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Abstract

Chemical and mechanical pattern formation is fundamental during embryogenesis and tis-

sue development. Yet, the underlying molecular and cellular mechanisms are still elusive in

many cases. Most current theories assume that tissue development is driven by chemical

processes: either as a sequence of chemical patterns each depending on the previous one,

or by patterns spontaneously arising from specific chemical interactions (such as “Turing-

patterns”). Within both theories, mechanical patterns are usually regarded as passive by-

products of chemical pre-patters. However, several experiments question these theories,

and an increasing number of studies shows that tissue mechanics can actively influence

chemical patterns during development. In this study, we thus focus on the interplay between

chemical and mechanical processes during tissue development. On one hand, based on

recent experimental data, we develop new mechanochemical simulation models of evolving

tissues, in which the full 3D representation of the tissue appears to be critical for obtaining

a realistic mechanochemical behaviour. The presented modelling approach is flexible and

numerically studied using state of the art finite element methods. Thus, it may serve as a

basis to combine simulations with new experimental methods in tissue development. On the

other hand, we apply the developed approach and demonstrate that even simple interac-

tions between tissue mechanics and chemistry spontaneously lead to robust and complex

mechanochemical patterns. Especially, we demonstrate that the main contradictions arising

in the framework of purely chemical theories are naturally and automatically resolved using

the mechanochemical patterning theory.

Author summary

During embryogenesis, biological tissues gradually increase their complexity by self-

organised creation of diverse chemical and mechanical patterns. Detailed mechanisms

driving and controlling these patterns are not well understood. Previous theories mostly

assume that these patterns are driven by chemical processes. Based on these theories,

mechanical patterns are usually considered being mainly determined by chemical

pre-patterns. However, experimental evidence for these theories is sparse, and several
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inconsistencies have been discovered. Furthermore, an increasing amount of data shows

that tissue mechanics plays an important role in pattern formation. In this study, we

present 3D computer simulations of evolving tissues to investigate the capacity of mech-

anochemical interactions for pattern formation. We show that even simple interactions

between tissue mechanics and tissue chemistry spontaneously lead to robust chemical

and mechanical pattern formation. We additionally demonstrate that main contradic-

tions arising in the framework of purely chemical theories are naturally and automati-

cally resolved using the mechanochemical patterning theory. The presented modelling

approach can be used to combine simulations with recent experimental developments,

to help unravel one of the big mysteries in biology: The mechanisms of self-organised

pattern formation during embryogenesis.

Introduction

During embryogenesis or tissue development, various chemical and mechanical patterns

emerge in a self-organised way based on relatively simple structures, such as a tissue sphere

[1]. During the last decades, a main focus in developmental biology was the experimental iden-

tification of signalling molecules (“morphogens”) being spatio-temporally associated with cer-

tain developmental steps in various model organisms [1, 2]. However, the knowledge about

how chemical patterns are produced, controlled, and how they interact with mechanical pat-

terns is still very unsatisfactory.

A frequent obstacle to the research on mechanochemical pattern formation is the mechani-

cal aspect, since experimental tools for mechanical tissue modification, molecular markers

of mechanical cues and mechanochemical modelling are still in its infancy [3]. Especially, it

appears that often the full 3D nature of tissue mechanics has to be considered in experiments

and models for obtaining results which can be related to in vivo processes [4–10] making the

situation even more challenging. Thus, although correlations between biological forms and

mechanical phenomena were already pointed out in the seminal work of D’Arcy Thompson

[11], mainly pure chemical theories have been predominated hereof during the last century of

research in order to explain tissue pattern formation during development.

The first of these theories assumes that embryogenesis is a sequence of successive chemical

patterns, where each chemical pattern relies (in other words, depends sensitively) on the previ-

ous pattern [12]. A model organism partially fitting this theory is the fruit fly Drosophila, in

which the orientation of the initial body axis sensitively depends on the maternally inherited

Bicoid RNA [13], and later stages are defined by distinct chemical patterns (“gap genes” [14]).

However, experimental studies show that embryonic patterns are often robust to removal,

addition or redistribution of embryo parts during the preceding patterning stages [1, 15, 16].

Moreover, for an increasing number of biological systems it even appears that patterning does

not rely on any pre-pattern, but it may develop in a self-organised way from dissociated and

re-aggregated cells [17–21]. This capacity of self-organisation during pattern formation is

called “de novo” or “spontaneous” or “self-organised” pattern formation and strongly disagrees

with the above mentioned theory.

Due to these difficulties, a second, more robust theory of pattern formation has received

increasing attention, namely a theory which assumes that pattern formation occurs spontane-

ously and robustly just by specific interactions among diffusing chemicals (“morphogens”)

with possible involvement of the chemical environment. This theory was based on the pioneer-

ing work of Alan Turing [22] and its extensions by Gierer, Meinhardt, and Murray [23–25],

Mechanochemical pattern formation in tissues
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and others. In contrast to previous studies on biological patterning [11, 12], these new

approaches were not restricted to pure description of patterns, but offered the possibility to

explain their genesis by de novo mechanisms [26]. Originally, such “Turing patterns” are

assumed to be driven by the mutual interaction of a slowly-diffusing activator morphogen

interacting with a fast-diffusing inhibitor morphogen in a specific nonlinear manner (“short

range activation and long range inhibition”) [25]. Later works showed that the long-range

inhibition does not necessarily require a diffusing inhibitor, but can also result from the deple-

tion of a substrate that is recruited as a result of self-enhancement of the activator (“activator-

depleted substrate mechanism” [23, 27]). However, beside these Turing models, other chemi-

cal de novo models for pattern formation have been proposed, such as the Swift-Hohenberg

equation which requires only one diffusing and reacting chemical in order to spontaneously

produce patterns [28]. A variety of non-Turing patterns arising in systems coupling one diffus-

ing component with a non-diffusing subsystem has been recently shown in Refs. [29–31].

These purely chemical theories (including the Turing models) are still among the central

concepts of developmental biology. However, this theory is not devoid of serious difficulties,

such as the following ones:

• after more than 60 years of research, the experimental verification of classical Turing-type

morphogens (activator/inhibitor) showing properties proposed by the theory is still very

rare: e.g. an appropriate candidate for the long-range inhibitor is still missing in many cases

[32, 33];

• diffusion rates as required for Turing-type long-range inhibitors are often at or beyond the

limit of measured diffusion rates in biological tissues, especially for patterns appearing on

larger tissue scale [34];

• evidence for the Swift-Hohenberg models as well as for the activator-depleted substrate

mechanism experimental is sparse; for the latter there exist candidates for subcellular pat-

terns [35, 36] but not for patterns on tissue scale;

• in many developmental processes, dynamic and complex tissue geometries are likely to pre-

vent the establishment of long range inhibitor gradients [37]; and finally,

• the Turing-theory requires highly nonlinear interactions among different types of morpho-

gens in order to produce de novo patterns, which makes the underlying assumptions regard-

ing molecular interactions relatively complex [38].

Finally, the two chemical theories we discussed usually assume that mechanical patterns

are “blind” end-results of chemical pre-patterns. In contrast, various recent studies show that

mechanical patterns are not only passive results of chemical pre-patterns, but can play instead

a central role by being actively involved in tissue pattern formation (Ref. [39–43], beyond

many others). This agrees well with the observation that mechanical cues can be translated in

various ways in order to influence and control chemical patterns, leading to the rapidly evolv-

ing research area of mechanotransduction in cell biology [44–48].

Hence, due the experimental observations and disagreements listed above, tissue

mechanics is increasingly moving into focus to explain features of pattern formation which

have been previously ascribed to diffusing molecules according to the Turing theory. Nota-

bly, forces and flows generated by motor proteins or advection have been proposed to sig-

nificantly increase diffusion rates for long-range inhibition [34]; and different mechanical

cues such as curvature, stretch, strain, or compression have been theoretically shown to suc-

cessfully work as long-range inhibitors in spontaneous pattern formation [3, 49]. Impor-

tantly, there is also an increasing experimental support for mechano-chemical interactions
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as an important driving force in biological patterning. Examples describing, among other,

coupling between diffusing morphogens and tissue bending are summarised in Ref. [33,

50]. Finally, also the Swift-Hohenberg equation has been recently linked to mechanical

processes, leading to a possible explanation of different biological patterns such as finger

prints [51]. However, a general mechanochemical theory for robust pattern formation is

still missing.

Although the need for new modelling approaches integrating chemical (morphogen) and

mechanical processes during development has been recently stressed [52], models investigat-

ing mechanochemical pattern formation are still rare. One of the first seminal works consider-

ing the richness and self-organisation of biological growth and forms was the book “On

Growth and form” by D’Arcy Thompson in 1917 [11]. However, even its second edition was

written before computers made it possible to develop and study more sophisticated models of

biological patterning [26]. One of the first attempts to integrate tissue mechanics in pattern

formation models has been the papers by Murray and Oster [53, 54]. Here, the interplay

between migrating and contracting cells and a deformable elastic surrounding medium (such

as an extracellular matrix) can lead to a variety of patterns. The model has been successfully

applied to the process of vasculogenesis [55]. A mechanistically related model in which epithe-

lium cells represent the elastic part and actomyosin cross-bridges depict the contractile units

has been proposed by Odell et al. [56]. Using finite element simulations, they showed that a

simple interplay between stretch-induced active contractility and passive propagation of cell

stretch can lead to spontaneous gastrulation in tissue spheres. Indeed, recent simulation stud-

ies of different mechanochemical models compared to experimental data indicate that the

interplay between tissue stretch and morphogens may trigger spontaneous pattern formation

in the Hydra polyp [40]. Finally, simulation studies demonstrated that mechanical cues other

than stretch such as curvature, strain, or stress [3, 49], may drive de novo mechanochemical

pattern formation.

However, one of the chief simplifications of the above-mentioned approaches is the repre-

sentation of the 3D tissue body by a 1D curve or a 2D surface. This simplification may cause

bias or unrealistic behaviour in both chemical and mechanical processes. On one hand, the

neglect of one or more dimensions may lead to appearance of nonexistent diffusion barriers,

since additional dimensions may allow the molecules to move around obstacles, which is

not possible if these dimensions are not present in the model. On the other hand, tissue defor-

mations and mechanical cues propagate via direct interactions of cells or molecules. These

processes are altered if dimensions are neglected. For example, describing the tissue as an infi-

nitely thin deforming surface [40, 49] neglects apico-basal chemical and mechanical gradients,

the latter frequently accompanying deformations. Representing the tissue as a 2D cross-section

[3, 56] ignores the 2D nature of circumferential chemistry and mechanics. Example is pro-

vided by regions with high Gaussian curvature that cannot be described adequately although

they may play a critical role for tissue growth and deformations [9, 10]. Several recent experi-

mental works highlight the importance of considering full 3D tissues in order to obtain realis-

tic tissue behaviour [4–6, 8]. In summary, transferring of the above-cited mechanochemical

modelling results to reality is possible only to a limited extent.

In his seminal paper, Turing proposed the integration of mechanical aspects in pattern for-

mation, but restricted his own studies to purely chemical processes, since “. . .the interdepen-
dence of the chemical and mechanical data adds enormously to the difficulty” [22]. During the

last decades, however, modelling and computation approaches integrating mechanical aspects

of morphogenesis have reached a sophisticated level (for reviews, cf. Ref. [57, 58]).

In the present study, we thus generalise and extend the existing modelling approaches by

introducing a mechanochemical tissue model with the following features:

Mechanochemical pattern formation in tissues
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• tissue is represented by a time-dependent deformable 3D body formulated in the framework

of continuum-mechanics;

• the continuous formulation is blended with an explicit description of cell boundaries, the lat-

ter among other representing active forces exerting and possibly showing discontinuities at

the plasma membrane (“actomyosin cortex”);

• model equations allow an arbitrary coupling between morphogen dynamics and different

mechanical cues, such as curvature, strain, or compression and stretch;

• simulations are based on the state of the art finite element library GASCOIGNE3D [59] in con-

junction with the possibility of local mesh control, multigrid methods as well as parallelisa-

tion to ensure optimal stability and minimal simulation times.

Since recent experimental efforts to visualise and study tissue mechanics are promising

[60–63], the proposed modelling approach may offer a future basis to verify new experimental

hypotheses and to motivate experiments, respectively. Close interplay between experimental

manipulations and computer simulations will help to further unravel mechanochemical pro-

cesses leading to robust patterns during tissue development.

To demonstrate the capacity of mechanochemical interactions in de novo pattern forma-

tion, we additionally use our modelling approach to simulate other feedback loops between

morphogen dynamics and mechanical measures. Especially, we show how different, simple

interaction rules lead to spontaneous and robust mechanochemical pattern formation.

Results/Discussion

In this work, we combine the most commonly observed interplays between chemistry and tis-

sue mechanics to create a simple feedback loop. Namely, we assume that there exists one mor-

phogen species within the tissue, and that this morphogen locally induces active cell shape

changes. Especially, these cell shape changes are assumed to be apical or a basal constrictions

(i.e., deforming cells from symmetric to wedge-shaped), since these are frequently appearing

deformations during tissue morphogenesis [64–67]. Furthermore, we assume that tissue

stretch induces production of the morphogen, which also is a common experimental observa-

tion [39, 68]. These two mechanisms lead to a simple positive feedback loop; an example is

illustrated in Fig 1.

Especially, mechanochemical feedback loops of this type have the capacity to spontaneously

create patterns for the following reason: as soon as the morphogen or the tissue stretch is

locally inhomogeneous, both morphogen and tissue curvature locally amplify each other, since

morphogen produces cell shape changes which lead to local stretch (due to the elastic material

response), which again leads to morphogen production. Thus, a short range activation takes

place. The long-range inhibition, in contrast, is mainly constituted by tissue mechanics: As

soon as the tissue is locally curved, in oder to maintain continuity, the surroundings of the

curved patch have to be curved into the other direction. In the transition zone, however,

the curvature and thus the local stretch vanishes and hence no morphogen is produced (c.f.,

Fig 1).

Simulation snapshots for the feedback loop based on basal constriction (i.e., constriction at

the end of the cell pointing away from the blastula lumen) are shown in Fig 2. We observe that

this simple mechanochemical interplay is sufficient to spontaneously produce regular mecha-

nochemical patterns, where the equilibrium pattern consists of regular morphogen patches

coinciding with patches of local tissue curvature. Results appeared to be numerically stationary

after t� 20 days (referring to the model-time; corresponding to about 85000 numerical time
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steps), which is a typical order of magnitude for developmental processes. Indeed, co-localisa-

tion of high morphogen levels and local tissue curvatures have been described in many organ-

isms and developmental steps, from head formation events in the freshwater polyp Hydra [69]

through tooth outgrowth in vertebrates [70] and shoot-meristem growth in the plant Arabi-
dopsis [71]. Interestingly, for all three processes mentioned above, there are experimental

Fig 1. Schematic view of one of the exemplarily investigated feedback-loops between tissue mechanics and

morphogen production. Local morphogen levels lead to apical constriction in biological cells, which leads (due to the

elastic response of the tissue maintaining continuity) to local stretch, which induces again local morphogen

production.

https://doi.org/10.1371/journal.pcbi.1006259.g001

Fig 2. (A)-(B) Simulation snapshots showing spontaneous pattern formation based on a simple mechanochemical

feedback loop including basal constriction. In (B), the 3D tissue body has been sliced just for the purpose of a better

visualisation. An experimental example showing co-localisation of tissue curvature and morphogen concentration

during Hydra development can be e.g. found in Ref. [104].

https://doi.org/10.1371/journal.pcbi.1006259.g002
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evidences that mechanochemical interactions play an indispensable role during pattern forma-

tion [40, 71–74].

Furthermore, the simulated de novo equilibrium patterns appear to be very robust against

the perturbation of preceding patterning stages, the latter represented by the choice of initial

conditions: Regardless if we start with stochastically distributed morphogen levels in biological

cells (Fig 2A and 2B) or only one morphogen spot at one side of the tissue sphere (Fig. B in S1

Text) or any other non-homogeneous initial morphogen distribution, we always obtain

approximately the same number and size of mechanical and biological patterns. This robust-

ness agrees well with the experimental observation that embryonic patterns are robust to the

perturbation of preceding patterning stages [1, 15, 16].

Keeping all parameters constant but considering apical constriction instead of a basal one

(i.e., constriction at the end of the cell pointing to the blastula lumen) finally leads to a gastru-

lation event, with the highest morphogen concentration found in an annulus around the

invagination (cf., Fig 3A and 3B). However, due to strong deformations, the material model

finally breaks down and the Newton’s method no longer converges, so that the final pattern in

Fig 3A and 3B does not represent a stationary result. However, it appears that imposing an

inner volume constraint may stabilise the invagination at early stages; further details are sup-

plied in the Supporting Information.

Also here, the gastrulation appears to be insensitive to the initial conditions and thus

appears to be very robust (Fig. C in S1 Text). Similar mechanochemical patterns have been

observed experimentally during gastrulation, e.g. in Xenopus [75] and the freshwater polyp

Nematostella [76] (Fig 3C). Interestingly, the simulations first show regular (though transient

and weak) mechanochemical patterns, comparable to those from basal constriction, before

gastrulation occurs (Fig 3A and 3B t = 2 − 4 days). The role of transient morphogen patterns

during tissue development has recently further investigated e.g. by Ref. [77, 78]. If mechano-

chemical coupling is chosen as less intense (such as for a weaker coupling of stretch to the

morphogen production), these transient patterns stabilise after t� 4days without gastrulation

and are strongly related to the patterns of basal constriction: in this case, deformations are

essentially the same but the morphogen is no longer co-located with the inwards-directed

deformation but co-located with the now active outward-directed deformation around these

invaginations (see Fig. D in S1 Text for a better illustration of these similarities). In contrast,

with a stronger coupling between morphogens and mechanics (as in stronger impact of stretch

on the morphogen production), the relative intensity of these transient patterns diminishes.

We point out that our simulations indicate that also with basal constriction, a gastrulation

(one dominating wavelength) can be obtained when mechanochemical coupling is chosen as

more intense. However, numerical calculations break down at an earlier stage (c.f. Supporting

Information for more information).

To investigate robustness of the obtained mechanochemical patterns, we performed addi-

tional simulations: First, we focused on the influence of model size and geometry on the result-

ing patterns. In particular, we varied the initial size of the system and the tissue thickness

(relative to the radius). It appears that a thicker tissue layer leads to an increased distance

between two neighbouring tissue/curvature patches whereas a thinner tissue layer leads to a

decrease in the distance (Fig 4A and 4B). This observation was intuitively expected, since as

explained above, mechanics is responsible for a long-range inhibition. And the stiffer the mate-

rial is, the larger is a range of propagation of the mechanical signal.

Furthermore, the number of patches appears to scale with the system size: A smaller system

exhibits fewer patches (Fig 4C), which is most probably a direct result of the smaller tissue sur-

face. Also, the relative tissue thickness is increased so that patterns dominate larger parts of the

domain, similarly to the situation we observed in Fig 4A.

Mechanochemical pattern formation in tissues
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Further, the tangential morphogen diffusion is not a critical ingredient for obtaining mech-

anochemical patterns: quartering the lateral diffusion strength still leads to patterns (Fig 4D).

However, morphogen patches are distinctly smaller. This effect is even strengthened when

tangential diffusion is completely inhibited (Fig 4E). Thus, the tangential diffusion appears to

influence the size of morphogen/curvature patches.

Fig 3. (A)-(B) Simulation snapshots showing spontaneous pattern formation based on a simple mechanochemical

feedback loop including apical constriction. In (B), the 3D tissue body has been sliced just for the purpose of a better

visualisation. (C) Microscopic pictures showing similar morphogen and curvature patterns in Nematostella during

gastrulation (with permission from Ref. [76]).

https://doi.org/10.1371/journal.pcbi.1006259.g003

Fig 4. Simulation snapshots investigating the robustness of mechanochemical patterns with respect to (A) a thicker

tissue layer (doubled thickness); (B) a thinner tissue layer (halved thickness); (C) a smaller system (384 biological cells);

(D) lower tangential diffusion (quartered); (E) without any tangential diffusion; and (F) basal constriction only in the

outer half of biological cells.

https://doi.org/10.1371/journal.pcbi.1006259.g004
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Finally, we show that we continue to obtain mechanochemical patterns if we change the

nature of the active deformations. For example if we redefine the active deformation tensor so

that it constricts one side of the cell without actively expanding the other side (i.e., the active

deformation is no longer volume preserving), regular patterns persist. Interestingly, morpho-

gen patches are frequently not spherical but rather develop to “double-patches”, i.e., two super-

imposed patches constituting together a dumbbell-shape (Fig 4F). More details concerning

various robustness tests can be found in the “Robustness of pattern formation” Section in the

Supporting Information).

Our numerical simulations indicate that it is important to use a full 3D approach, since

the resulting patterns presented in this work cannot be obtained by lower-dimensional

approaches [3, 49]. In the three-dimensional setting of this work, we show that gastrulation-

like deformations can be obtained from a range of non-uniform or non-rotationally invari-

ant types of initial conditions, for both basal and apical constriction, and for different feed-

back loops based on compression or strain (Supporting Information). In 2D or pseudo 3D

approaches, however, it was not possible to obtain gastrulations driven by de novo pattern

formation [3, 49]. Hence, the full 3D approach most likely leads to more realistic simulation

results, which is due to the fact that both chemical and mechanical behaviour is strongly

biased if dimensions are neglected, as also explained in the Introduction. Also numerically,

the difference between full 3D models and 2D approaches is significant, since the problem

size increases drastically and the problem is coupled even stronger. In particular, it requires

robust and parallel solvers to efficiently solve the presented 3D problems (see “Solvers

and parallelisation” for details). Further, various implementation aspects changed, such as

tracking biological cells via material-IDs, in particular during the domain decomposition in

parallelisation.

Finally, the present study offers for the first time the possibility to explain gastrulation by

robust de novo mechanochemical pattern formation, leading to simulation results similar to

patterns observed in model organisms such as Hydra, Nematostella and Xenopus. However,

until now, the experimental evidence for the specific feedback loops as presented in our work

is still sparse. Possible reasons are: (1) visualisation of mechanical measures in living biological

tissues is still under development and connected with a high experimental effort [41, 73]; and

(2) the “pure chemical approach” to explain pattern formation is still very prominent among

development researchers.

Encouragingly, the number of mechanochemical feedback loops experimentally docu-

mented to be drivers of pattern formation increases [50, 73, 79] and new methods of the visual-

isation of mechanical cues are currently under development [60–63].

Thus, our simulation results show that even simple interactions between chemistry (mor-

phogens) and tissue mechanics can lead to robust and spontaneous pattern formation. Espe-

cially, it is worth pointing out that

• mechanochemical pattern formation appears to be very robust against perturbation of pre-

ceding patterning stages, model parameters and a range of specific assumptions;

• experimental verification of long-range inhibitors is neither necessary nor possible, since

long-range inhibition may be caused by mechanical cues;

• mechanical cues (such as compression) naturally propagate at an enormous speed due to the

direct mechanical interaction of molecules or cells. Hence, the mechanochemical theory is

not restricted to relatively small length scale due to maximum possible diffusion rates of

morphogens;

Mechanochemical pattern formation in tissues

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006259 July 3, 2018 9 / 21

https://doi.org/10.1371/journal.pcbi.1006259


• dynamic and complex tissue topologies do not prevent patterning but are rather actively

involved in pattern formation. Thus, they provide a natural and robust feedback to ensure

the success of mechanical pattern formation;

• even simple linear relationships between chemistry and morphogens lead to spontaneous

pattern formation, highly nonlinear interactions do not have to be assumed.

Hence, the presented mechanochemical mechanism fits well the recent experimental data

and all main difficulties of purely chemical theories (cf., “Introduction”) are naturally resolved.

Summary

In summary, the present work consist of two main segments:

1. A 3D computational approach to study mechanochemical pattern formation in developing

tissues on the tissue scale: The presented method blends an explicit description of active

deformations of individual, biological cells with a continuum mechanical formulation of

the cell plasma. This allows us to benefit from the advantages of both approaches, e.g. com-

bining continuous processes (such as diffusion or mechanical gradients) with the discrete

nature (and possibly resulting discontinuities) of biological cells. Simulations methods are

based on state of the art finite element methods (FEM) including multigrid methods, the

possibility of adaptive mesh refinement, as well as parallelisation in order to minimise

computational effort and to maximise numerical stability. It appears that the full 3D repre-

sentation of the tissue is critical in order to obtain a realistic mechanochemical behaviour.

During the last decade, experimental insights elucidating the role of mechanochemistry in

tissue development [44–46] and experimental techniques of visualisation of mechanical

loads in biological tissues [80–82] have been rapidly evolving. Hence, the presented

approach may serve as a future basis of enhance interactions of experiments with simula-

tion methods in order to further unravel one of the big mysteries in development: the self-

organised generation of patterns and shapes.

2. Application of the presented framework by studying in silico examples of the impact of

mechanochemical interactions on tissue pattern formation. Our simulations show that

even simple interactions between a morphogen and tissue mechanics can lead to robust

and spontaneous mechanochemical patterns, comparable to those observed during

embryogenesis. Additionally, we argue that with such mechanochemical patterning mecha-

nisms, several contradictions and difficulties arising in purely chemical patterning theories

dissolve naturally. Hence, these results demonstrate the high capacity of mechanochemical

interactions during tissue development—a possibly still underestimated driving force of

embryonic pattern formation.

Materials and methods

Model geometry

We investigate a system representing developmental stages following the blastula stage of an

embryo. We parametrise a deforming tissue body over a hollow tissue sphere (cf., Fig 5B). The

sphere is composed of 1536 circumferentially arranged biological cells, where each biological

cell contains 64 = 43 numerical cells or finite elements (cf., Fig 5). Results which stem from

this discretisation have been verified using linear and quadratic finite elements using 512 = 83

numerical cells per biological cell. If not stated otherwise, the outer radius of this tissue sphere

is 150 μm, and the inner radius is 135 μm, resulting in tissue thickness of 15 μm.

Mechanochemical pattern formation in tissues
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Continuum mechanics and model equations

In this subsection, we briefly introduce our model equations as well as some underlying con-

tinuum mechanical notations and relationships. For more details regarding underlying contin-

uum mechanics we refer the reader to ref. [83]; a more detailed motivation and derivation of

the model equations can be found in the Supporting Information.

General notation. In the following, structural dynamics are mainly expressed in the

Lagrangian or particle-centered framework. Let X be a particle in the undeformed initial con-

figuration O and x = x(X, t) be its current position in the deformed one O(t) at time t. Thus the

deformation is defined by X : O� I ! OðtÞ (with x ¼ XðX; tÞ) and is assumed to be invert-

ible as well as continuously differentiable in space and time. Furthermore, the vector fields

U(X, t) = x(X, t) − X in Lagrangian description, or u(x, t) = x − X(x, t) in the Eulerian one,

joining these positions is called displacement. These definitions directly yield U(x, t) = u(x, t).
Next, F is the deformation gradient which is defined as FðX; tÞ≔rXðX; tÞ, where J(X, t)≔ det

(F(X, t)) describes the local volume change of the tissue. The right hand Cauchy-Green tensor
is now given by C ≔ FT F and the Green-Lagrange strain tensor by E≔ 1

2
ðC � IÞ ¼ 1

2
ðFTF � IÞ

Furthermore, if we denote an infinitesimal force acting on a surface element by df, then the

Cauchy stress tensor σ(x, t) and the first Piola-Kirchhoff stress tensor P(X, t) are given by the

relationship df = σ(x, t)nds = P(X, t)NdS, where dS and ds depict the surface elements and N

and n the normal vectors related to the reference and the current configuration, respectively.

Finally, we introduce S(X) = F−1(x, t)P(X, t) which is the transformation of P to the reference

configuration and is called second Piola-Kirchhoff stress tensor. For more notational details we

refer the reader to the Supporting Information and ref. [84] and [83] (especially chapter 3).

Growth / Active deformations. To describe active deformation processes (such as tissue

growth or active cell-shape changes) we will follow the idea of Rodriguez et al. [85, 86] and

multiplicatively decompose the deformation gradient by

F ¼ FeFa ð1Þ

into an active part Fa (which maps the reference domain to an artificial intermediate configu-

ration Oa) and an elastic part Fe, which ensures continuity (cf., Fig 5A). The key assumption is

Fig 5. (A) Schematic view of the multiplicative decomposition of the deformation gradient tensor. (B) Numerical

versus biological cells in the reference configuration (left-hand side) and an example of the deformed simulated tissue

body with chemical (morphogen) patterns (right-hand side). Purple color represents high, white color low local

morphogen levels. The 3D tissue body has been sliced just for the purpose of a better visualisation.

https://doi.org/10.1371/journal.pcbi.1006259.g005
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that the intermediate configuration is stress-free and any stress is solely generated by the elastic

response Fe. This implies, that the material law depends on the elastic response alone.

Mechanochemical model equations. The following equations are based on the conserva-

tion principles of mass and momentum. Additionally, we describe the tissue via a nonlinear

Saint-Venant-Kirchhoff model for compressible, isotropic, hyperelastic materials. Although

mechanical isotropy of blastula stages does not always occur [87], here, we assume isotropic

tissue (1) for model simplicity; and (2) to prevent the introduction of pre-patterns to our

model. Finally, we assume local mass conservation for diffusing and reacting morphogens in

the tissue at concentration C. The final problem reads:

Find displacement u and molecule concentration C with initial conditions u(X, 0) = 0 and

C(X, 0) = C0 such that

� r � ðFΣÞ ¼ 0 in O;

J@tC � r � ðJF
� 1DF� TrCÞ � JR ¼ 0 in O;

FΣN ¼ 0 on @O;

ð2Þ

holds, where

Σ ¼ JaF
� 1

a ΣeF
� T
a ; Σe ¼ l tr ðEeÞIþ 2mEe; Ee ¼

1

2
ðFT

e Fe � IÞ;

Fe ¼ FF� 1

a ; J ¼ det ðFÞ and Ja ¼ det ðFaÞ:

Here, the boundary of O is denoted by @O where homogeneous Neumann boundary condi-

tions are assumed since no bounday forces are applied. Further, μ, λ are the Lamé constants. R
is the coupling term incorporating the feedback of mechanical cues on the concentration C via

R = R(S,E,F, C) and S = S(Fa(t, C)) allows a reverse coupling, namely a possible influence of

morphogens on active deformation processes such as local tissue growth or cell-shape changes.

Finally, D 2 Rd�d is the diffusion coefficient matrix given by

D≔RðXÞT diag ðDN;DT;DTÞRðXÞ ð3Þ

with a diagonal matrix containing the diffusion coefficient DN in normal (or radial), Lagrang-

ian direction N = |X|−1 X and the diffusion coefficient DT in the tangential directions T1 and

T2. The rotation matrix RT transforms the diagonal matrix diag(DN, DT, DT) defined in the

point-specific coordinate systems given by orthogonal unit vectors N, T1 and T2 to Euclidean

coordinates (Eq. (24) in the S1 Text). This choice is biologically motivated, as a large coefficient

DN in radial direction ensures free diffusion inside the biological cells whereas a small coeffi-

cient DT limits diffusion between biological cells (at least on the tissue scale). This approach

is inexact on the cellular scale, since diffusion spreads at the same speed inside a cell as across

cell boundaries. However, on the one hand, the main focus of our study is patterning on tissue

scale rather than cellular scale where the anisotropic diffusion serves as an approximation. On

the other hand, it appears that pattern formation takes place even without any tangential diffu-

sion (see Fig 4E) which is thus not critical for obtaining de novo patterns.

Mechanochemical interactions. So far, Eq (2) represents a general framework investigat-

ing mechanochemical processes in biological tissues. Now, we present the concrete mechano-

chemical feedback loops which have been used in the simulation as presented within this

work.

Based on recent experimental data, in principle, various types of coupling between tissue

mechanics and morphogen dynamics are imaginable: On one hand, different types of mechan-

ical measures have been shown to influence morphogen dynamics, namely stress [41, 81, 88],
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compression and stretch [39, 40] and geometric constraints determining the strain and cell-

shape [89, 90]. On the other hand, signalling molecules have been shown to induce a range

of possible mechanical changes within tissues, such as local tissue growth, changes in tissue

stiffness, or active modifications of the cell shape [73, 91–94]. However, in this work, we focus

on two most frequently observed relationships between morphogens and tissue mechanics,

namely morphogen inducing (basal/apical) cell constriction as well as tissue compression/

stretch inducing local morphogen production.

Feedback of mechanics on chemistry. If we want to model an influence of a mechanical

measure (such as strain, stress, or compression) on morphogen dynamics, the mechanical cues

should be based on invariants Ij, j 2 {1, 2, 3} of the corresponding tensors, since these invari-

ants do not change with the rotation of the coordinate system. As motivated within the Sup-

porting Information in detail, the invariants of the elastic second Piola-Kirchhoff stress tensor

S and of E as well as of F are suitable for a mechanical feedback on the production of signalling

molecules, i.e.,

R ¼ RðIjðΣÞ; IjðEÞ; IjðFÞ;CÞ; j 2 f1; 2; 3g:

Within this work we use the determinant of the deformation gradient I3(F) = det(F) as an

example of the feedback of mechanics on chemistry. This is based on experimental results

[39, 68] and has the physical interpretation of compression or stretch (det(F) = dv(t)/dV is the

ratio of the deformed volume element dv(t) to the initial one dV). However, in principle, many

other modes of dependence on deformation tensor invariants are possible (some of them have

been investigated in [3]).

In practice, the tensor invariant I3(F) is included via the Michaelis-Menten kinetics [95, 96]

by

RðI3ðFÞ;CÞ ¼ k2

maxfðI3ðFÞ � 1Þ; 0g

km þ maxfðI3ðFÞ � 1Þ; 0g
� k1C; ð4Þ

with positive constants k1, k2, km> 0. Here, k1 represents a constant degradation rate of the

morphogens in the entire tissue and k2 represents its mechanically induced production. Espe-

cially, the nonlinear form of the production represents a saturation effect of I3(F)-induced

morphogen production, which is a frequent biochemical modelling assumption due to exis-

tence of maximal production and translation rates for gene products [95, 96].

We point out that this modelling approach implies that cells “remember” their initial shape,

which could be unrealistic in the view that the cell cytoskeleton is continuously remodelled

(this limitation applies to all studies using finite elasticity and the multiplicative decomposi-

tion). We will consider models where the reference configuration is continuously updated in

future study.

Coupling of chemistry with mechanics. Chemical molecules can influence local tissue

mechanics in various ways, e.g. by modifying tissue stiffness, inducing local tissue growth, by

actively changing the cell shape, or by combinations of these processes. Additionally, all these

processes can appear in an isotropic or in an anisotropic manner. In this work, we focus on

an active deformation process called apical or basal constriction, since this is a common defor-

mation process during tissue morphogenesis [64–67]. Here, apical constriction refers to cells

constricting at the side pointing towards the blastula lumen, whereas basal constriction con-

cerns the cell side pointing away from the lumen. Mathematically, this kind of deformation

is expressed by the active part of the deformation gradient tensor. Firstly, we introduce local

coordinate systems X̂ in the origin m of every biological cell, oriented such that X̂2 points in

the radial direction. By Q and m we denote the rotation and the translation from the reference

Mechanochemical pattern formation in tissues
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coordinates X to these parametric ones. Here, the local constriction tensor in three dimensions

is given by

F̂aðX̂;CÞ≔
1þ kCX̂ 2 0 kCX̂ 0

0 1þ kCX̂ 2 kCX̂ 1

0 0 1

0

B
B
@

1

C
C
A; ð5Þ

where k is a constant and X̂ 0; X̂ 1; X̂ 2 are 3D coordinates in the cell-wise reference system. For

positive values of k, this results in apical constriction and for negative values in a basal one.

Observing QQT = QT Q = I, Fa in the reference system is now given as the transformation of

the tensor and its argument by

FaðX;CÞ ¼ QT F̂aðQX � Qm;CÞQ: ð6Þ

Note that Q depends on the biological cell under consideration whereas F̂a remains identical.

We have depicted the local coordinate systems X̂ for a biological cell Ki and the transformation

Q in the Supporting Information (cf. Fig. A in S1 Text). In particular, this means that Fa is a

piecewise-defined tensor which results in a semi-discrete model whereas, Eq (2) was entirely

continuous up to this point. This specific choice of F̂a and thus Fa (since det(Q) = 1) is vol-

ume-preserving since for the deformed volume V̂ i;a (deformed by F̂a) and initial volume V̂ i of

any biological cells Ki it holds

V̂ i;a ¼

Z

Ki;a

dX̂ 2dX̂ 1dX̂ 0 ¼

Z

Ki

jdet ðF̂aÞjdX̂ 2dX̂ 1dX̂ 0

¼

Z

Ki

ð1þ kCX̂ 2Þ
2dX̂ 2dX̂ 1dX̂ 0 ¼ V̂ i þ kC

Z

Ki

X̂ 2ð2þ kcX̂ 2ÞdX̂ 2dX̂ 1dX̂ 0 ¼ V̂ i;

see Fig. A in S1 Text. The last integral vanishes since the centroid of Ki has been transformed

to the origin and integration with respect to X̂ 1 and X̂ 0 cancels out.

Active constriction processes usually occur on one side of a biological cell by local contrac-

tion of correspondingly located acto-myosin networks [65]. Nevertheless, during these defor-

mations, the local volume of the cells often appears to be conserved [97] so that we choose Fa

volume preserving as described above and similarly as in Conte et al. [98]. The robustness of

patterns with respect to alternatively defined active deformations (non-volume preserving or

continuously defined Fa) can be found in Fig 4F respectively in the S1 Text.

Finally, we point out that although cell boundaries have been considered explicitly (in order

to appropriately describe active deformations such as constriction), the presented model is

designed to be realistic at the tissue scale rather than the cell scale, since there is no resolution

of sub-cellular structures.

Mechanochemical feedback loop. Mechanochemical patterns are formed by a positive

feedback loop as sketched in Fig 1. This feedback loop is based on the two experimentally

motivated assumptions:

1. local morphogen levels lead to apical constriction of individual, biological cells [65] (which

again leads to local stretch/compression of the tissue due its elastic response), and finally

2. local stretch and compression induce local morphogen production [68, 81].

Mechanochemical pattern formation in tissues
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By this construction, this feedback loop is self-energising and the Michaelis-Menten kinet-

ics Eq (4) ensure that the process slows down and eventually becomes stationary. Results

regarding alternative feedback loops are given in the Supporting Information.

Finite element (FEM) approximation

Discretisation. For the finite element approximation, our domain O is split into 98304

numerical cells. This is due to the initial 3D-sphere OH which is composed of 1536 circumfer-

entially arranged biological cells of size H that are each resolved by 64 numerical cells (hexae-

dra) of size h<H. These cells are then pulled onto the three-dimensional sphere, such that

Oh� O. This discretisation in hexaedra yields 122890 nodal points and the same number of

isoparametric, linear finite elements (Q1-FE) used for the approximation in space. Selected

results, e.g. in Fig 3, were additionally verified on 786432 numerical cells (i.e. every biological

one is split into 512 numerical ones) with a discretisation by isoparametric quadratic finite ele-

ments (Q2-FE).

Since the discrete solution u is continuous, the same holds true for F and the feedback term

R(I3(F)). Thus, we do not require local mesh refinement to resolve any discontinuities in this

work. In contrast, feedback terms depending on the discontinuous second Piola-Kirchhoff

stress tensor S require mesh adaptivity [3].

The time derivatives are discretised by using θ-time-stepping methods [84] (chapter 4.1).

Namely, we use the implicit Euler method for the first derivative in the reaction-diffusion

equation modelling morphogen dynamics and a two-step method for the second derivative in

the stabilisation term of the structural one.

In practice, the initial conditions u(X, 0) = 0, C(X, 0) = C0 are incompatible, since the initial

displacement u(X, 0) corresponding to the prescribed initial concentrations C0 is usually

unknown and set to zero. Hence, it takes a few time steps for deformation and concentrations

to match. These first 20 to 50 time steps are computed using a smaller time step size. For this,

a simple, adaptive time discretisation is employed which registers the convergence speed and

automatically increases the size of the time steps if deformation and concentrations begin to

match. That way, fast convergence of Newton’s method is always ensured.

Solvers and parallelisation. In three dimensions, the system matrix to solve in each time

step is strongly coupled and of considerable size. Efficiently solving our equations in three

dimensions requires parallelised, state of the art solution techniques. In the first step, the

system (2) is linearised by Newton’s method. The resulting, linear system in each of the 2-3

Newton steps, depending on the current convergence rate, is then solved by 8-10 GMRES iter-

ations [99]. The latter method is preconditioned by a geometric multigrid method [100]. The

main computational effort of the multigrid method is the smoother which reduces the high

frequent error components on the corresponding grid. Thus, a parallelised ILU factorisation

was used as smoother in all computations. The parallelisation was done using MPI and is

based on the idea of decomposing the domain Oh in n parts of similar size and with minimal

overlap. The ILU decomposition is applied on each part individually and the solution is

subsequently combined, for details we refer to Ref. [101, 102]. For n parts, we thus use n CPU

cores. On an Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90 GHz with 16 physical cores (32 by

hyperthreading) and 256 GB RAM, the computation time for one time step reduces from 49

seconds per time step averaged over 1000 steps to 24 seconds on two cores and only 4 seconds

on 14 cores. Note that the efficiency of the parallelisation decreases the more cores are used.

The largest gain occurs by using two instead of one core. Still, an impressive reduction of

computational costs by a factor 12 is possible by solving on 14 cores (two of the 16 were used

for the operating system as well as the process that steers the parallelisation).

Mechanochemical pattern formation in tissues

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006259 July 3, 2018 15 / 21

https://doi.org/10.1371/journal.pcbi.1006259


The bottleneck is the mere number of time steps required to resolve the short elastic time-

scale introduced by a time derivative in the structural equation which is added for stabilisation

purposes. Details are given in the Supporting Information. For the numerical results in Fig 2

and in Fig 3, 100000 and 50000 time steps were required respectively. On the server mentioned

previously, this requires about 4 and accordingly 2 days to obtain these results if all parameters

are known and the machine is otherwise unoccupied.

The convergence of our method was verified on a finer mesh for linear and quadratic finite

elements as stated above. Thereby, it was shown, that the stabilisation error is of smaller scale

than the discretisation error, i.e. the stabilisation does not effect the quality of the results.

Parameter setup

We begin with the essential parameters: Mathematically and biologically, it is vital to have a

comparably small diffusion coefficient DT * 10−14 m2 s−1 in the tangential directions in relation

to a large coefficient DN * 10−12 m2 s−1 in the normal one. Now, the crucial point in finding

suitable parameters is to balance the choice of the diffusion coefficients with the maximal mor-

phogen production rate k2 * 107 molm−3 s−1 which is also related to the Michaelis constant

which was set to km = 2.0. Once the stretch has reached this value, i.e. Ie(F) = 2.0, half of the pro-

duction rate k2 is reached. The latter two parameters k2 and km depend on one another as they

both influence maximal morphogen concentration after saturation in conjunction with the dif-

fusion coefficients. Further, we set k1 * 10−4 s−1 for the degradation rate of the morphogen level

in the entire domain. Detailed numerical studies how changes in these parameters affect result-

ing patterns can be found in the Supporting Information (“Robustness of pattern formation”).

Notably, the choice of the material constants is not essential. This can be seen as follows:

Values of the Lamé constants are usually given in terms of Young’s modulus E and Poisson’s

ratio ν. They can be obtained by the conversion formulas given in Eq. (18) in the S1 Text. In

particular, the Lamé constants linearly depend on E. A dimensionless analysis shows that,

in the absence of external forces, Young’s modulus can be extracted from the structural equa-

tion and changes in E only alter the elastic timescale, which is not resolved since we are only

interested in the comparably long timescale of active deformations (cf. section “Full mechano-

chemical model equations” in the Supporting Information for details on the time scale.) Also,

changing ν does not significantly alter the results. We confirmed this numerically since we

have we used E = 100 Pa and ν = 0.4 as in [103] for our computations but choosing E = 1000

Pa and ν = 0.3 as in [98] leads to qualitatively the same results.

Finally, uniformly distributed random concentrations for each biological cell or a morpho-

gen gradient were used as initial conditions. In both cases, the morphogen concentration was

included in the interval c 2 [0, 109]mol m−3. For visualisation of the following results, initial

conditions were transformed into the interval c 2 [0, 1]mol m−3. In any case, the scale of the

morphogen concentration is not crucial since only the constant k which determines how

strong the morphogen concentration couples into the active deformation gradient (see Eq (5)),

has to scale in the same manner. It was set to k * 10−6 mol−1 m.

Supporting information

S1 Text. PDF document comprising additional information (text and figures) with respect

to structural mechanics and notation, structural model equations, implementation of

growth, full mechanochemical model equations, derivation of mechanical invariants as

well as robustness of pattern formation.

(PDF)
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