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Abstract Emissions from flaring and venting (FV) in oil and gas (O&G) production are difficult to quantify
due to their intermittent activities and lack of adequate monitoring and reporting. Given their potentially
significant contribution to total emissions from the O&G sector in the United States, we estimate emissions from
FV using Visible Infrared Imaging Radiometer Suite satellite observations and state/local reported data on
flared gas volume. These refined estimates are higher than those reported in the National Emission Inventory: by
up to 15 times for fine particulate matter (PM2.5), two times for sulfur dioxides, and 22% higher for nitrogen
oxides (NOx). Annual average contributions of FV to ozone (O3), NO2, and PM2.5 in the conterminous U.S.
(CONUS) are less than 0.15%, but significant contributions of up to 60% are found in O&G fields with FV. FV
contributions are higher in winter than in summer months for O3 and PM2.5; an inverse behavior is found for
NO2. Nitrate aerosol contributions to PM2.5 are highest in the Denver basin whereas in the Permian and Bakken
basins, sulfate and elemental carbon aerosols are the major contributors. Over four simulated months in 2016 for
the entire CONUS, FV contributes 210 additional instances of exceedances to the daily maximum 8‐hr average
O3 and has negligible contributions to exceedance of NO2 and PM2.5, given the current form of the national
ambient air quality standards. FV emissions are found to cause over $7.4 billion in health damages, 710
premature deaths, and 73,000 asthma exacerbations among children annually.

Plain Language Summary Pollutant emissions from onshore flaring and venting activities in the oil
and gas sector are often hard to capture, creating inaccuracies in estimates of air pollution and health impacts
from this sector. Here we use remote sensing and reported activity to create a refined estimate of emissions
which reveal significant underestimates in official emissions estimates. These emissions contribute to air
pollution, which results in $7.4 billion in health damages annually due to hospitalizations, emergency room
visits, worsening asthma, and premature death among downwind populations.

1. Introduction
Flaring is an oil and gas (O&G) industry term used to describe the practice of burning off excess natural gas that is
produced along with crude oil, often called “associated gas” or “associated petroleum gas.” This associated gas is
a valuable commodity when it can be appropriately separated from oil and transported. In practice, however, a
facility to support such processing is often absent, and thus flaring is used as a way to dispose of unwanted gas that
would otherwise pose a safety hazard or interfere with oil production (DOE, 2019; GGFR, 2023). Multiple
economic and technical reasons for why flaring of associated gas is needed are discussed by Soltanieh
et al. (2016). According to theWorld Bank's Global Gas Flaring Reduction Partnership (GGFR, 2023), global gas
flaring stayed relatively constant throughout 2010 to 2020 and reached 150 billion cubic meters (BCM) in 2020,
equivalent to the total annual gas consumption of sub‐Saharan Africa, with the top five flaring countries being
Russia (24 BCM), Iraq (17 BCM), Iran (13 BCM), U.S. (12 BCM), and Algeria (9 BCM). Venting of associated
gas from O&G compression, processing equipment due to system upset conditions, or pressure release during
emergency is also common in O&G production and processing (DOE, 2019).

Besides emitting carbon dioxide (CO2), O&G flaring releases various pollutants including methane (CH4), black
carbon (soot), nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), and various volatile organic
compounds (VOCs) depending on flaring conditions and composition of the associated gas (Anejionu et al., 2015;
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Fawole et al., 2016; Umukoro & Ismail, 2017), all of which can cause various impacts on climate, air quality, and
human health. According to the World Bank's Global Gas Flaring Tracker Report, flaring released over 400
million tons of carbon dioxide equivalent (CO2e) emissions into the atmosphere in 2020 (World Bank, 2022);
such amount is roughly equivalent to the greenhouse gas emissions of around 77 million cars. Allen et al. (2016)
estimated that in the U.S., O&G flaring contributes 20 to 21 million metric tons of CO2e of greenhouse gases per
year. Evaluating O&G flaring's impact on nationally determined contributions (NDC) defined under the United
Nations Framework Convention on Climate Change Paris Agreement, Elvidge et al. (2018) found global flaring
represents less than 2% of the NDC reduction target; however, some countries (e.g., Yemen, Algeria, Iraq) may
fully meet their NDC reduction target by just controlling for flaring.

Cushing et al. (2021) estimate more than 500,000 Americans living within 3 miles of natural gas flares and are at
risk of adverse health effects. O&G production in the U.S. has adverse health impacts of 7,500 premature deaths
and 410,000 asthma exacerbations annually (Buonocore et al., 2023). Emissions from flaring cause an increase in
respiratory diseases, heart diseases, and strokes due to black carbon particle exposure (Chen et al., 2022). Studies
report an observed association between flaring activity and increased risk of preterm birth in the Eagle Ford Shale
(Cushing et al., 2020) and respiratory hospital visits in North Dakota (Blundell & Kokoza, 2022). Motte
et al. (2021) evaluated flaring's impacts on human health due to both local emissions of air pollutants and its
contribution to climate change and found that globally, flaring contributed about 0.12% of the health impacts
related to PM2.5, and 6.51% of the health impacts related to climate change.

Operators of O&G production facilities which perform flaring and venting (FV) report the volume to local
regulatory agencies. However, indicators show that the flared and vented volume reported through this mecha-
nism is underreported (BBC, 2022; DOE, 2019). Methane emissions from O&G flaring in the U.S. have been
found to be more than five times higher than what was expected (Plant et al., 2022). In New Mexico, North
Dakota, and Texas, the flared gas volume estimated from satellite observation is as much as double the volume
reported to the states during the years 2012–2017 (DOE, 2019). In 2019, about 15.2 BCM of total vented and
flared gas was reported over the U.S. (EIA, 2023) while flared gas alone is estimated at 17.3 BCM from satellite
observations (EOG, 2023). Willyard and Schade (2019) found that self‐reporting flared gas volume was about
half of what was estimated from satellite observations taken from 2012 to 2015. Thus, the use of self‐reported gas
volumes exclusively could lead to an underestimation of emissions from flaring and venting.

Although the destruction efficiency (i.e., percent of hydrocarbon compounds in flared gas that are converted to
carbon dioxide) of flaring is often assumed to be greater than 95% (Caulton et al., 2014; Gvakharia et al., 2017;
Pohl et al., 1986; Shaw et al., 2022), incomplete combustion and unlit flares are not uncommon and these issues
can lead to lower destruction efficiency of flaring (Lyon et al., 2021; Plant et al., 2022; Tyner & Johnson, 2021).

Discrepancies in emission estimates from O&G in the National Emission Inventories (NEI) have been discussed
in previous studies (e.g., Francoeur et al., 2021; Gorchov Negron et al., 2018). Gorchov Negron et al. (2018)
compared the NOX emissions from O&G production estimated by the Fuel‐based Oil and Gas inventory (FOG) to
the NEI 2017 and found that the NEI overestimates NOX by over a factor of two in three out of four studied basins.
Francoeur et al. (2021) showed that NOX and VOC emissions from O&G in 2015 were about 40% lower and up to
two times higher, respectively, in FOG than in the NEI 2014.

In this study, we address the potential underestimation of flaring and venting emissions in the current National
Emission Inventory (NEI), by using flared gas volume estimates from the Visible Infrared Imaging Radiometer
Suite (VIIRS) and other industry emission inventories. Estimating emissions from O&G flaring using VIIRS
observations has been performed in earlier studies (Chen et al., 2022; Dix et al., 2019, 2022; Francoeur
et al., 2021; Zhang et al., 2015). We further investigate the impacts of flaring and venting from O&G production
and processing in the U.S. on air quality and human health related to both gas‐phase and aerosol pollutants using
an integrated assessment framework previously used to evaluate health impacts of oil and gas production in the U.
S. (Buonocore et al., 2023).

2. Materials and Methods
2.1. Flare Emissions From NEI

In the NEI 2017, a small fraction of emissions from flaring are classified as O&G point sources; most of the
flaring emissions are not separated out but rather lumped into total emissions of O&G nonpoint sources, and
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hence reported at a county resolution. We identified 22 source classification codes (SCC) of O&G point sources
from the NEI 2017 that have the “flare” keyword in the descriptions of SCC (Table S1 in Supporting Infor-
mation S1). Some of these 22 SCCs have zero emissions, and most emissions are from the top four SCCs
(reported in Table S1 in Supporting Information S1). Among O&G nonpoint sources in the NEI 2017, six SCCs
represented flaring from well completions and only two SCC reported non‐zero emissions. Personal commu-
nications with technical staff in charge of O&G emissions inventory development in EPA Office of Air Quality
Planning and Standard, Texas Commission on Environmental Quality (TCEQ) (TCEQ, 2004) , Colorado
Department of Public Health and Environment, Wyoming Department of Environmental Quality, and Utah
Department of Environmental Quality (UDEQ), identified 19 nonpoint SCCs associated with flare emissions (as
shown in Tables S2 and S3 in Supporting Information S1), and many of these do not have the keyword “flare” in
the SCC descriptions.

Not all O&G equipment (e.g., condensate tanks, crude oil tanks) represented by these 19 SCCs are equipped with
flares. Therefore, flare emissions from the 19 nonpoint SCCs vary among U.S. counties—the spatial resolution at
which the nonpoint O&G emissions are allocated in the NEI. To estimate NEI 2017‐derived flare emissions for
each county in the CONUS, we first applied records with non‐zero NOX emissions as an indicator for with‐flare
emissions from each of the 19 nonpoint flare‐SCCs, then emissions of all criteria pollutant from the same SCC are
classified as from flaring.

Due to the high destruction efficiency of flares (>95%), VOC emissions from flare stack mounts, while containing
highly reactive precursors for ozone and hazardous air pollutants (e.g., Knighton et al., 2012; Olaguer, 2012a), are
assumed be close to zero. However, flares are not always operating properly which can lead to increased venting
of natural gas through the flare stack flaring (DOE, 2019; Lyon et al., 2021; Plant et al., 2022; Reuters, 2022;
Tyner & Johnson, 2021). For example, Lyon et al. (2021) reported that 11% of surveyed flares in the Permian
Basin had combustion issues and 5% were unlit and emitted uncombusted gas directly into the atmosphere. In the
NEI, we were unable to distinguish between improper flaring and venting VOC. Based on our personal
communication with TCEQ staff, we learned that VOC emissions fromminor with‐flare sources (e.g., condensate
and crude oil tanks with non‐zero NOX emission) are the combination of VOC emissions from vented gas (major)
and the remaining from flaring (minor). We assumed that, if routine flaring of associated gas was to be eliminated
and the would‐be flared gas be captured instead through other means of emission controls, it is reasonable to have
some sources of vented gas at the same facility be captured in the same way. It is also reasonable to assume
regulatory drivers limiting or prohibiting routine flaring of associated gas would result in corresponding re-
ductions in routine venting of associated gas. Therefore, in this study, we considered VOC emissions from the 19
nonpoint flare‐SCCs as from venting and combined this VOC emissions estimate with non‐VOC emissions from
flare into the same group of “flaring and venting” (FV). Note that “venting” in this way only represents VOC
emissions from vented gas from O&G sources equipped with a flare using the non‐zero NOX emissions criteria as
discussed above. We assume this approach captures all possible VOC emissions from O&G sources associated
with flare.

Figure 2 shows emissions of criteria pollutants from O&G categories including point‐ and nonpoint‐flares, as
derived from NEI 2017. FV is also found to account for 10% of the total 7.3 million tons per year of methane from
O&G, although this is not a targeted pollutant for discussion on air quality and health impacts in this study.

2.2. Flare Emissions Estimation From VIIRS

The VIIRS Nightfire data set (Elvidge et al., 2013; Elvidge et al., 2015; EOG, 2023; Zhizhin et al., 2021) was
processed for annual natural gas flared volume in the U.S. from 2017 to 2020 (Figure 1). In 2019, the year with
highest flare gas volume during the above period, there were 17.7 BCM of natural gas flared in both production
(97%) and processing (3%)—the same amount of flare gas volume was reported in Chen et al. (2022). We
performed the following processing on VIIRS data prior to emissions estimation: only onshore flares were
considered; VIIRS‐detected flares are excluded if they were found to be in proximity of NEI 2017 point flare
sources to avoid double counting. As a result, there were 17.3 BCM of VIIRS‐detected flared gas remaining for
emissions estimation. We applied the gas heating values and emission factors derived from previous studies and
from our personal communications with emission inventory developers in Texas, New Mexico, Colorado,
Wyoming, and Utah. In comparison to NEI, several improvements were made to estimations of flare emissions
where we treated VIIRS‐detected flares as point sources, estimated directly emitted primary particulate matter (in
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form of black carbon) and SO2 emissions, utilized empirical algorithms for flare stack parameters, and employed
state‐level monthly flared and venting gas volume for temporal allocations. Additional methodologic details are
described in Text S2 in Supporting Information S1.

There is a high probability that not all flares were adequately detected by VIIRS. Certain criteria must be met for a
flare to be detected by VIIRS, such as flared temperature >1,400 K, frequent combustion (consistency), and free
of cloud cover and other contaminations (C. Elvidge et al., 2013, 2015). In our case study for the Uinta O&G basin
in Utah, we compared the number of VIIRS‐detected flares with the self‐reported flare data from O&G operators
(UDEQ, 2022) and found that only 11 reported flares (or 8%) of the 132 reported flares were detected by VIIRS in
2019.

Figure 1. Combined NOX (top) and PM2.5 (bottom) emissions from FV as estimated from VIIRS and as derived from NEI
2017 point O&G (ptOG flare).
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Another uncertainty in VIIRS flare data is the flare gas volume (FGV). VIIRS estimates FGV by applying
regression algorithms to the relationship between radiated heat energy from detected flare to the reported FGV at
country and state‐level resolution (C. Elvidge et al., 2013, 2015). Uncertainties of the regression algorithms are
estimated to be ±9.5% (Elvidge et al., 2015). Another source of uncertainty is from the country‐ and state‐level
reported FGVs, which are subject to known and unknown biases as discussed by Schade (2021). Large gaps exist
when VIIRS‐estimated FGV in 2019 is compared to FGV reported by Rystad Energy (2022) for the same year
(Table S4 in Supporting Information S1). For example, Rystad Energy (2022) reports FGV in Colorado in 2019 to
be 136 MCF/yr, whereas only 18 MCF/yr is estimated by VIIRS. Non‐detection of flares by VIIRS (more dis-
cussion on this later) in Colorado is partially attributed to this gap. Since no uncertainty was reported for VIIRS's
FGV in 2019 as well as in other years, this type of uncertainty was not incorporated in estimation of FV emissions
in this study.

To account for the potential under‐estimation of FGV and, consequently, the under‐estimation of emissions from
FV, we developed two emissions scenarios for FV. The wFlare1 scenario estimates emissions of criteria pol-
lutants solely based on VIIRS‐estimated FGV and existing point O&G flares in the NEI. In wFlare1 scenario, we
replaced the NEI 2017 emission estimates of NOX, CO, SO2, and PM2.5 from the 19 nonpoint SCCs (discussed
above) with corresponding estimates based on VIIRS‐detected flares; we incorporated the NEI 2017 emission
estimates of the 22 O&G flare point sources (discussed above) as‐is. ThewFlare2 combines emissions inwFlare1
with additional emissions estimated for FGV reported by Rystad Energy (2022) and FV emissions derived from
NEI 2017. Specifically: in each county where either VIIRS's, Rystad's, or NEI 2017s estimates exist, VIIRS's
estimates are first compared against Rystad's. If Rystad's estimates are larger than VIIRS's, differences between
the two are added to VIIRS's. If Rystad's estimates are not available or lower than VIIRS's, VIIRS's estimates are
then compared against NEI 2017s. Differences between the two estimates are added to VIIRS's if NEI 2017s
estimates are higher. In this sense, wFlare2 represents a hybridized estimate of FV which partially compensates
for missing FV data in any one source.

Due to our approach to treatment of VOC emissions from FV, total VOC emissions from O&G based on NEI
2017 are identical in wFlare1 and wFlare2. VOC emissions from O&G attributed to nonpoint FV in wFlare2 are
based on NEI 2017, but higher than the emissions in wFlare1 (Table 1).

2.3. CMAQ Model Configurations and Model Performance Evaluation

The model configurations in this study refined the configurations applied in Buonocore et al. (2023), which
evaluates impacts of O&G emissions to air quality and public health in 2016. As such, all anthropogenic and
wildfire emissions other than O&G are based on the NEI 2016 v1. Emissions from all other O&G sources other
than FV are taken from the NEI 2017. The use of NEI 2017 instead of NEI 2016 v1 for O&G sources are due to
two factors: introduction of new flare‐SCCs as discussed above; and NEI 2017 is the latest national baseline
estimate from the EPA and furthermore, it better represents year 2019 in which FGV is highest and for which FV
emissions are estimated for.

Table 1
Annual Emissions (tpy) of Criteria Pollutants From Flaring and Venting (FV)

PM2.5 NH3 VOC CO NOX SO2

NEI 2017 point flare 7.82E + 01 1.84E − 01 4.59E + 03 8.44E + 03 2.71E + 03 1.53E + 04

NEI 2017 nonpoint flare 2.22E + 02 0 1.31E + 06 3.94E + 04 1.87E + 04 3.37E + 04

Total NEI 2017 flare 3.00E + 02 1.84E − 01 1.31E + 06 4.78E + 04 2.14E + 04 4.90E + 04

VIIRS‐only flarea 4.34E + 03 0 1.04E + 06 6.79E + 04 1.42E + 04 8.98E + 04

±178 ±744 ±237 ±3,659

VIIRS + Rystad + NEI hybrid 4.82E + 03 0 1.31E + 06 7.75E + 04 2.33E + 04 1.00E + 05

Total wFlare1b 4.42E + 03 (1,373%) 1.84E − 01 (0%) 1.04E + 06 (− 20%) 7.63E + 04 (60%) 1.69E + 04 (− 21%) 1.05E + 05 (114%)

Total wFlare2b 4.90E + 03 (1,533%) 1.84E − 01 (0%) 1.31E + 06 (0%) 8.59E + 04 (80%) 2.60E + 04 (22%) 1.15E + 05 (135%)
aSee Supporting Information S1 for method of estimating emission uncertainties. bNumbers in parentheses indicate changes in emissions from NEI 2017: for example,
100*(wFlare2 − NEI 2017)/NEI 2017.

GeoHealth 10.1029/2023GH000938

TRAN ET AL. 5 of 18



TheModels‐3/CommunityMultiscale Air Quality (CMAQ) modeling system (Byun & Schere, 2006;Wyat Appel
et al., 2018) version 5.2.1 was utilized to simulate atmospheric chemistry with Carbon‐Bond version 6 revision 3
(CB6r3) gaseous chemistry and aero6 for aerosol treatment. Meteorological inputs are derived from the Weather
Research and Forecasting model (Skamarock et al., 2008) version 4.7. WRF‐CMAQ simulations were performed
for January, April, July, and October 2016 (to represent four seasons) for a modeling domain covering the
conterminous U.S. (CONUS) in 12 km × 12 km horizontal grid resolution and 35 vertical layers (12US1 domain).
Boundary and initial chemistry conditions were taken from the hemispheric CMAQ (HCMAQ) version 5.2.1
simulation for the northern hemisphere. Evaluation of CMAQ model performance for key pollutants of interest
are briefly discussed in Text S3 in Supporting Information S1.

Twomodel scenarios included FV emissions as estimated inwFlare1 andwFlare2 (discussed above) and all other
non‐FV emissions from all other anthropogenic and natural sources in the domain. FV emissions are excluded in a
zero‐out scenario (woFlare). Simulation results of wFlare1 and wFlare2 are compared against woFlare, alter-
natively, to quantify the impact of FV emissions on air quality and human health. For brevity, however, dis-
cussions on the impacts in the following sections are based on wFlare2 scenario unless specified otherwise.

2.4. Analyses

Modeled exceedance counts are determined for each of woFlare and wFlare2 scenarios and then differences were
used to determine marginal impact of flaring and venting emissions on the National Ambient Air Quality Standard
(NAAQS) threshold(s). A modeled exceedance event is identified when concentration in any grid‐cell for any
pollutant exceeded its corresponding NAAQS for the relevant timescale: for example, Maximum Daily 8‐hr
average Ozone (MDA8O3) at any grid‐cell for any day exceeded 70 ppb. For this study, the model domain is
459 (columns) × 299 (rows) grid‐cells and there are 123 simulation days in total. Thus, there are up to
459 × 299 × 123 possibilities for MDA8O3 or Daily Average PM2.5 exceedances to occur. Note that a high
number of exceedances does not necessarily lead to violation of NAAQS.

2.5. Method for Health Impact Analyses

To estimate the health impacts of ambient ground level concentrations of PM2.5, NO2, and ozone, we used
BenMAPR, which is a geospatial health impact assessment model in R that is based on the Benefits Mapping and
Analysis Program (BenMAP) from the U.S. EPA (Sacks et al., 2018), and was used in two recent studies (Arter
et al., 2022; Buonocore et al., 2023). BenMAPR accepts gridded air pollution concentration outputs from CMAQ
and overlays them with (a) population data from the U.S. American Community Survey from the U.S. Census
Bureau; (b) data on background rates of health outcomes from the U.S. Centers for Disease Control, Health Care
Utilization Project, and BenMAP from the U.S. EPA; and (c) concentration response functions relating air
pollution exposure and changes in risks for health outcomes from the epidemiological literature. To calculate the
health impacts of flaring, we subtracted the health impacts of air pollution under the Baseline/No‐flaring scenario
from those of the wFlare2 scenario to isolate the health impacts from the flare portion of wFlare2 scenario
emissions. The estimated flaring air pollution attributable health outcomes were then monetized using valuation
methods from the U.S. EPA and existing health literature. Details of the background health data sets, concen-
tration response functions, and valuation functions are available in Tables S9 through S11 in Supporting Infor-
mation S1. Methods for additional health impact analyses, including environmental justice, are presented in Text
S2 in Supporting Information S1.

3. Results and Discussion
3.1. Flare and Venting Emissions

The inclusion of PM2.5 and SO2 to FV emissions resulted in significantly higher emissions of the two pollutants in
both wFlare1 and wFlare2 than in NEI 2017 over the entire CONUS (Table 1, Figures S2 and S3 in Supporting
Information S1). Compared to NEI 2017, FV PM2.5 emissions are 13 times and 15 times higher in wFlare1 and
wFlare2, respectively. FV SO2 emissions are more than two times higher in wFlare1 and wFlare2 than in NEI
2017. As discussed in Text S2 in Supporting Information S1, O&G SO2 emissions are highly underestimated in
the NEI 2017 and our FV SO2 emissions are likely closer to actual emissions. Since VIIRS did not detect flares in
some counties where FV emissions were reported in NEI 2017, VOC, and NOX emissions are lower in wFlare1
than in NEI 2017. In wFlare2 where excess emissions from Rystad and NEI 2017s estimates are considered, FV
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NOx emissions are 22% higher than NEI 2017 and VOC emissions match the NEI 2017s estimates. NH3

emissions are identical among all three estimates as NH3 emissions are only accounted as point flares in the NEI
2017 and no NH3 emissions were accounted for in the VIIRS‐detected flares.

Large gaps exist between VIIRS‐detected and NEI‐derived flares. Figure 1 shows NOX and PM2.5 emissions as
estimated using VIIRS flared gas volume (FGV) and as derived from point O&G flare categories from NEI 2017.
Most VIIRS‐detected flares are over O&G production fields, including Permian in NewMexico (NM) and Texas
(TX), Eagle Ford in TX, and Bakken/Williston in North Dakota (ND); whereas a lot fewer VIIRS‐detected flares
exist over other major O&G production fields such as the Barnett, Denver basin or Appalachian in Pennsylvania
(PA) (Figure 1). On the one hand, the NEI‐derived flares are reported in more O&G production fields. Over the
Denver basin in Colorado (CO), for example, most flares are from NEI‐derived data and not detected by VIIRS.
On the contrary, over the Bakken basin, the largest flare FVs are VIIRS‐detected and very few are from NEI‐
derived data.

In accordance with the distribution of VIIRS‐detected flares, emissions from FV are most noticeable in major
O&G production fields in the U.S., especially those in NM, TX, ND, CO, and WY (Figure 2). Emissions dif-
ferences between wFlare2 and wFlare1 (i.e., FV emissions accounted for in the NEI 2017 but not in VIIRS) are
shown in these states but also noticeable in Oklahoma, Kansas, Pennsylvania, Ohio, and West Virginia (Figures
S5 and S6 in Supporting Information S1). In Pennsylvania (Appalachian basin), between wFlare2 and wFlare1
there is a distinctly high FV NOx emissions hotspot which comes from a single flare‐SCC (2310021500) for
flaring from an onshore gas well completion. This distinctly high NOX emission is attributed as an artifact in NEI
2017 and is treated “as is” in this study. As PM2.5 emissions were only estimated for VIIRS‐detected flares, there
are no PM2.5 emissions differences between wFlare2 and wFlare1. PM2.5 emissions from FV account for about
82% of total O&G PM2.5 emissions (Table S6 in Supporting Information S1). In this study, FV SO2 emissions
account for 82% of total O&G SO2 emissions, and this high percentage is attributed to underestimation of O&G
SO2 emissions in the NEI 2017 (see Text S2 in Supporting Information S1). VOC emissions from FV account for
about 50% of total O&G VOC emissions over the CONUS mainly due to the inclusion of storage tank's venting.
The benefit of treating FV VOC emissions in this study, however, provides an opportunity to quantify air quality
and health benefits from potentially controlling both flaring and venting together.

This study estimates black carbon (BC) (analogous to primary PM2.5) emissions in the CONUS from FV to be
4,340 ± 178 tpy with Texas (2,244 ± 129 tpy) and North Dakota (1,713 ± 111 tpy) as the top two emitting states.
Chen et al. (2022) estimated BC emissions from upstream flaring in the CONUS to be 15,986 tpy, with ND
(10,036 tpy) and TX (4,317) as the two leading states. A different set of emission factors and heating values

Figure 2. Annual emissions (tpy) of NOX, VOC, PM2.5, and SO2 from flaring and venting (FV).

GeoHealth 10.1029/2023GH000938

TRAN ET AL. 7 of 18



applied in Chen et al. (2022) gives reason for their higher estimations of PM2.5 emissions than in this study.
Although the VIIRS‐detected flare gas volume is higher in TX (8.73 BCM) than in ND (6.09 BCM), Chen
et al. (2022) estimated higher BC in ND because of the higher heating value applied to this region. Based on in‐
situ measurements in 2013–2014, Schwarz et al. (2015) estimate BC emissions in the Bakken basin to be
1,400 ± 360 tpy, which is relatively closer to our estimates. Only about 0.36 Gg per year (or 397 tpy) of BC
emissions from flaring in the Bakken basin were estimated by Weyant et al. (2016).

Dix et al. (2019) estimated NOX emissions fromVIIRS‐detected flaring in 2018 in the Permian and Bakken basins
to be 12.6± 0.6 and 11± 0.6 tons per day (equivalent to 4,599± 219 tpy and 4,015± 219 tpy), respectively. Using
the same VIIRS‐detected flare approach, Francoeur et al. (2021) estimated NOX emissions from flaring in 2015 to
be 3,650± 2,847 tpy in Permian, 2,628± 1,752 tpy in Bakken, 21.9± 14.6 tpy in Denver‐Julesburg and 14.6± 11
tpy in the Marcellus (Appalachian). Our estimates of NOx emissions from VIIRS‐detected flares in 2019 are
6,925 ± 169 tpy in Permian, 5,355 ± 149 tpy in Bakken, 82 ± 8 tpy in Denver‐Julesburg, and 33 ± 7 tpy in
Appalachian, and given that VIIRS‐detected flared gas volume in 2019 is the highest in recent years (Table S4 in
Supporting Information S1) (Note that it is unclear how emission uncertainties were determined for each O&G
basin in Francoeur et al. (2021) and Dix et al. (2019)).

3.2. Impact of Flaring and Venting on Air Quality

Domain‐wide annual average impacts of FV on O3, NO2, and PM2.5 concentrations in the CONUS are relatively
small (<0.15%). However, the impacts greatly vary with locations and seasons (Figure S7 through S12 in
Supporting Information S1), with the strongest impacts typically occurring in areas with intense FV emissions
(Figure 3), emphasizing the advantage of the detailed treatment of the emissions and processes at the modeled grid
resolution of 12 km × 12 km over the entire country.

Figure 3. Annual‐average of MDA8 Ozone (ppb), 24‐hr average PM2.5 (μg/m
3), daily‐average and daily‐maximum NO2

(ppb), SO2 (ppb) contributed by FV (i.e., differences between wFlare2 and woFlare).
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3.2.1. Impacts on MDA8O3

FV's impact on O3 is stronger in January than in other months (Figure S9 in Supporting Information S1). FV is
found to contribute 4%–47% (4–16 ppb) and 2%–15% (2–10 ppb) of MDA8O3 in January and July, respectively,
over FV‐major areas (e.g., Permian, Denver, Bakken). Among O&G production fields with emissions from FV
(referred hereafter as FV‐major areas), the Denver basin observed the highest FV impact on MDA8O3 (up to 16
ppb or 47%, occurred in January indicating FV contribution to wintertime ozone) followed by Bakken (10 ppb,
19%, July) and Permian (7 ppb, 11%, October) as the second and third highest impacted basins. The impact on
MDA8O3 is also noticeable in areas within 100 km of FV‐major areas (4–6 ppb or 9%–30%) but reduces to less
than 1 ppb (5%) elsewhere. We found high NOX emissions in the Appalachian basin enhanced O3 formation for
the area in July (up to 3 ppb) but suppressed O3 formation by as much as − 3.5 ppb in other months (Figure S9 in
Supporting Information S1). Differences in FV's impact on O3 between wFlare2 and wFlare1 scenarios (Figure
S8 in Supporting Information S1) closely follow the differences in NOX and VOC emissions between the two
scenarios (Figure S6 in Supporting Information S1) and is less than 2 ppb for impacts on MDA8O3.

Note that the CMAQ domain used in this study at a 12 km × 12 km horizontal resolution could cause potential
biases in the estimated ozone impacts from FV. Flares are small point sources, which create plumes of reactive
hydrocarbons and NOX that are subgrid‐scale. Due to non‐linear ozone formation with NOx, the formation of
ozone inside these plumes will proceed differently than in the grid‐based model treatment, where emissions are
instantaneously diluted into the much larger model grid‐cell as compared to narrow emissions plumes. Ola-
guer (2012b, 2012a) showed that degrading the model domain from 200 m to 1 km horizontal resolution could,
depending on the emission compositions, either enhance or reduce the estimation of ozone impacts from a flare
source.

3.2.2. Impacts on NO2

FV's impacts on NO2 are particularly heterogeneous over space and time. FV emission driven increases in NO2

concentrations are mostly localized to areas with FV emissions, and reduction of NO2 are observed in some areas,
especially downwind of the Denver‐Julesburg and Uinta basins (Figure 3, Figure S10 in Supporting Informa-
tion S1). The response of NO2 concentration to FV's emissions depends on local background chemistry. During
the daytime, NO2 and NO interconvert through photolysis reactions and through reactions with O3, organic (ROx)
and hydrogen oxide radicals (HOx). NOX is terminated by forming nitric acid (HNO3) and dinitrogen pentoxide
(N2O5, nighttime only), in which both are precursors of nitrate aerosols. Within the immediate proximity of FV
sources, NOX together with VOC‐enhanced NO‐to‐NO2 conversion due to emissions from FV results in net
increase of NO2 as observed in most FV‐major areas. Unlike most other O&G basins where NOx is limited, the
Denver‐Julesburg (McDuffie et al., 2016) and the Uinta (Ahmadov et al., 2015; Edwards et al., 2013, 2014) basins
are known to have background conditions which are NOX‐rich. However, downwind of FV sources in these two
basins, the increased NOX and VOC from FV enhances the HOX‐NOX cycle quenching effect (as discussed in
Womack et al., 2019), which results in reduction of NO2. NO2 reductions that occurred elsewhere in the model
domain are insignificant (<0.005 ppb) and are attributed to numerical artifacts in the grid resolution used.

Since the partition of nitrate to aerosol is favorable under low temperature conditions (Ansari & Pandis, 1998;
Park, 2004), loss of NO2 through this pathway is higher in January than other months and is lowest in July (Figure
S10 in Supporting Information S1). Monthly average hourly NO2 decreases by 0.1 ppb in January in the
downwind areas of Denver and Uinta basins, and parts of these areas observe an increase by 0.5 ppb in monthly
average hourly NO2 in July. The Appalachian basin observes the highest contribution of hourly (up to 8 ppb, or
46% of total NO2) and daily‐maximum (up to 25 ppb, 56%) NO2, both in July, from FV, followed by the Denver,
Permian and Bakken basins where observed contributions in 2–6 ppb (8%–30%) and 2–20 ppb (18%–36%) to
hourly and daily‐maximum NO2 are seen, respectively, with highest contributions often seen in January or July.
Elsewhere in the CONUS, other than FV‐majors and their downwind areas, changes in monthly average of NO2

are negligible (±0.02ppb, ±0.4%) in both hourly and daily maximum (Figure 3).

3.2.3. Impacts on PM2.5

FV's contribution to annual PM2.5 is less than 0.01 μg/m
3 (or 0.2% of total PM2.5 on average over the CONUS) but

is spatially heterogenous. It contributes 0.1 μg/m3 (3%) over Permian, 0.1 μg/m3 (4%) over Bakken, 0.01 μg/m3

(0.2%) over Appalachian, 0.02 μg/m3 (0.9%) over Powder River, and 0.1 μg/m3 (1.2%) over Denver basins
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(Figure 3). The Denver basin observed the highest FV's contribution by as much as 5 μg/m3 to daily average
PM2.5, whereas highest contributions in other FV‐major areas are up to 1.5 μg/m

3. Negative PM2.5 contributions
(reductions due to FV emissions) occurred in Minnesota, Iowa, and other states in the northeast of the CONUS in
January, but at a relatively small margin (up to 0.06 μg/m3 on monthly average). Positive monthly average PM2.5

contribution from FV is greatest in January (up to 1.4 μg/m3, 10%) and lowest in October (0.5 μg/m3, 16%)
(Figure S11 in Supporting Information S1). On average over the CONUS, however, FV's contribution to monthly‐
average of PM2.5 is larger in July (0.018 μg/m

3; 0.5%) than in January (0.012 μg/m3; 0.3%) due to negative PM2.5

contributions (or PM2.5 reductions) mostly occurring in January (Figure S12 in Supporting Information S1).

FV's contribution to PM2.5 varies with PM2.5 compositions which differ significantly among FV‐major as well as
non‐FV areas (Figure S12 in Supporting Information S1). In areas outside FV‐major areas, sulfate aerosol (SO4

− )
is the largest component (48%), followed by elemental carbon (EC; 18%), NH4

+ (15%), organic carbon (OC,
10%) and NO3

− (4%). In the Bakken basin, the major PM2.5 component is EC (61%), followed by NO3
− (22%),

SO4
− (14%) and less than 3% of other components. A similar distribution is observed in the Permian basin where

50% of PM2.5 is EC followed by NO3
− (29%), SO4

− (12%), OC (7%) and NH4
+ (2%). Differing significantly from

other FV‐major areas, PM2.5 in the Denver basin has NO3
− as a major component (42%), followed by EC (28%),

NH4
+ (13%), OC (12%) and SO4

− (2%). In relevant to earlier discussions on NO2 formation in FV‐major areas,
FV's contributions NO3

− and NH4
+ aerosols are largest in Denver basin. Meanwhile, FV's contributions to EC

and SO4
− are largest in Bakken basin. Reductions of NO3

− and OC aerosol led to reductions of total PM2.5 in
Minnesota, Iowa, and other states in northeast of the CONUS (Figure S12 in Supporting Information S1). Since
there is negligible difference in primary PM2.5 emissions from FV between wFlare2 and wFlare1, the differences
in PM2.5 contributions between the two scenarios (<0.164 μg/m

3 on annual average) are caused by secondary
aerosols which are dominated by their inorganic components, that is, NO3

− and SO4
− (Figure S8 in Supporting

Information S1).

We found PM2.5 contributions from FV are mainly driven by its contribution of SO2 and primary PM2.5 (mostly
EC) emissions across the CONUS especially in FV‐major areas. Whereas in Denver basin and its downwind
areas, we found increases in NO3

− due to FV emissions enhancing the formation of nitric acid which favors the
formation of NO3

− .

3.2.4. Impacts on Exceedance Counts

Overall, FV emissions caused over 210 instances of MDA8O3 exceedances (MDA8O3 > 70 ppb) over four
simulated months in 2016. This is about one‐third of MDA8O3 exceedances caused by the O&G sector in 2016
reported by Buonocore et al. (2023). In this study, MDA8O3 exceedances are largest in counties of the Denver
basin and its downwind area, followed by counties in Permian basin and those in Pennsylvania and Michigan
(Table S7 in Supporting Information S1). FV contributes to no MDA8O3 exceedances in January and most of its
exceedance contribution occurred only in the summer month of July. Since we modeled only one summer month,
we anticipate that the annual count of MDA8O3 exceedances could be even higher for a typical summer season.

Contributions of FV to daily PM2.5 exceedances (PM2.5 > 35 μg/m3) are small. While FV added two additional
PM2.5 exceedances in Pennsylvania and New Jersey, it also reduced two exceedances inMinnesota and NewYork
due to a reduction of PM2.5 in these two states in the winter. For comparison, Buonocore et al. (2023) found 29
instances of PM2.5 daily exceedances caused by O&G sector in 2016. If PM2.5 daily NAAQS were lowered to
30 μg/m3, FV emissions would contribute 10 instances of exceedances over four simulated months. No additional
annual PM2.5 exceedances (annual average PM2.5 > 12 μg/m3) were found. FV would have contributed 3 and 1
additional instances of annual exceedances in Pennsylvania and Illinois, respectively, if the annual PM2.5 standard
were lowered to 10 μg/m3 (U.S. EPA, 2023a, 2023b).

FV causes no additional NO2 exceedances (NO2 > 100 ppb), which is expected given that Buonocore et al. (2023)
found no NO2 exceedances caused by total O&G in 2016. However, if the 1‐hr NO2 standard were lowered to 60
ppb, then it would add 9 instances of exceedances in Colorado and 1 instance in Florida.

Buonocore et al. (2023) estimated that in 2016 the O&G sector contributed 0.6 ppb of O3, 0.17 ppb of NO2 and
0.065 μg/m3 of PM2.5 on average over the CONUS. This study found the corresponding contributions from FV
are 0.026 ppb, 0.03 ppb and 0.008 μg/m3, respectively. Since FV emissions do not exist in all areas with O&G
activities, such relatively small FV's contribution in comparison to total O&G when taking average over the
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CONUS is anticipated. However, the highest FV's contributions to MDA8O3 (15 ppb), daily maximum NO2 (25
ppb) and daily average PM2.5 (5 μg/m3) are much higher than the values found for total O&G by Buonocore
et al. (2023) (3 ppb, 17 ppb, and 1.7 μg/m3, respectively), emphasizing the near‐field impacts of FV that one
should focus on. Note that this study combined O&G emissions from NEI 2017 and FV emissions calculated
based on VIIRS‐Rystad‐NEI hybrid data set, whereas Buonocore et al. (2023) utilized O&G emissions from NEI
2016 as is. Regardless, this finding illustrated that estimation of impacts on O&G sectors on air quality, and
consequently human health, could greatly vary with input emissions, and improvements in the emissions esti-
mates as we have done provide increased confidence in the modeled estimates.

3.3. Health Impacts of Flaring and Venting

Our results show in 2016, emissions due to flaring in Flare Scenario 2 have a mortality burden of 710 (95% CI:
480–1,100) excess deaths attributable to PM2.5, NO2, and ozone compared to baseline scenario emissions.
Additionally, our results show an estimated annual excess of 73,000 (95% CI: 46,000–110,000) childhood asthma
exacerbations, 92 (95% CI: 58–140) childhood asthma emergency department visits, and 10 (95% CI: 6.4–15)
asthma hospitalizations attributable to PM2.5, NO2, and ozone. An excess of 190 (95% CI: 66–300) childhood
asthma incidence and 130 (95% CI: 50–120) respiratory hospitalizations were also found, for combinations of
PM2.5 and NO2, and PM2.5 and ozone, respectively.

A recent paper (Buonocore et al., 2023) using a similar framework and data inputs showed that the health burden
of O&G as a whole is 7,500 (95% CI: 4,500–12,000) deaths, 410,000 (95% CI: 9,200–810,000) childhood asthma
exacerbations, and 2,200 (95% CI: 830–3,200) childhood asthma incidences. Comparing these two studies in-
dicates that flaring and venting contributes just under 10% of the mortality cases and incident asthma cases from
O&G production, and around 5.4% of the asthma exacerbations from O&G production. FV contributes 2% of
NOx emissions, 81% of SO2, 51% of VOCs, and 18% of PM2.5 fromO&G. The relative proportions that NO2 from
flaring contributes to total sector deaths and asthma exacerbations (Table S11 in Supporting Information S1)
indicate the strong role of NO2 in driving total health impacts.

Asthma outcomes calculated using all Alhanti CRFs (for NO2, PM2.5, and ozone) are approximately three times
larger than those calculated using all the Orellano CRFs (NO2 and PM2.5). The increase in cases is predominantly
due to the inclusion of ozone, which accounted for nearly 60% of all Alhanti asthma outcomes. Estimates due to
PM2.5 and NO2 were consistently higher for Alhanti than for Orellano. All three asthma related outcomes esti-
mated by Alhanti were three times larger than those estimated by Orellano (Table S11 in Supporting
Information S1).

Figure 4 presents spatial distribution of FV air pollution‐attributable deaths in 2016. Texas observed the highest
FV‐attributed premature deaths at 133 incidences, of which 76, 51, and 6 incidences are caused by PM2.5, O3, and
NO2, respectively. The second (115) and third (76) highest premature deaths are observed in Pennsylvania and
Colorado, respectively. The top three numbers of FV‐attributed asthma incidences by state are also observed in
Texas (14,935), Colorado (13,748), and Pennsylvania (11,184). Although being an FV‐major area, only 6 pre-
mature deaths and 464 asthma incidences were observed in North Dakota, which is explained by the transport of
these emissions to downwind locations. Between 20 and 30 FV‐attributed premature deaths and 2,000 to 3,000
asthma incidences are observed in Illinois, New York, Ohio, and Oklahoma.

Of the 710 deaths attributable to wFlare2, 1 in 3 occurred in low‐income census tracts, 1 in 10 occurred in tracts
identified as 65th percentile or higher for Native persons (i.e., greater than or equal to 2%Native populations), and
1 in 3 occurred in tracts identified as 65th percentile or higher for Hispanic/Latino‐identified persons (i.e., greater
than or equal to 14% Hispanic/Latino populations) (Table S12 in Supporting Information S1). Similar proportions
of impact were seen for childhood asthma exacerbations among low‐income and Native‐identified tracts, and a
slightly larger proportion of impact was seen among Hispanic/Latino‐identified tracts (40%). Low income‐
identified tracts had 1.1 times the risk of premature mortality from wFlare2 exposure than tracts not identified
as low income (Table S13 in Supporting Information S1). Native‐identified tracts had 1.2 times the risk of
premature mortality and 1.1 times the risk of childhood asthma exacerbations from wFlare2 exposure than non‐
Native‐identified tracts. Hispanic/Latino‐identified tracts had 1.1 times the risk of childhood asthma exacerba-
tions than non‐Hispanic/Latino‐identified tracts. Pollutant exposure from wFlare2 was not found to dispropor-
tionately increase the risk of premature death among census tracts identified as Hispanic/Latino, or to
disproportionately increase the risk of childhood asthma among low‐income tracts.
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Table 2 shows that the monetized values of the health impacts due to FV total $7.4B, while Buonocore
et al. (2023) reported $77B from the entire OG sector, indicating a rather significant (∼10%) contribution of FV to
the overall monetized health risk from the OG sector. Industry analysis (Rystad Energy, 2022) indicates that
solutions for operators to address flaring and capture this otherwise wasted gas are readily available and cost‐
effective, and even potentially profitable. The results of this study reveal the near‐term air quality health bene-
fits from addressing flaring and venting emissions. Since ∼90% of the health impacts of O&G production
originate from outside flaring, and since NO2 has such a strong role, this indicates that the health benefits of
emission control strategies can be increased by expanding coverage to more NOX‐rich subsectors of the O&G
production sector, such as compressors and pumpjack engines, well drilling, and completions, in addition to the
solutions for reducing FV emissions.

3.4. Limitations

The analysis year for this study is 2016/2017 based on availability of various input data sets. The flaring volume
applied in this study was estimated for 2019, which is the highest estimate from VIIRS throughout the 2017–2022
period (EOG, 2023). So, our flaring emissions estimates in this study could be lower in most recent years. On the
other hand, the emissions inventories used here may still be underestimated due to missing flares invisible due to
cloud cover and flares too small to detect via satellite. Not all compressor engines are reported in the NEI, and it is
possible that other sources are similarly underreported. While the 12 km × 12 km grid used here is the finest grid
readily available for a national scale study, it still may not be fine enough to detect high air pollution hotspots in
the immediate vicinity of sources, especially those that may coincide with areas that have high rates of back-
ground disease, and thus have potentially higher impacts at community scale.

Only the average emission estimates from FV using VIIRS data as shown in Table 1 were used in the air quality
modeling and heath impact analyses. Furthermore, as discussed earlier, not all uncertainties (e.g., uncertainties in
VIIRS FGV) were accounted for in the emission estimates. However, we expect impacts of such emission un-
certainties on the air quality modeling results to be insignificant given the small magnitude of uncertainties
(standard deviation of emissions <4%) and the small impact of flaring and venting (its contribution to critical
pollutants <0.15%).

Figure 4. FV air pollution‐attributable deaths in 2016.
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Although VIIRS‐based emission estimates from FV in this study are shown to be higher than estimates in NEI
2017, neither estimate was further evaluated for its accuracy given the absence of large scale (e.g., county‐level or
O&G basin‐wide) measurements of emissions from FV facilities. VIIRS's observation is considered as state‐of‐
the‐art method for detecting flare volumes and used in other recent studies (Chen et al., 2022; Dix et al., 2019,
2022; Francoeur et al., 2021; Zhang et al., 2015, 2021), offering better quantification of FGV than the FGV used
in the NEI estimates which were based on underreported data from O&G facilities (BBC, 2022; DOE, 2019).
However, multiple assumptions in heating values and emission factors are applied to this VIIRS's FGV, as
discussed elsewhere in this manuscript, which lead to potential uncertainties in these emission estimates. While
the overall modeling framework and methods used in our study are robust, well established and used in multiple
prior health assessment studies, uncertainties in these emission estimates along with those from air quality models
and health incidence input data sets further impact potential accuracy in our reported health incidence estimates
from flaring and venting.

While the health impact modeling uses the best background health data available, some outcomes only have
data at state or national resolution—missing potential hotspots for diseases, most notably asthma. Additionally,
since the health modeling framework exclusively captures health impacts due to exposure to the three pol-
lutants ozone, PM2.5, and NO2, this model is unlikely to fully capture many of the complex, multifactorial
impacts occurring in communities hosting O&G production. These health outcomes include but are not limited

Table 2
Monetary Valuation of Health Impacts (in wFlare2 Scenario)

Health impact

Flaring health impact outcomes, based on pollutant type

Pollutant type Number of cases (95% CI) Monetary valuation ($1 million) (95% CI)

Premature Deaths PM2.5 360 (300–420) 3,700 (1,900–6,000)

O3 230 (120–470) 2,400 (720–6,800)

NO2 120 (61–180) 1,300 (380–2,700)

All Three 710 (480–1,100) 7,300 (3,000–16,000)

Asthma Incidence PM2.5 140 (47–230) 8.2 (1.1–22)

NO2 47 (19–65) 2.8 (0.46–6.1)

PM2.5 and NO2 190 (66–300) 11 (1.6–28)

Asthma Hospitalizations (Alhanti) PM2.5 1.3 (0.63–2.5) 0.023 (0.012–0.046)

O3 5.7 (3.2–8.1) 0.1 (0.059–0.15)

NO2 3.2 (2.5–4.5) 0.058 (0.046–0.081)

All Three 10 (6.4–15) 0.18 (0.12–0.28)

Asthma Exacerbations (Alhanti) PM2.5 9,700 (4,900–19,000) 0.58 (0.11–1.9)

O3 43,000 (24,000–61,000) 2.5 (0.53–6)

NO2 21,000 (16,000–29,000) 1.2 (0.36–2.8)

All Three 73,000 (46,000–110,000) 4.3 (0.99–11)

Asthma ED Visits (Alhanti) PM2.5 13 (6.3–25) 0.006 (0.003–0.012)

O3 54 (31–77) 0.024 (0.013–0.036)

NO2 25 (20–36) 0.011 (0.009–0.017)

All Three 92 (58–140) 0.042 (0.025–0.065)

Respiratory Hospitalizations PM2.5 19 (9.8–28) 0.57 (0.29–0.84)

O3 110 (40–180) 3.4 (1.2–5.5)

PM2.5 and Ozone 130 (50–210) 3.9 (1.5–6.4)

Heart Attacks PM2.5 16 (9.7–23) 1.1 (0.68–1.6)

NO2 6.9 (3.7–10) 0.48 (0.26–0.7)

PM2.5 and NO2 23 (13–33) 1.6 (0.94–2.3)

Total 7,400 (3,000–16,000)
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to adverse birth outcomes (Willis et al., 2022), asthma (Willis et al., 2018), and childhood leukemia (Clark
et al., 2022).

The environmental justice analysis that we conducted was not comprehensive of all Justice40 Initiative indicators
(Council on Environmental Quality, 2022) that were available. Future research could consider including other
populations at risk of environmental exposures as defined by CJEST (Council on Environmental Quality, 2022).
Furthermore, the U.S. Census Bureau American Community Survey (ACA) data underreports the true number of
Native peoples living in the U.S. (Smithsonian, 2023), and the undercounting and misclassification of Native
peoples in health databases (Jim et al., 2014; Stehr‐Green et al., 2002) along with existing cultural, structural, and
social barriers to health care (USCCR, 2004) contribute to the true representation of Native persons and their
health status (Adakai et al., 2018). Having access to the true number of Native peoples and fairly represented
mortality and asthma outcomes could alter our health impact calculations.

Despite these limitations, this study still produces a robust estimate of health impacts of flaring by using the best
data available for emissions from flaring from two different sources. This study also uses a novel health impact
assessment framework that includes health impacts of direct NO2 exposure, and health outcomes not regularly
included in air pollution health impact assessments, most notably birth and children's health outcomes.

4. Conclusions
Combining satellite‐based observation of flare activities in O&G activities and a new set of emission factors
resulted in higher emissions from FV in the U.S. than what was reported in the EPA's NEI. Impacts of FV on air
quality are most noticeable and significant within FV‐major areas and their immediate downwind regions, even
though domain‐wide averages are relatively small compared to the overall O&G impacts. However, the FV sector
still contributes up to about $7.4B (about 10%) of the total burden of health risk from O&G, and thus highlighting
the potential need to focus on them for protecting public health. Of the total 710 premature deaths estimated from
FV, 360 are attributed to PM2.5, 230 to O3, and 120 to NO2. This finding signifies that while most health impact
studies so far have been focused on PM2.5, health impact from O3 and NO2 should not be overlooked. Findings
from this study suggest controlling emissions from flaring and venting from O&G production, besides being cost
effective and profitable to the operators, additionally provides an opportunity for yielding significant public
health benefits.
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inventories (NEI) data for 2016 and 2017 were downloaded from U.S. EPA Emission Modeling Platforms,
publicly available at EPA (2023b). Flare stack parameters were estimated with reanalysis II wind data from
NOAA Physical Sciences Laboratory, publicly available at NOAA (2023). Baseline health and economic data
were extracted from U.S. EPA BenMAP model which is publicly available at EPA (2023a). Mortality and
population counts for individual counties for the entire U.S. for adults ≥25 years and infants <1 year old were
obtained from Centers for Disease Control and Prevention Wide‐ranging ONline Data for Epidemiologic
Research—CDCWONDER, available through request at CDC (2023a); user's agreement to data use restrictions
is required. National trends in healthcare utilization, access, charges, quality, and outcomes were obtained from
Healthcare Cost and Utilization Project (HCUP), publicly available at AHRQ (2022). Asthma exacerbations were
evaluated with asthma prevalence data from Center for Disease Control and Prevention; publicly available at
CDC (2018) and CDC (2023b). Environmental justice analysis was performed with data from the Climate and
Economic Justice Screen Tool—CJEST, publicly available at CEQ (2023). Emission data was processed using
the Sparse Matrix Operator Kernel Emissions—SMOKE version 4.8, publicly available at Baek and Seppa-
nen (2020). Air quality simulations were performed using the CommunityMultiscale Air Quality—CMAQmodel
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version 5.2.1, publicly available at EPA (2018). Source code of the BenMAPR is publicly available at
jjbuonocore (2023).
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