P < .05) (Figure S5). Then, these significant factors 
were incorporated into the multivariate Cox regression analysis. 
The result showed that risk score, Gleason score, extra capsular 
extension, and positive surgical margins had independent prog-
nostic value associated with BCR free survival (Figure S5).

3.8  |  Construction and validation of a 
systematic prognostic model

To construct a most effective prognostic model in PCa, 
risk score based on four genes and clinical features in 

F I G U R E  3   Functional enrichment analysis of DEGs. A, GO cluster. B, GO analysis of representative DEGs. The y-axis shows enriched GO 
terms. C, KEGG cluster. D, KEGG analysis of representative DEGs. The y-axis shows enriched KEGG pathways. For (A) and (C), the innermost 
part shows the hierarchical clustering of the DEGs. The middle part represents the expression profiles of DEGs, in which the color layout from 
blue to red indicates the expression level of DEGs from downregulation to upregulation. And the outermost part represents the GO terms (A) and 
KEGG pathways (C) associated with DEGs. DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes
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multivariate Cox regression model were combined. The 
KM curves showed consistent results with four-gene 
model (Figure  7A), but the AUCs of 0.879, 0.833, and 
0.825 at 1, 3, and 5 years were higher (Figure 7B). The 
C-index for the combined model was 0.732(0.668, 0.797). 
These results indicated better predictive value of com-
bined model compared with T stage. Furthermore, a nom-
ogram including risk score, Gleason score, extra capsular 
extension, and positive surgical margins was developed 
and the probability of recurrence free survival at 1, 3, and 
5  years could be calculated based on these parameters 
(Figure 8A). Finally, calibration plots were drawn to re-
flect the accuracy of nomogram. Doublication degree be-
tween the solid line and dotted line showed the nomogram 
had a good predictive value (Figure 8B). In addition, the 
combined model based on four genes and clinical features 
was also successfully validated in another PCa cohort 

GSE70768 with 112 patients (Figure S6). The AUCs at 1, 
3, and 5 years were 0.878, 0.768, and 0.778, respectively. 
The C-index for the combined model was 0.688 (0.594, 
0.782).

4  |   DISCUSSION

Prostate cancer is one of the most deadly urinary tumors in 
men globally.1 Study reported that there was 29  430 PCa-
related death cases in the United States in 2018.29 Therefore, 
it is of significant importance to expound biomarkers of 
PCa to achieve better diagnostic and prognostic evaluation. 
Overall survival and recurrence free survival are common 
indictors to assess the prognosis in cancers. In PCa, the emer-
gence of BCR after radical prostatectomy and radiotherapy 
is confirmed as a decisive risk factor for PCa-specific and 

F I G U R E  4   Module-trait relationships 
based on WGCNA analysis. Each column 
represents a clinical trait and each row 
represents a gene module. The correlation 
coefficient and corresponding P value 
between specific module and trait is 
recorded in each box. The color layout 
from blue to red indicates the correlative 
relationship from negative correlation to 
positive correlation. WGCNA, weighted 
correlation network analysis

F I G U R E  5   Prognosis analysis in training and validation datasets. Kaplan-Meier BCR free survival curves for patients in GSE70769 (A), 
GSE10​6918 (C), and TCGA datasets (E) based on high- and low-risk groups divided by risk score. ROC curve analyses of prognostic prediction for 
patients in GSE70769 (B), GSE10​6918 (D), and TCGA datasets (F). BCR, biochemical recurrence; ROC curve, receiver operational characteristic 
curve; TCGA, The Cancer Genome Atlas

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70768
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70769
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106918
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70769
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106918
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overall mortality.6 Though some studies have researched 
gene expression profiles in PCa, systematic evaluation of 
molecular patterns as well as clinical information in PCa is 
limited.

To expound the potential biomarkers in PCa to a large ex-
tent, in the present study, we conducted an integrated analysis 
across multiple microarrays in GEO datasets. Significantly al-
tered genes were identified based on robust rank aggregation.30 
Then, a total of 270 DEGs involving 148 downregulated and 
122 upregulated genes were obtained. GO enrichment analysis 
showed DEGs were significantly associated with 23 GO terms. 

Cell adhesion 31 and extracellular matrix 32 are well-known 
components during the progression and metastasis of PCa. 
Peptidase activities also have a tight relationship with PCa. 
The kallikrein (KLK)-related peptidase gene family plays an 
important role in the biological metabolism.33 KLK3 (PSA) is 
the most commonly used clinical marker for PCa at present.34 
Besides, KLK2 and KLK4 are predominantly prostate spe-
cific and regulated by androgens.35 In KEGG analysis, DEGs 
mainly participated in Wnt signaling pathway, glutathione, and 
cytochrome P450 metabolism. Studies related to PCa have il-
lustrated the underlying importance of molecular alterations 

F I G U R E  6   The expression profiles of prognostic genes in TCGA and HPA datasets. A, The expression levels after log2 transformation of the 
four genes in the TCGA prostate cancer RNA-seq dataset. B, The immunohistochemical results of EZH2 and PARM1 in HPA. TCGA, The Cancer 
Genome Atlas; HPA, Human Protein Atlas; log2 transformation, base-2 logarithm transformation; RNA-seq, RNA sequencing
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in Wnt signaling pathway.36 In PCa microenvironment, Wnt-
related proteins derived from the tumor promote resistance to 
therapy.37 Besides, Wnt-β catenin facilitates self-renewing in 
PCa progenitors.37 Glutathione plays a pivotal role in the de-
velopment of cancer.38 Glutathione metabolism is involved in 
the proliferation of PCa cells.39 As for cytochrome P450 me-
tabolism, Chang et al40 reported that CYP1B1 inhibition sup-
pressed tumorigenicity of PCa via caspase-1 activation. And 
CYP17A1 was reported to be involved in the biosynthesis of 
androgen in human.41

To reveal the clinical profiles of DEGs, a co-expression net-
work by WCGNA was constructed between DEGs and clini-
cal traits. Although only seven gene modules were obtained, 
three of them had a strong correlation with BCR status and 
BCR free time. These revealed the prognostic profile in DEGs. 
After univariate, LASSO and multivariate Cox regression anal-
yses, ANO4, EZH2, PARM1, and SRD5A2 were screened out 
as prognostic genes ultimately. Then, a four-gene prognostic 
model was constructed and patients were grouped based on 
risk score. The AUCs of the ROC curve for predicting the 1, 
3, and 5-year BCR free survival were 0.83, 0.799, and 0.81, 
respectively, indicating that the model had a good performance 
for prognostic prediction. Expression profiles of four genes in 
TCGA showed similar trend with GEO datasets. Furthermore, 
the predictive effect of the model was well validated in another 
PCa cohort and TCGA datasets.

Anoctamins, known as transmembrane 16 proteins, are a 
family of calcium-activated chloride channels and involved in 
many biological processes, including membrane excitability, 
ion homeostasis, and cell proliferation.42 In cancer research, 

Britschgi et al43 found ANO1 promoted breast cancer progres-
sion by CAMK and EGFR pathways. Liu et al44 reported that 
upregulation of ANO1 is involved in the pathological process of 
metastatic PCa and inhibition of ANO1 is a promising method 
in PCa therapy. ANO4 colocalizes with the endoplasmic retic-
ulum Ca2+-ATPase and reduces Ca2+ store release, probably 
acting as a leakage channel.45 An analysis of single-nucleotide 
polymorphisms in anoctamin genes showed that ANO4 gene 
expression had a protective effect on the prognosis of PCa,46 
which is consistent with our results. However, the function of 
ANO4 in the pathological process of PCa is unknown, and mo-
lecular experiments need conducting to explore it further.

Enhancer of zeste homolog 2 (EZH2) is the enzymatic 
subunit of Polycomb repressive complex 2 related to tran-
scriptional silencing.47 EZH2 alterations have been asso-
ciated with cancer progression.48 EZH2 overexpression 
correlated with poor prognosis in tumors including pros-
tate, breast, and bladder cancer.49 In PCa, EZH2 is reported 
to methylate the androgen receptor (AR) and modulate AR 
recruitment.50 After inhibiting EZH2, proliferation of PCa 
cells decreased and antitumor activity of AR antagonists in 
castration-resistant PCa increased.49,51 Also, EZH2 inhibition 
was powerful to prevent the progression of neuroendocrine 
PCa.52 Nowadays, EZH2 inhibitors are being evaluated in 
PCa patients such as CPI-1205.48 It will be significant to im-
prove the clinical outcome in PCa patients.

Prostate androgen-regulated mucin-like protein 1 (PARM1) 
is a member of the mucin family and is expressed at the sur-
face of epithelial cells to promote cell survival.53 PARM1 was 
reported to promote cardiomyogenic differentiation through the 

F I G U R E  7   Prognosis analysis based on the combined model including four genes and clinical features. A, Kaplan-Meier BCR free survival 
curves for patients in high- and low-risk groups based on the combined model. B, ROC curve analyses of the combined model. BCR, biochemical 
recurrence; ROC curve, receiver operational characteristic curve
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Smad signaling pathway.54 It is also involved in the cancer de-
velopment. PARM1 could suppress the proliferation of colorectal 
cancer cells.55 In PCa, Shola et al 56 found that PARM1 served 
as tumor suppressor to induce apoptosis of cancer cells through 
the Smad signaling pathway. In this study, downregulation of 
PARM1 showed a poor prognostic outcome in PCa patients and 
its expression was significantly lower in PCa issue compared with 
benign issue in TCGA and HPA datasets. However, it is also re-
ported that PRAM1 enhanced cell growth in leukemia.53 The spe-
cific function of PARM1 in PCa need to be expounded further.

Steroid 5 alpha-reductase 2 (SRD5A2) encodes a micro-
somal protein expressed at high levels in androgen-sensitive 
tissues like prostate. In our study, SRD5A2 was regarded as a 
protective gene in the prognosis of PCa. SRD5A2 is involved 
in converting testosterone to dihydrotestosterone in pros-
tate cells.57 Aggarwal et al58 reported that SRD5A2 could 
reduce cell migration and invasion by indirectly regulating 
ERK/MAPK pathway in PCa cells. Also, the expression of 

SRD5A2 was often found to be downregulated as andro-
gen dependency is lost in advanced stages of metastasis.59 
Furthermore, SRD5A2 polymorphism could be a promising 
biomarker for metastatic PCa patients treated with primary 
androgen-deprivation therapy.60 Therefore, SRD5A2 may 
serve as a molecular target in the advanced PCa.

In a word, the four prognostic genes obtained in our 
study were well validated in theory and multiple datasets. It 
would be significant for the guidance of prognosis in PCa. 
Considering that traditional clinical parameters are also as-
sociated with prognosis, we combined four-gene model and 
clinical factors to analyze the prognosis of PCa to a largest 
extent. Finally, we obtained a combined prognostic model 
including four genes and Gleason score, extra capsular ex-
tension, and positive surgical margins. Expectedly, the AUCs 
of the ROC curve for prognosis were higher than four-gene 
model, which achieved a better predictive value. Based on 
the nomogram, prognostic probability for each patient could 

F I G U R E  8   Nomogram evaluating prognosis based on the combined model. A, The 1-, 3-, and 5-y BCR free survival could be evaluated by 
adding up the points of four-gene risk score, Gleason score and events of extra capsular extension and positive surgical margins. B, The calibration 
curves for predicting 1-, 3-, and 5-y BCR free survival for patients with prostate cancer
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be predicted according to the corresponding parameters. A 
personalized evaluation was achieved in a sense.

There are some limitations in this study. First, the clinical 
data for prognostic analysis.

is not large enough, so prospective studies should be 
conducted further. Second, the specific mechanisms of 
four genes in PCa are need to be explored in molecular 
experiments.

In conclusion, we performed an integrated analysis in 
multiple microarrays and constructed a four-gene prognostic 
model with ANO4, EZH2, PARM1, and SRD5A2 in PCa co-
hort. Then, the gene model was well validated in other data-
sets. Finally, combination of four-gene model and clinical 
features achieved a better prediction to guide the prognosis of 
patients with PCa.
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