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Renal phenotypes correlate with genotypes 
in unrelated individuals with tuberous sclerosis 
complex in China
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Abstract 

Purpose:  To explore the relationship between the genotype and renal phenotype in a Chinese cohort and guide 
clinical decision-making for treating tuberous sclerosis complex (TSC).

Materials and methods:  We reviewed 173 patients with definite TSC at three centers in China from September 2014 
to September 2020. All the patients underwent TSC1 and TSC2 genetic testing as well as renal phenotypic evaluation. 
All analyses were performed using the SPSS software, version 19.0, with a cut-off P value of 0.05 considered statisti‑
cally significant.

Results:  We identified variants in 93% (161/173) cases, including 16% TSC1 and 77% TSC2 variants. Analysis of the 
relationship between the genotype and renal phenotype, revealed that those with TSC2 variants were more likely to 
develop severe renal AML (> 4) (P = 0.044). In terms of treatment, TSC2 variants were more likely to undergo nephrec‑
tomy/partial nephrectomy (P = 0.036) and receive mTOR medication such as everolimus (P < 0.001). However, there 
was no significant difference between the two groups in terms of their response to the everolimus treatment.

Conclusion:  Patients with TSC2 variants exhibit more severe renal phenotypes, especially those associated with renal 
angiomyolipomas (AML), and they often require nephrectomy/partial nephrectomy or mTOR medication. Detection 
of the genotype is helpful in TSC management.
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Introduction
As an autosomal dominant neurocutaneous syndrome, 
tuberous sclerosis complex (TSC) is characterized by 
hamartomas in multiple organ systems, with an inci-
dence rate of ~ 1/6000 to 1/10,000 [1]. TSC is believed 
to develop from a pathogenic variant of TSC1 or, more 

commonly, TSC2. Coding proteins of TSC1 and TSC2 
can form a functional complex repressing upstream of the 
mammalian target of rapamycin (mTOR). Either TSC1 or 
TSC2 variants can inactivate the TSC1/TSC2 complex, 
which results in the hyperactivation of the mTOR path-
way and promotes cell growth and proliferation, leading 
to the development of benign tumors or hamartomas in 
multiple organ systems, including the skin, brain, eyes, 
heart, and kidneys. Therefore, therapies targeting mTOR 
have contributed to encouraging results in the treatment 
of TSC [2].

The TSC1 gene has 23 exons extending over approxi-
mately 55  kb of the genomic DNA on chromosome 
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9q34.3. The TSC1 mRNA is transcribed from exons 3 
to 23, and its subsequent protein hamartin is translated 
from the 8.6 kb mRNA transcript and has an estimated 
molecular weight of 130  kDa. On the other hand, the 
TSC2 gene has 42 exons extending over approximately 
40 kb of the genomic DNA on chromosome 16p13.3. Its 
subsequent protein tuberin is translated from the 5.5 kb 
mRNA transcript and has an estimated molecular weight 
of 200 kDa [3, 4]. The encoded proteins can form a het-
erotrimeric complex, termed the TSC protein complex, 
with TBC1 domain family member 7 (TBC1D7). Impor-
tantly, TSC2 contains a highly conserved GTPase-activat-
ing protein (GAP) domain that enables the TSC protein 
complex to inhibit mTOR pathway by RAS homologue 
enriched in brain (Rheb) [5].

The renal phenotypes of TSC include renal AML, cysts, 
impaired kidney function and, rarely, renal cell carci-
noma (RCC). Specifically, AML, a type of benign tumor, 
develops in the kidneys in up to 80% of TSC patients [6]. 
It contributes to chronic kidney disease (CKD) and intra-
renal hemorrhage, thus acting as the most common cause 
of TSC-related mortality. Furthermore, cysts develop in 
approximately 30–45% of TSC patients and may be asso-
ciated with acute or chronic kidney failure and resistant 
hypertension. RCC, affecting 2–3% of TSC patients, may 
be misdiagnosed as fat-poor AML [6]. These complica-
tions substantially worsen the patient survival rate and 
underscore the necessity for early diagnosis and prompt 
treatment of TSC. Thus, there is a crucial need for more 
optimized diagnostic protocols to assist medical practi-
tioners in the early diagnosis of TSC and the evaluation 
of multiple organs to improve patient outcomes.

The correlation between TSC and neurological abnor-
malities has been widely documented [7, 8], but many 
TSC patients often seek urological treatment primarily 
because of the diagnosis of renal AML. In this study, we 
focused on the correlation between TSC genotypes and 
renal phenotypes that were not well discussed in large 
cohort studies performed previously. Intending to guide 
clinical therapy with precision for TSC patients, we fur-
ther explored whether different genotypes affect mTOR 
inhibitor treatment response.

Methods
Study group
A cohort of all 173 unrelated patients with a definite 
diagnosis of TSC who had been treated at Xiangya Hos-
pital Central South University, Peking Union Medical 
College Hospital and The Affiliated Hospital of Qing-
dao University from September 2014 to September 2020 
was included in this study. The study was conducted in 
accordance with the declaration of Helsinki and local 
regulations, and obtained ethical approval. Definite 

diagnosis was defined as fulfilling 2 major criteria or 1 
major criterion and ≥ 2 minor criteria recommended 
by the 2012 International Tuberous Sclerosis Complex 
Consensus Conference [9]. All patients underwent renal, 
pulmonary, and brain imaging evaluations as well as 
renal function tests, and some also underwent pulmo-
nary function tests (n = 157), cardiotocography (n = 155), 
and pathological diagnosis (n = 44). Patients with at least 
one AML (diameter ≥ 30  mm) were treated with oral 
everolimus 10  mg per day for at least 3  months. Then 
they received follow-up radiographic evaluation at 3 and 
6  months. The primary efficacy endpoint was achiev-
ing a ≥ 25% reduction in the total volume of target AML 
compared to baseline in patients with confirmed AML 
response.

Renal phenotypic assessment
Patients were further categorized based on the renal 
angiomyolipoma staging criteria described previously 
[10]. The AML volumes were calculated based on the 
results of kidney computed tomography (CT) (n = 92) or 
magnetic resonance imaging (MRI) (n = 81). Moreover, 
the CKD stage (1–5) was determined by determining the 
glomerular filtration rate (GFR) that was calculated based 
on serum creatinine levels using the Chronic Kidney 
Disease Epidemiology (CKD-EPI) formula. Specifically, 
patients without renal angiomyolipoma were categorized 
as stage 0. On the other hand, if the AML stage could not 
be determined until the end of follow-up, these patients 
were also categorized as stage 0. Patients receiving hemo-
dialysis were categorized as CKD stage 5 regardless of 
GFR values.

Mutational analysis
Peripheral blood (10  mL) samples were collected from 
each patient for TSC1/TSC2 gene detection. The muta-
tional analysis was performed by the next-generation 
sequencing (NGS) at the Beijing Genomics Institute 
(Shenzhen, P.R. China) or the NHC Key Laboratory of 
Cancer Proteomics (Hunan Province, P.R. China). And 
all variants were verified by PCR-SSCP. Finally, they 
were compared with the LOVD databases (www.​lovd.​
nl/​TSC1; www.​lovd.​nl/​TSC2) and classified into five 
categories according to the ACMG guideline [11]: class 
5 (pathogenic), class 4 (likely pathogenic), class 3 (vari-
ant of unknown significance), class 2 (likely benign), 
and class 1 (benign).The possible effect of the newly 
identified mutations due to amino acid substitutions on 
protein function was determined using the online tools 
SIFT and PolyPhen2. Patients with predicted disease-
associated mutations in the TSC1 and TSC2 genes were 
labeled accordingly. Patients with no definite findings or 
only intron mutations that unlikely to be pathogenic were 

http://www.lovd.nl/TSC1
http://www.lovd.nl/TSC1
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labeled as “no mutation identified” (NMI) (Additional 
file 1).

Statistical analysis
Continuous variables were reported as mean ± stand-
ard deviation (M ± SD) and categorical variables were 
reported as frequency counts and percentages (%). All 
statistical analyses were performed using the SPSS soft-
ware, version 19.0 (SPSS, Chicago, IL, USA). Continu-
ous variables were compared by Mann–Whitney U test, 
while categorical variables were compared by Chi-square 
test or Fisher’s exact test, as appropriate. All the reported 
P values were 2-sided. A P value of < 0.05 was considered 
statistically significant, which was bold in the tables.

Results
The mutation rate of TSC1/TSC2 is 85%
In general, the mutation rate of TSC1/TSC2 was 93% 
among the 173 patients. Specifically, we identified 27 

(16%) variants in TSC1, 134 (77%) in TSC2 and 12 (7%) 
NMI (Fig.  1A). Moreover, the types of TSC1 and TSC2 
variants are summarized in Fig.  1B–C. TSC1 vari-
ants mainly included 65% nonsense and 19% frameshift 
events, whereas the TSC2 variants mainly included 33% 
nonsense, 27% missense and 24% frameshift events. 
The distributions of different variants within the TSC1 
and TSC2 genes are shown in Fig.  1D–E. Furthermore, 
the most common mutation site in the TSC1 gene was 
located in exon 15 (7/27; 26% of total TSC1 variants), 
whereas that in the TSC2 gene was located in exon 30 
(15/134; 11% of total TSC2 variants). Exons 35–39 of 
the TSC2 gene are responsible for encoding the GTPase 
activating-protein (GAP) domain, which is essential 
for tuberin function. We identified 18 variants within 
these five exons that accounted for almost 13% of all the 
TSC2 variants identified. They included all four muta-
tion types (nonsense mutations, missense mutations, 
frameshift mutations, and large rearrangements). Next, 

Fig. 1  TSC1 and TSC2 gene mutation spectrum in Chinese patients. A The proportion of TSC1, TSC2 gene and NMI in the cohort; B the mutation 
types of TSC1; C the mutation types of TSC2; D the distribution of various mutation types in TSC1; E the distribution of various mutation types in 
TSC2 
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we performed NGS on these patients, as well as analyzed 
the data using the LOVD database (http://​www.​LOVD.​
nl/​TSC1, http://​www.​LOVD.​nl/​TSC2) and related stud-
ies. The majority of the variants had been reported previ-
ously, most of which were pathogenic or likely pathogenic 
variants, and only 5 variants (1 TSC1 and 4 TSC2) were 
benign or likely benign. In addition, 14 novel variants 
were found of uncertain significance, including 3 TSC1 
variants and 11 TSC2 variants (Table  1). These NMI, 
intron mutations, variants of uncertain significance, and 
benign/likely benign variants were excluded from the 
subsequent analysis. We mainly focused on the correla-
tion between pathogenic/likely pathogenic variants with 
the renal phenotypes.

Female or familial patients are more likely to carry TSC1 
variants
The demographic characteristics and variant data of 
all the patients are summarized in Table  2. The age of 
the patients with TSC1 variants was not significantly 
different from that of the patients with TSC2 variants 
(P = 0.37). Female TSC patients were more likely to 
carry TSC1 variants rather than TSC2 variants, as 17 
(17/21, 81%) TSC1 variants were identified in female 
patients, whereas only 59 (59/107, 55%) TSC2 variants 
were identified in female patients (P = 0.031). Moreo-
ver, 15 (15/21, 71%) TSC1 variants and 97 (97/107, 
91%) TSC2 variants were detected as de novo vari-
ants, whereas familial inheritance was observed in the 
remaining variants. Overall, the proportion of de novo 
variants was significantly higher in TSC2 variants than 
in TSC1 variants (P = 0.015). Regarding the symptoms 
considered for determining the major or minor criteria 

of TSC, there was no significant difference in the inci-
dence of different phenotypes among different geno-
type subgroups.

Patients with TSC2 variants are more likely to develop 
more severe renal complications
To determine the correlation between renal pheno-
types and genotypes, we compared the renal phe-
notypes of TSC1 variants to those of TSC2 variants 
(Table  3).we found that patients with TSC2 variants 
were more likely to develop more severe versions of 
renal AML (> 4) (P = 0.044). Significant differences with 
regard to the treatment received for renal AML were 
observed between those groups. TSC2 variants were 
more likely to receive nephrectomy/partial nephrec-
tomy (P = 0.036). And they preferred to receive mTOR 
medication such as everolimus (P < 0.001). For these 
patients carrying with pathogenic mutations, a total of 
37 patients underwent pathological diagnosis, includ-
ing 27 AML (1 TSC1 and 26 TSC2), 6 epithelioid AML 
(6 TSC2) and 4 RCC (1 TSC1 and 3 TSC2). There was 
no significant difference of endogenous creatinine 
clearance rate (Ccr) and CKD stage among the different 
genotype subgroups. Moreover, there were 3 patients 
with TSC2 variants who had polycystic kidney disease 
(PKD). The four patients with AML and RCC were 
mainly between 40 and 45  years old. All of them had 
neurological involvement, and multiple subependy-
mal nodules were found on cranial MRI. Three of them 
received everolimus treatment but none had a good 
response.

Table 1  New variants detected by next-generation sequencing

No Sex Age Mutant Nucleotide change Protein change Mutation type

1 Female 16 TSC1 c. 605_606insA Phe202Leufs*16 Frameshift mutations

2 Female 57 TSC1 c.1018G > T Glu340* Nonsense mutations

3 Female 24 TSC1 c.361A > T Lys121* Nonsense mutations

4 Female 36 TSC2 c.3683_3684 insG Leu1228Leufs*6 Frameshift mutations

5 Female 36 TSC2 c.788_789 insC Leu263Leufs*75 Frameshift mutations

6 Male 30 TSC2 c.2738_2739 insT Thr913Thrfs*2 Frameshift mutations

7 Male 31 TSC2 c.4006_4007 insC Ser1336Serfs*78 Frameshift mutations

8 Female 30 TSC2 c.3601_3602 insGGCCC​ Thr1203Glyfs*9 Frameshift mutations

9 Female 46 TSC2 c.203_204 insA Ala68Alafs*7 Frameshift mutations

10 Male 16 TSC2 c.3271insTCCG​ Gly1091Valfs*78 Frameshift mutations

11 Female 29 TSC2 c.1258G > T Glu420* Nonsense mutations

12 Female 50 TSC2 c.4972A > T Lys1658* Nonsense mutations

13 Female 24 TSC2 c.3838G > T Gln1280* Nonsense mutations

14 Female 23 TSC2 c.2319 delA Leu773Leufs*56 Frameshift mutations

http://www.LOVD.nl/TSC1
http://www.LOVD.nl/TSC1
http://www.LOVD.nl/TSC2
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Genotype does not affect the response of AML volume 
to mTOR medication
We investigated the effect of genomic factors on the 
reduction in AML volume after mTOR treatment 
(Table 4). A total of 72 patients received everolimus for 
3 months, including 68 patients with TSC2 variants and 
4 patients with TSC1 variants. A total of 70 patients 
received everolimus for 6 months, including 66 patients 
with TSC2 variants and 4 patients with TSC1 variants. 
Before receiving the medication, the volume of target 
AML in patients with TSC2 variants was 70 ± 76 cm3, 
whereas that in patients with TSC1 variants or NMI 
was 235 ± 538 cm3. There was no significant difference 
in AML volume between the two groups (P = 0.54). In 
general, 76% of patients with TSC2 variants and 75% of 
patients with TSC1 variants responded to the medica-
tion at 3  months (P = 0.99), while 85% of patients with 

TSC2 variants and 100% of patients with TSC1 variants 
responded to the medication at 6  months (P = 0.99). At 
the 6-month follow-up, one TSC2 variant stopped receiv-
ing everolimu due to adverse event, and another TSC2 
variant withdrew from the cohort for economic reason. 
There was no significant difference in age, gender and 
family history between two groups. Moreover, there was 
no statistical difference in the reduction of AML volume 
after the everolimus treatment and the response rate 
between two groups.

Discussion
In this study, we identified 161 variants in 173 unrelated 
patients (93%), including 27 (16%) with TSC1 variants 
and 134 (77%) with TSC2 variants, which is higher than 
that reported in other countries [12–15]. This is due to 

Table 2  Clinical characteristics by genotype in patients with 
tuberous sclerosis complex

SEN subependymal nodules, SEGA subependymal giant cell astrocytoma, LAM 
lymphagioleiomatosis, AML angiomyolipomas

TSC1 TSC2 P value
(n = 21) (n = 107) TSC1 versus TSC2

Age (years), median (range) 30 (6–54) 31 (4–59) 0.37

Sex 0.031
 Male 4 48

 Female 17 59

Familial/de novo 0.015
 Familial 6 10

 De novo 15 97

Major criteria

 Angiofibromas (≥ 3) or 
forehead

14/21 88/107 0.10

 Hypomelanotic macules 
(≥ 3)

15/21 85/107 0.42

 Ungual fibromas (≥ 2) 7/21 57/107 0.095

 Chagrin patch 10/21 61/107 0.42

 Multiple retinal hamar‑
tomas

3/15 11/81 0.45

 Cortical dysplasia 2/21 12/107 0.99

 SEN 20/21 86/107 0.12

 SEGA 1/21 4/104 0.99

 Cardiac rhabdomyoma 3/19 5/102 0.11

 LAM (women) 6/18 26/105 0.064

 Renal AML (≥ 2) 20/21 103/107 0.99

Minor criteria

 Confetti skin lesions 3/21 19/107 0.99

 Dental enamel pits (≥ 3) 5/21 15/106 0.27

 Intraoral fibromas (≥ 2) 2/21 12/106 0.99

 Retinal achromatic patch 0/14 0/76 –

 Non-renal hamartomas 5/20 22/105 0.69

 Multiple renal cysts 1/20 12/106 0.69

Table 3  Renal complications by genotype in patients with 
tuberous sclerosis complex

AML angiomyolipomas, Ccr endogenous creatinine clearance rate, CKD chronic 
kidney disease, PKD polycystic kidney disease

TSC1 TSC2 P value
(n = 21) (n = 107) TSC1 versus TSC2

Renal AML

 AML 20/21 104/107 0.52

 Bilateral AML 19/21 103/107 0.26

 Diameter of the largest 
AML (cm)

4.2 ± 1.7 5.6 ± 4.0 0.11

 Volume of largest AML 
(cm3)

34 ± 39 159 ± 440 0.20

 AML stage

  ≤ 4 18 66 0.044
  > 4 3 41

 Surgery/invasive proce‑
dure

7/21 54/107 0.15

  Renal embolization 6/21 31/107 0.97

  Nephrectomy/partial 2/21 35/107 0.036
 mTOR Medication (Everoli‑
mus)

4/21 68/107 < 0.001

Renal cysts 0.69

 Yes 1 12

 No 20 94

Renal cell carcinomas 0.52

 Yes 1 3

 No 20 104

Ccr (ml/min) 95 ± 20 90 ± 31 0.54

CKD stage 0.073

 ≤ 2 20 82

 > 2 1 25

PKD 0.99

 Yes 0 3

 No 21 104
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the NGS applied in this study. Several intron variants of 
TSC1/TSC2 have been found in our study. Because they 
are usually not pathogenic or likely pathogenic, these 
variants have been excluded from subsequent pheno-
type related analysis. Moreover, we identified 14 novel 
TSC1/TSC2 variants, which expands the public data-
base and calls for researchers to investigate its functions. 
Mosaicism may partially explain the 12 NMI case, which 
has been found in approximately 1/2 NMI patients [16]. 
Further locus heterogeneity in TSC also remains a theo-
retical possibility. In the present study, we analyzed the 
mutation spectrum of TSC1/TSC2 genes based on a Chi-
nese TSC cohort with large sample size. Multiple types of 
variants were detected, including frameshift, nonsense, 
missense, and large rearrangement mutations. Further 
stratification analysis showed that nonsense mutations 
were the predominated mutation type across TSC1 vari-
ants, whereas frameshift and missense mutations were 
more common in TSC2 variants, which is consistent with 
the results of another Chinese cohort study [17]. Moreo-
ver, in this study, we identified that exon 15 is the most 
frequent mutation site in TSC1 variants as reported pre-
viously [17]. However, exon 30 was uniquely identified as 
the most frequent mutation site in TSC2 variants in our 
study, which may be a hotspot mutation region in Chi-
nese patients with TSC since previous studies have rarely 
reported this mutation site. Furthermore, previous stud-
ies have found TSC2 variant sites scattered throughout 
the gene but more common in exons 35–39 [18]. They 
encode the GAP domain, which affects mTOR inhibition 
by the TSC protein complex. Therefore, variants within 

this region play an important role in the pathogenesis of 
TSC and correlate with poor clinical outcomes [14]. We 
also observed several TSC2 variants within this region 
in our study. By performing genomic analysis of TSC 
patients, the mutation spectrum and distribution pro-
files of the two essential genes (TSC1 and TSC2) in the 
Chinese TSC population have gradually become com-
prehensive and clear. Intriguingly, 14 novel variants of 
TSC1/TSC2 genes were confirmed in our study, which 
can be used as a reliable reference for future genetic test-
ing of TSC patients.

We further identified a significant correlation between 
the clinical characteristics and genotypes of patients 
with TSC. There was no significant difference in age 
distribution among the two groups in the study. How-
ever, it has been suggested that the onset age of renal 
AML among TSC2 variants was earlier, which requires 
further exploration [19]. The role of gender in TSC-
associated pathogenesis has been studied previously 
in both animal models and human studies but the find-
ings remain controversial. A previous study found that 
males with TSC have a greater risk of learning disorders 
and autism than females with TSC [20]. However, a large 
sample cohort study in the United States suggested that 
TSC1/TSC2 variants showed no significant distribu-
tive difference between male and female patients [15]. In 
our cohort, a contrary conclusion was drawn that males 
with TSC were more likely to carry TSC2 variants. Fur-
ther research by including independent cohorts with 
larger sample sizes is needed to verify whether sex hor-
mones are involved in the TSC1/TSC2 mutations and 

Table 4  Response of angiomyolipoma volume to everolimus by genotype

AML angiomyolipomas

TSC1 TSC2 P value
(n = 4) (n = 68) TSC1 versus TSC2

AML volume at baseline (mean ± SD, cm3) 70 ± 76 235 ± 538 0.54

Age range (years) 29–45 16–59 0.079

 Median age (years) 36 34

Sex 0.63

 Male 2 25

 Female 2 43

Familial/de novo 0.17

 Familial 2 12

 De novo 2 56

Everolimus (3 months)

 No. of response (%) 3 (75) 52 (76) 0.99

 % reduction from baseline value (mean ± SD, %) 39 ± 14 38 ± 17 0.89

Everolimus (6 months)

 No. of response (%) 4 (100) 56 (85) 0.99

 % reduction from baseline value (mean ± SD, %) 41 ± 15 43 ± 18 0.87
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TSC pathogenesis. Additionally, we found that 29% TSC1 
variants were familial variants, whereas only 9% TSC2 
variants were inherited from families, which is consistent 
with the results of the previous studies [15, 21, 22]. We 
confirmed the higher frequency of familial TSC1 vari-
ants compared to that of familial TSC2 variants, which is 
attributed to the smaller size and simpler structure of the 
TSC1 genomic locus, and the rarity of missense muta-
tions, frames shift mutations and large rearrangements 
at the locus [12]. A large number of TSC1 variants was 
observed in familial cases probably because patients with 
TSC1 variants are less likely to be affected by severe neu-
rocognitive impairment and are therefore more likely to 
have offspring [13, 23].

Some researchers have attempted to determine geno-
type/phenotype correlations with TSC but could not 
conclusively establish a relationship between these fac-
tors [24, 25]. A robust correlation has been previously 
established between TSC2 variants and poor clinical phe-
notypes including skin, neurological, and renal features 
[15, 26]. A previous study failed to found positive results 
between renal AML and genotypes in Chinese popula-
tion [27]. While another Chinese cohort study found that 
the renal AML volume of TSC2 variants was significantly 
larger than that of TSC1 variants [28]. More recently, the 
correlation between mutational sites and renal AML have 
been evaluated [29]. It identified some mutational sites, 
such as TSC2 mutations in the transcription activation 
domain 1 coding genes, had higher risk of renal AML. 
However, only the number of patients with or without 
renal AML were demonstrated. The specific details about 
renal AML were not analyzed. Compared with these 
study, our strength is that this is a multi-center study 
with relatively large sample size. More importantly, we 
also focused on treatment options as well as other TSC-
associated kidney diseases, such as renal cysts, PKD, etc. 
in addition to comparisons of renal AML. Specifically, 
we found that patients with TSC2 variants were more 
likely to develop more advanced AML (AML stage > 4). 
Besides, these TSC2 variants often received nephrec-
tomy/partial nephrectomy or mTOR medication such 
as everolimus. This reflects that TSC2 variants may be 
associated with more severe renal phenotypes. And the 
history of nephrectomy/partial nephrectomy may con-
tribute to some of the negative findings. Previous stud-
ies have reported that TSC2 variants were more likely to 
develop more severe CKD [22, 27]. Although there were 
no difference between the two groups in our study, we 
can see that there was a trend. Overall, TSC2 variants are 
more likely to have more severe renal phenotype. Thus, 
in the clinical setting, patients with TSC2 variants should 
receive a more comprehensive renal evaluation and be 
treated promptly if renal abnormalities are detected. 

There were 4 patients (4/173, 2%) accompanied with 
RCC, which is consistent with the incidence reported 
in previous article [30]. It has been defined as RCC with 
fibrous stroma (RCC-FMS) (formerly RCC with leiomy-
omatous or smooth muscle stroma) by the The Geni-
tourinary Pathology Society (GUPS) [31]. Among these 
4 patients, 3 were treated with everolimus but did not 
achieved satisfactory outcomes. Therefore, it remains to 
be explored whether mTOR inhibitors play a role in TSC 
accompanied with RCC. There were 3 patients with TSC2 
muations suffered PKD in this study, with the mutation 
type of large rearrangements. Because TSC2 gene is adja-
cent to PKD1 gene, large deletion involving these two 
genes may lead to PKD1/TSC2 continuous gene dele-
tion syndrome (CGS). Because we mainly focused on the 
mutations of TSC1 and TSC2, PKD1 mutations were not 
detected. The latest research suggested CGS screening 
for patients with PKD and TSC-associated renal neopla-
sia as well as TSC patients with cystic renal disease [30]. 
This is worthy of further study in the follow-up.

Given that TSC results from the dysregulation of the 
mTOR signaling pathway, the advent of mTOR inhibitors 
such as everolimus, an analog of rapamycin, has provided 
great therapeutic promise in treating TSC [32]. It has 
been reported that the most significant reduction in renal 
AML growth by everolimus usually occurred within the 
initial 3–6  months of treatment, whereafter the tumor 
volume stabilized or gradually decreased. Therefore, we 
mainly followed up their renal AMLs at 3 and 6 months 
after everolimus treatment. We previously confirmed 
that everolimus was well tolerated and showed promising 
efficacy in Chinese patients with TSC-RAML [33]. In this 
study, the overall response rate to everolimus treatment 
was approximately 86% at 6  months, which was even 
higher than the previous report [34]. This further con-
firmed the effectiveness of everolimus in the treatment of 
renal angiomyolipoma. For these non-responders, most 
of them suffered renal AML with large volume, which is 
consistent with our previous study [35]. Further we com-
pared the response of patients with different genotypes to 
the everolimus treatment. There was no statistical differ-
ence in the reduction of AML volume and the response 
rate between the two groups after receiving the medica-
tion. Therefore, studies using larger patient populations 
should be performed to determine whether the efficacy 
of everolimus is related to the genotype.

There were some limitations in this study. First, our 
study lacks precise and concrete data type since we 
defined the renal phenotype as the primary outcome, 
which is a qualitative data type rather than a quantita-
tive one. The relationship between more quantitative 
renal phenotype and genotype needs to be assessed 
to help clinicians in comprehensively evaluating TSC 
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patients and further guide precision medicine at the 
clinical stage. Second, the sample size of our cohort 
was not large enough, especially the number of patients 
treated with everolimus. Thus, our results is insuffi-
ciently powered to compare the impact of TSC1 ver-
sus TSC2 genotype on the response of AML volume to 
mTOR medication. Future studies should include more 
independent cohorts with larger patient populations 
to investigate the underlying relationships between 
genotypes and renal phenotypes as well as treatment 
response in TSC patients. Moreover, because of tech-
nical limitations, we were unable to measure the blood 
concentration. So we controlled the dose to reduce the 
bias.

Conclusion
In summary, the overall positive TSC1/TSC2 muta-
tion detection rate in patients with TSC was 85% in our 
study. Those with TSC2 variants were associated with 
more severe renal phenotypes compared with those with 
TSC1 variants. Detection of the genotype is helpful in 
TSC management, which can be helpful for determin-
ing risk profiles, and in turn guide medical practitioners 
to treat TSC patients in a more precise manner with the 
hope to prevent complications and improve therapeutic 
outcomes.
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