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Opioid use disorder (OUD) and deaths from drug overdoses have reached
unprecedented levels. Given the enormous impact of the opioid crisis on public health,
a more thorough, in-depth understanding of the consequences of opioids on the
brain is required to develop novel interventions and pharmacological therapeutics.
In the brain, the effects of opioids are far reaching, from genes to cells, synapses,
circuits, and ultimately behavior. Accumulating evidence implicates a primary role for
the extracellular matrix (ECM) in opioid-induced plasticity of synapses and circuits, and
the development of dependence and addiction to opioids. As a network of proteins
and polysaccharides, including cell adhesion molecules, proteases, and perineuronal
nets, the ECM is intimately involved in both the formation and structural support of
synapses. In the human brain, recent findings support an association between altered
ECM signaling and OUD, particularly within the cortical and striatal circuits involved
in cognition, reward, and craving. Furthermore, the ECM signaling proteins, including
matrix metalloproteinases and proteoglycans, are directly involved in opioid seeking,
craving, and relapse behaviors in rodent opioid models. Both the impact of opioids
on the ECM and the role of ECM signaling proteins in opioid use disorder, may, in
part, depend on biological sex. Here, we highlight the current evidence supporting sex-
specific roles for ECM signaling proteins in the brain and their associations with OUD.
We emphasize knowledge gaps and future directions to further investigate the potential
of the ECM as a therapeutic target for the treatment of OUD.

Keywords: opioids, extracellular matrix, addiction, neuroinflammation, opioid use disorder (OUD), sex differences

INTRODUCTION

In the United States, rates of opioid use disorder (OUD) and deaths from overdose have continued
to climb over recent years, particularly in adolescents and young adults. Accompanying a rise in
deaths from drug overdose has been a steady increase in the number of people diagnosed with
OUD. Current estimates reflect more than 3 million people have OUD, with an estimated 200,000
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new diagnoses annually. Despite the enormous public health
impact of OUD, we lack a basic understanding of the
neurobiological mechanisms that contribute to OUD and the
associated health consequences. OUD is a chronic, relapsing
brain disease that can be managed by long-term medical
interventions and maintenance therapies such as methadone
or buprenorphine. Yet, ∼90–95% of people with OUD relapse
despite treatment, as cravings and other challenges such as
protracted withdrawal, persist for weeks, months, and years
(Smyth et al., 2010; Kadam et al., 2017; Montiel Ishino et al.,
2020). Discovering new interventions and therapeutics for the
treatment of OUD will require massive, parallel efforts, across
multiple clinical and basic research domains. A critical effort will
be necessary to further define the diverse array of consequences
of chronic opioid use on the brain and body, along with an in-
depth investigation into the cellular and molecular mechanisms
in the brain involved in opioid reward, craving, and relapse.

Opioids lead to long-lasting changes in gene transcription,
protein signaling, receptor activity, synaptic morphology and
plasticity, as well as neural circuit function that contribute to the
development of addiction (Hearing, 2019; Li et al., 2019; Madayag
et al., 2019; Song et al., 2019; Valentinova et al., 2019; Koob,
2020; Jiang et al., 2021; Seney et al., 2021; Tavares et al., 2021;
Trieu et al., 2022; Xue et al., 2022). A major class of signaling
proteins involved in opioid-induced neural plasticity, include cell
adhesion molecules (CAMs), matrix metalloproteinases (MMPs),
and proteoglycans, and these proteins provide structural support
to neurons, astrocytes, microglia in the formation of the
extracellular matrix (ECM) and perineuronal nets (PNNs). ECM
signaling proteins are involved in neurotransmission, synaptic
plasticity, and vascular integrity in the brain. Over the recent
decade, the ECM has become a focus as a major contributor to
long-lasting neuroadaptations accompanying various processes,
including learning, stress, and opioid use disorder.

ROLE FOR EXTRACELLULAR MATRIX
SIGNALING PROTEINS IN OPIOID USE
DISORDER

In the brain, the ECM is critical in the regulation of synaptic
function, blood-brain barrier integrity, and cell-to-cell
communication. The scaffolding of the ECM comprises
polysaccharides and glycoproteins that provide the necessary
structure to support communication between neurons,
astrocytes, and microglia, and helps facilitate both the formation
of new synapses and tuning of synaptic functions (Dityatev
et al., 2010; Ferrer-Ferrer and Dityatev, 2018). In particular, the
ECM signaling proteins, MMPs, are implicated in opioid reward
and addiction (Ishiguro et al., 2006). MMPs are multifunctional
proteases involved in a variety of cellular pathways and processes
including inflammation, cell migration, and angiogenesis
(Visse and Nagase, 2003).

Opioids likely augment the activity of MMPs in the brain,
substantially remodeling the ECM, potentially leading to opioid-
induced changes in astrocyte-neuronal communication, synaptic
plasticity, and trafficking of excitatory receptors (Figure 1;

Michaluk et al., 2009, 2011; Huntley, 2012). For example,
opioids lead to increased expression of both MMP-2 and
MMP-9 in cell lines (Gach et al., 2011), and notably, in the
rodent (Chioma et al., 2021), and human (Kovatsi et al., 2013;
Seney et al., 2021) brain. Both MMP-2 and MMP-9-dependent
signaling may be important for opioid-induced degradation in
the integrity of the blood-brain barrier and an increase in
neuroinflammation associated with OUD in the human brain
(Huntley, 2012; Dal-Pizzol et al., 2013; Song et al., 2015; Rempe
et al., 2016; Hannocks et al., 2019; Seney et al., 2021; Akol
et al., 2022). Indeed, OUD is associated with alterations in
ECM signaling and dopaminergic, GABAergic, and opioidergic
neurotransmission, along with increased neuroinflammation in
the human dorsolateral prefrontal cortex and nucleus accumbens
(Seney et al., 2021), major neural substrates for cognition,
impulsivity, and reward. Consistent with this, intravenous self-
administration of heroin leads to elevated activity of MMP-2 and
MMP-9 in the nucleus accumbens of both male and female rats
(Chioma et al., 2021). Notably, MMP activity returns to below
baseline levels following extinction of heroin self-administration
behavior (Chioma et al., 2021). Opioid-induced increases in
MMP activity are preferential to dendritic spines of dopamine
receptor 1-expressing (D1+) medium spiny neurons (Chioma
et al., 2021). In D1+ medium spiny neurons, MMP-9 activity
seems to be acutely upregulated by heroin, returning to control
levels after the removal of the drug and/or drug-cue (Chioma
et al., 2021). As one of the major cell types in the nucleus
accumbens that regulates drug reward-related behaviors, D1+
medium spiny neurons and associated MMP activity may serve
as a key mechanism in the response to both opioid-induced and
context-dependent neural plasticity (Smith et al., 2014). In mice,
opioid administration also increases MMP-9 activity to modulate
dopaminergic neurotransmission from the ventral tegmental area
to nucleus accumbens (Nakamoto et al., 2012).

Changes in MMP-2 and MMP-9 have been found in the
blood from people being treated for morphine dependency
(Najafi et al., 2018). While MMP-2 activity is increased in
the serum of morphine-dependent patients, MMP-9 activity is
decreased (Najafi et al., 2018). Other studies report elevated
MMP-9 in blood from patients with OUD during opioid
withdrawal (Salarian et al., 2018). Interestingly, both studies
suggest MMP-9 reflects a possible treatment response, as the
expression and activity of the MMP-9 are reduced by methadone
therapy (Salarian et al., 2018) and other treatments (Najafi
et al., 2018). Changes in MMP expression in the blood of
patients being treated for opioid dependency and addiction
may reflect functional alterations in the central nervous system
that are critical in the development of tolerance and physical
dependence. For example, MMP-9 is increased in the brain and
spinal cord of mice administered morphine across multiple days
and contributes to the development of morphine tolerance for
nociception (Nakamoto et al., 2012) and physical dependence
(Liu et al., 2010). Pharmacological blockade of MMP activity
or knockout of MMP-9 prevents the development of morphine
tolerance for nociception (Nakamoto et al., 2012). Morphine-
induced upregulation of MMP-2 and MMP-9 production
has been indicated in ECM maintenance, particularly as it
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FIGURE 1 | Synaptic morphology and function are regulated by ECM signaling proteins and microglia. The components of the ECM lie proximal to brain capillaries
and vessels, condensed as PNNs around cell bodies, including neurons, astrocytes, and microglia, along with synapses and dendrites of neurons. ECM
components are also distributed amongst cells of the brain within the parenchyma. Hyaluronan is primarily located in the neural interstitial matrix of the parenchyma.
Hyaluronan is involved in the regulation of inflammation and myelination in the brain, including remyelination after insult or injury. Opioids lead to an increase in
neuroimmune activation by microglia and other immune cell types in the brain. An induction of immune activation in the brain can lead to increased expression and
activity of tPAs, MMPs, CAMs, and Collagen IV (Webersinke et al., 1992; Roberts et al., 2018). Augmented activity of these ECM signaling proteins remodels the
ECM, with consequences on dendritic spine morphology, including the reduction of spine number in key regions associated with OUD (e.g., prefrontal cortex and
nucleus accumbens). CAMs, cell adhesion molecules; CS-GAGs, chondroitin sulfate glycosaminoglycans; ECM, extracellular matrix; MMPs, matrix
metalloproteinases; NF-κB, nuclear factor kappa B; OUD, opioid use disorder; PNNs, perineuronal nets; TIMP, tissue inhibitor of metalloprotease; TIMP1, TIMP
metallopeptidase inhibitor 1; TLR2, toll-like receptor 2; tPA, type plasminogen activator. Figure created using BioRender.

pertains to type IV collagen degradation and recycling (Gach
et al., 2012). Specifically, opioid-induced alterations in MMP-
2 activity are driven by the nitric oxide/nitric oxide synthase
(NO/NOS) system, which in turn is regulated by receptor
families independent of the µ-opioid receptor, thereby indicating
a need for further research in opioid receptor crosstalk and
subsequent downstream signaling cascades. Of note, NO/NOS-
related mechanisms are involved in opioid-induced inhibition of
MMP-9 activity in an opioid-receptor-dependent manner (Gach
et al., 2012). Therefore, ECM protein levels in the context of
opioid use are tightly regulated by mechanisms dependent and
independent of opioid receptor activity and are intertwined with
the NO/NOS system. Taken together, these findings suggest
that increases in MMP-2 and MMP-9 expression following
opioid administration may be critical for behavioral tolerance
and dependence as well as drug- and context-induced neural
plasticity. Future studies should examine MMP-2 and MMP-9 in
preclinical addiction model behaviors to examine their validity as
potential therapeutic targets.

A subset of MMPs, including MMP-2 and MMP-9, are
activated by the serine protease tissue-type plasminogen activator
(tPA), a key regulator of drug-induced synaptic plasticity and
remodeling in major reward pathways of the brain (Calabresi
et al., 2000; Sternlicht and Werb, 2001; Samson and Medcalf,

2006). Opioid administration leads to increases in tPA levels
in the prefrontal cortex, hippocampus, and nucleus accumbens
(Nagai et al., 2004). Importantly, the increases in tPA and MMPs
during opioid administration are critical for the development of
opioid tolerance (Yan et al., 2007; Nakamoto et al., 2012). tPA
is also involved in locomotor sensitization to morphine (Bahi
and Dreyer, 2008) and regulates the acquisition and maintenance
of morphine self-administration behaviors (Yan et al., 2007),
presumably via the modulation of dopamine neurotransmission
in the striatum (Nagai et al., 2004; Yan et al., 2007). While
increases in tPA and MMP are consistently found following
opioid administration (Figure 1), the specific roles of tPA and
MMP in opioid seeking, craving, and relapse behaviors, as
related to OUD are unknown, requiring more studies into the
potential crosstalk between tPA and MMP pathways in brain and
behavioral plasticity associated with chronic opioid use.

Another class of ECM proteins called cell adhesion molecules
(CAMs) may be involved in opioid reward-related behaviors and
OUD. CAMs facilitate interactions between the ECM and various
cell types in the brain. CAMs bind to other cell adhesion proteins
and neighboring neurons to regulate neuronal growth, synaptic
plasticity, and function. In the brain, some of the more common
CAMs include neural CAM (NCAM), and the Cadherin family,
including cadherin-2 (CDH-2) (Polanco et al., 2021). In the
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hippocampus, knockdown of neural CAMs (NCAMs) decreases
the formation of conditioned place preference to morphine
(Ishiguro et al., 2006). Following a lethal dose of heroin, levels of
NCAMs are increased in the hippocampus of postmortem brains
from people with heroin addiction, which positively correlate
with blood levels of heroin at the time of death (Weber et al.,
2006). Levels of CDH-2 in peripheral plasma have been shown
to be a potential biomarker for methadone treatment outcome,
correlating with treatment success (Liu et al., 2020), while
hippocampal RNA expression of CDH-2 is increased following
oxycodone self-administration (Zhang et al., 2015). However, this
effect is specific to adult, but not adolescent mice, suggesting
developmental stage may moderate the role of CAMs in opioid
self-administration. Thus, opioids may lead to rapid increases
in CAMs in a dose- and age-dependent manner in the brain,
although whether CAMs directly contribute to neuroadaptations
associated with OUD is still unknown, as these changes could be
due to the acute effects of opioids. Future studies should examine
the specific nature of CAM interactions concerning opioid use
and relapse, with a specific focus on NCAMs and CDH-2 as
potential biomarkers of opioid use.

AN INTERPLAY BETWEEN THE
EXTRACELLULAR MATRIX, MICROGLIA,
AND NEUROINFLAMMATION IN OPIOID
USE DISORDER

The ECM, in conjunction with microglia and astrocytes, is
integral in both pro- and anti-inflammatory responses in the
brain. Several lines of evidence link pro-inflammatory cytokine
signaling and microglial activity to susceptibility to opioid
craving and reward processing (Bland et al., 2009; Hofford
et al., 2019). Consistent with this, a recent study from our
research group identified significant alterations in transcripts
enriched for neuroinflammatory and ECM signaling in the
dorsolateral prefrontal cortex and nucleus accumbens of people
with OUD (Seney et al., 2021). For example, transcripts that
are upregulated in both brain regions of people with OUD
are enriched for tumor necrosis factor alpha (TNF-α) signaling
via positive regulation of nuclear factor kappa B (NF-κB)
(Seney et al., 2021). This finding further supports NF-κB-
dependent activation of pro-inflammatory TNF-α signaling
associated with OUD. While neuroinflammation may play a
distinct role in OUD, of particular importance is the impact
of neuroinflammatory cytokine signaling on ECM remodeling
activity. In human and rodent brain, chondroitin sulfate
glycosaminoglycans (CS-GAGs) accumulate around the synapse
in response to inflammation (Li et al., 2013) and may be
increased following chronic opioid use in human brain (Seney
et al., 2021). Indeed, the CS-GAG pathway is enriched in
both the dorsolateral prefrontal cortex and nucleus accumbens
of people with OUD (Seney et al., 2021). This poses the
possibility that opioids and/or withdrawal from opioids leads
to the aggregation of CS-GAGs at the synapses of neurons in
regions involved in cognition and reward processing in response

to alterations in the homeostatic regulation of inflammatory
activity (Figure 1).

Other factors involved in ECM signaling may also contribute
to opioid reward-related behaviors and could be associated
with OUD. For example, both TIMP metallopeptidase inhibitor
1 (TIMP1) and toll-like receptor 2 (TLR2) are involved in
the remodeling of the ECM via inhibition of MMPs (Visse
and Nagase, 2003; Ries, 2014) and were recently identified as
hub genes (i.e., highly connected gene) within gene networks
in the nucleus accumbens that were specifically associated
with OUD (Seney et al., 2021). Possibly, chronic opioid use
accompanied by periods of withdrawal induce the release
of pro-inflammatory cytokines, in turn activating TLR2 and
TIMP1, leading to remodeling of the ECM and altering synaptic
plasticity and function. Activation of pro-inflammatory cascades
by opioids are likely regulated by microglia, as cell type
specific enrichment of markers demonstrate a potential primary
role for microglia associated with OUD in the dorsolateral
prefrontal cortex and nucleus accumbens (Seney et al., 2021).
Notably, the same study found enrichment of integrin signaling
pathways in OUD, suggesting integrins could be involved
in the migration of microglia and/or the adherence of the
ECM to microglia and neurons. Collectively, these findings
provide strong support for the involvement of the ECM and
microglia-dependent neuroinflammation (Shen et al., 2022) in
OUD. Future studies combining new single nuclei sequencing
technologies with histochemical approaches will be critical for
further investigating the potential role of microglia and other cell
types in inflammation and ECM remodeling related to OUD in
the human brain.

Other studies provide additional support for an important,
functional role of microglia in OUD. Pharmacological inhibition
of microglia (e.g., via AV411 compound, minocycline, or
ibudilast) in rodent models reduces opioid seeking and reward-
related behaviors and attenuates the subjective measures of
opioid withdrawal in humans (Hutchinson et al., 2008, 2009;
Bland et al., 2009; Schwarz et al., 2011; Arezoomandan et al., 2016;
Cooper et al., 2016; Pan et al., 2016). Reactivity of microglia to
opioids may depend on “off-target” binding of opioid metabolites
(e.g., morphine-3-glucuronide) to the toll-like receptor 4 (TLR4),
initiating intracellular cascades involved in pro-inflammatory
cytokine release and activation of the canonical NF-κB pathway
that regulate opioid reward-related and analgesia behaviors
(Zhang et al., 2017, 2020; Green et al., 2022). For example, opioid-
induced hyperalgesia and the development of tolerance depends
on the release of the cytokine interleukin-33 (IL-33) by astrocytes
in the brain and spinal cord (Hu et al., 2021). The release of IL-
33 into the extracellular space activates astrocytes and microglia
through NF-κB-dependent signaling (Molofsky et al., 2015), and
is recently identified as a modulator of microglial-dependent
degradation of the ECM (Nguyen et al., 2020). Therefore, IL-33
is one molecular intermediary by which microglia induce ECM
remodeling and promote synaptic plasticity in an experience-
dependent manner. Other pro-inflammatory cytokines may also
be involved in opioid-induced synaptic and behavioral plasticity,
including TNF and interferon alpha (Wang et al., 2018; Hofford
et al., 2019; Seney et al., 2021).
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In addition to cytokines, specific substrates of the ECM are
involved in microglial activation and neuronal functions related
to opioid actions. The formation and integrity of perisynaptic
ECM scaffolds and PNNs are regulated by microglia (Crapser
et al., 2020a,b, 2021; Strackeljan et al., 2021). PNNs are located
proximal to both neurons and glial cells, and in some cortical
regions of the brain form dense nets that surround GABAergic
interneurons (Kosaka and Heizmann, 1989; Brückner et al.,
1993; Sorg et al., 2016; Jorgensen, 2021). In rats, PNNs are
significantly reduced in the medial prefrontal cortex and nucleus
accumbens following extinction from heroin operant self-
administration behavior (Van den Oever et al., 2010). Specifically,
the ECM proteins, tenascin-R (TNR) and brevican (BCAN) are
downregulated during heroin abstinence, yet are upregulated in
the medial prefrontal cortex and nucleus accumbens in response
to cue-induced reinstatement (Van den Oever et al., 2010). TNR
and BCAN are preferentially expressed in PNNs that surround
GABAergic interneurons in the medial prefrontal cortex and
nucleus accumbens. Following reinstatement heroin-seeking
behavior, these GABAergic interneurons displayed elevated
spiking activity and enhanced inhibition of pyramidal neurons
in the medial prefrontal cortex (Van den Oever et al., 2010).
Therefore, TNR and BCAN may be key proteins of the ECM
signaling pathways involved in the function of PNNs that
modulate GABAergic cell activity during opioid reward-related
behaviors, long-term abstinence from opioids, and potentially
involved in opioid craving and relapse (Van den Oever et al.,
2010; Xue et al., 2014; Favuzzi et al., 2017; Roura-Martínez
et al., 2020). Taken together, there is a complex interplay
between microglia, ECM, and neuroinflammation, and further
studies examining these interactions related to OUD could
be valuable for identifying new approaches for developing
effective therapeutics.

FUTURE INVESTIGATIONS INTO
BIOLOGICAL SEX AS A POTENTIAL
MEDIATOR OF EXTRACELLULAR
MATRIX REMODELING AND SYNAPTIC
PLASTICITY IN OPIOID USE DISORDER

Susceptibility to OUD and the severity of the related symptoms
are the result of a complex interplay of biological and
psychosocial factors. Earlier studies describe sex-specific
differences in the frequency of use of opioids and the prevalence
of clinical diagnoses of OUD. For example, higher rates of opioid
use and OUD have been reported in men compared to women
(Lee and Ho, 2013), although women may have accelerated
progression from initial use to dependence (Kosten et al., 1993;
Brady and Randall, 1999). Additionally, risk and frequency
of opioid overdoses and propensity to use heroin has been
described in men compared to women, while women may be
more likely to misuse prescription opioids (Parlier-Ahmad et al.,
2021). Comorbid psychiatric disorders, such as major depression,
are also more prevalent in women compared to men diagnosed
with OUD (Parlier-Ahmad et al., 2021).

Preclinical rodent models of opioid-related behaviors support
sex-specific effects in opioid seeking, craving, and relapse, along
with opioid withdrawal. Indeed, female rats tend to acquire
morphine or heroin self-administration behavior quicker and
display higher motivation to self-administer opioids compared
to males (Lynch and Carroll, 1999; Cicero et al., 2003; Roth
et al., 2004). Oxycodone self-administration is also significantly
greater in female than male rats for both oral (Sharp et al.,
2021) and intravenous self-administration (Kimbrough et al.,
2020). Further, female rats exhibit higher sensitivity to the
rewarding effects of morphine at far lower doses (Karami and
Zarrindast, 2008). During withdrawal from opioids, female and
male rats exhibit similarly elevated somatic symptoms (i.e., foot
licks, grooming, and writhing) for nearly 48 h following opioid
cessation (Gipson et al., 2021). Only increased body temperature
was specific to female rats during withdrawal relative to males
(Gipson et al., 2021). However, other studies report exaggerated
somatic opioid withdrawal symptoms in both the severity and
duration in male rodents (Cicero et al., 2002; Diaz et al., 2005).
Activity of mu and/or kappa opioid receptors may also be
involved in sex-specific effects of opioids (Barrett et al., 2002;
Negus et al., 2002). Given this evidence highlighting sex as a
critical factor in OUD and opioid actions, more studies are
required to investigate the sex-specific cellular and molecular
mechanisms involved in opioid reward, treatment response to
opioids, and the development of dependence and tolerance to
opioids. Few studies have directly examined the role of sex in
ECM signaling in response to opioids and associated with OUD.

Sexual dimorphism in ECM signaling pathways that regulate
synaptic plasticity and neuroinflammation has been found in
fish, birds, mice, and humans. In zebrafish, gene expression
patterns for genes associated with the production of ECM
signaling proteins are overrepresented in males (Wong et al.,
2014), while sex differences in the number and formation of
PNNs are observed in zebra finches (Cornez et al., 2015). Sex
specific transcriptomic differences are found in mouse sensory
neurons, specifically in genes related to neurotransmission,
inflammation, and ECM reorganization, suggesting potential sex
differences in susceptibility to neuroinflammation and ECM
(Mecklenburg et al., 2020; Batzdorf et al., 2022) and OUD (Cahill
and Taylor, 2017; Jang et al., 2020). In humans, differences in
ECM signaling markers and remodeling are also found in blood
serum depending on age and sex, irrespective of disease-related
factors (Kehlet et al., 2018). While these few studies on sex-
specific effects in ECM are sparse, they are particularly relevant
considering the sexual heterogeneity in OUD.

CONCLUSION

In this review, we highlight the current understanding of the
interactions between ECM signaling, neuroinflammation, and
synaptic plasticity, as it contributes to opioid seeking, craving,
and relapse behaviors. Overall, there is a need for additional
research investigating the potential role for biological sex at
the intersection of ECM signaling and remodeling, synaptic
plasticity, neuroinflammation, and opioids. Targeting specific
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ECM signaling proteins (e.g., MMPs and CAMs) during opioid
administration and/or withdrawal could be a viable therapeutic
approach. Preclinical models of opioid self-administration,
opioid tolerance, and withdrawal, as well as pain and analgesia,
provide tractable approaches that can provide depth into the
potential roles of the ECM in opioid-related neurobiology
and behavior. The inclusion of sex as a biological variable in
these studies should aid in the discovery of novel therapeutic
targets for the treatment of opioid dependence and OUD,
while also supporting more inclusive options for interventions
and therapeutics.
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