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Abstract
Introduction Glioblastoma multiforme (GBM) constitutes one of the deadliest tumors to afflict humans, although it is still 
considered an orphan disease. Despite testing multiple new and innovative therapies in ongoing clinical trials, the median 
survival for this type of malignancy is less than two years after initial diagnosis, regardless of therapy. One class of promis-
ing new therapies are chimeric antigen receptor T cells or CAR-T which have been shown to be very effective at treating 
refractory liquid tumors such as B-cell malignancies. However, CAR-T effectivity against solid tumors such as GBM has 
been limited thus far.
Methods A Pubmed, Google Scholar, Directory of Open Access Journals, and Web of Science literature search using the 
terms chimeric antigen receptor or CAR-T, GBM, solid tumor immunotherapy, immunotherapy, and CAR-T combination 
was performed for publication dates between January 1987 and November 2021.
Results In the current review, we present a comprehensive list of CAR-T cells developed to treat GBM, we describe new 
possible T-cell engineering strategies against GBM while presenting a short introductory history to the reader regarding the 
origin(s) of this cutting-edge therapy. We have also compiled a unique list of anti-GBM CAR-Ts with their specific protein 
sequences and their functions as well as an inventory of clinical trials involving CAR-T and GBM.
Conclusions The aim of this review is to introduce the reader to the field of T-cell engineering using CAR-Ts to treat GBM 
and describe the obstacles that may need to be addressed in order to significantly delay the relentless growth of GBM.
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Introduction

Glioblastoma multiforme (GBM) is the most common pri-
mary malignant brain tumor affecting up to 17 individuals 
per 500,000 adults per year. Despite decades of research, 

the prognosis is dismal with a median survival of less than 
15 months with standard of care [1]. Current standard-of-
care treatment regimens consist of tumor de-bulking fol-
lowed by concomitant chemotherapy and radiation. Recent 
research has focused on therapies targeting the immune 
microenvironment of the tumors, as progression of GBM 
occurs concomitantly with high levels of immunosuppres-
sion. Many therapeutic strategies that have been successful 
with other cancers have failed in GBM as a result of its 
unique organ localization and immunosuppressive environ-
ment [2]. The three main immunotherapies used against 
GBM to date have been immune checkpoint inhibition, 
vaccination, and adoptive transfer of effector lymphocytes, 
with varying outcomes but none has consistently extended 
survival beyond 12 months. More recently, a newer immu-
notherapy using oncolytic viruses has shown significant 
improvement of mean survival [3]

One of the main obstacles conventional immunotherapies 
for GBM face is the low abundance of leukocytes in the 
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brain under steady-state conditions. Although immune sur-
veillance cells such as T cells and microglia exist, they are 
located in the choroid plexus stroma and the cerebrospinal 
fluid (CSF), which occupy the perivascular spaces. The cen-
tral nervous system (CNS) has traditionally been regarded as 
immune privileged, and therefore excluded from the protec-
tion systemic immune surveillance affords other organs [4]. 
A distinct obstacle facing drugs and general oncolytic treat-
ments is the presence of the blood brain barrier (BBB) or the 
blood-cerebrospinal fluid barrier that effectively blocks their 
entrance into the brain parenchyma where GBM-associated 
tumors are located. The absence of lymphatic vessels which 
normally drain antigen presenting cells further confirm the 
notion of the brain as an immune privileged site.

Single cell sequencing and flow cytometry has clarified 
the complexity of the cells that reside in the brain paren-
chyma. The most prominent immune cells in the brain are 
microglial cells, which serve as the first line of defense 
against pathogens [5]. Bone marrow-derived macrophages/
monocytes are the primary immune cell in glioma and they 
may compose up to 30% of tumor mass. As such, there are 
two distinct populations: glioma bone marrow-derived mac-
rophages and microglia.

During tumor progression, monocytes and T cells extrav-
asate into the microenvironment through the compromised 
BBB. One of the most prominent T cell types in glioblas-
toma are  CD8+ cells [6, 7]. These  CD8+ cytotoxic T cells 
increase in glioblastoma due to an upsurge in chemoattract-
ants such as CXCL9, CXCL10, and adhesion molecules 
such as ICAM. However, this massive infiltration eventually 
creates a heavily immunosuppressive tumor micro-environ-
ment (TME) by activation of tumor-associated macrophages 
(TAMs) and further recruitment of myeloid derived suppres-
sor cells (MDSC) [8]. MDSCs can suppress cytotoxic  CD8+ 
T cell proliferation and overall activation by—among others- 
increasing surface expression of IL-4Rα and the production 
of arginase and inducible nitric oxide synthase (iNOS) [9]. 
In response to inflammatory stimuli, such as tumor growth, 
brain stromal cells produce high levels of classic immuno-
suppressive cytokines such as transforming growth factor 
beta (TGF-β) and interleukin-10 (IL-10), which counteract 
the inflammatory cytokine signals to maintain homeostasis. 
Glioma cells also are known to produce huge amounts of 
indolamine 2,3 dioxygenase (IDO) which results in accu-
mulation of regulatory T cells (Treg) which further suppress 
cytotoxic T cell activity. Combination therapy of patients 
with brain tumors has been focused on inhibiting the specific 
immunosuppressive factors, but targeting TGF-β and IDO 
has shown no clinical benefit so far, despite its success in 
animal models [10].

The ongoing success in the treatment of many other types 
of cancers and further progress in understanding of T cell 
immunotherapy, suggests further novel treatment strategies 

may be forthcoming for the treatment of brain cancers [11], 
including the up-and-coming new therapy of Chimeric Anti-
gen Receptor T cells (CAR-Ts).

Introduction and brief history of CAR‑T

Chimeric antigen receptor T cells or CAR-Ts are synthetic 
immune receptors that redirect cytotoxic T cells to specific 
targets through recognition of surface proteins expressed on 
targeted tumor cells. Thus, the principle of CAR-Ts is to 
genetically modify [12] existing T-cells from cancer patients 
in order to re-direct their immune response machinery 
toward a malignant target cell of interest. Theoretically, any 
cell surface molecule can be targeted through a CAR-T, thus 
over-riding the tolerance to self-antigens and the antigen 
recognition gaps in the T- cell repertoire that often limit 
their scope of reactivity. It should be noted that expression 
of CAR-Ts basically bypasses the HLA-restricted nature of 
T-cells, making them immune to evasion strategies such as 
MHC shedding by tumors. However, the CAR-T needs to 
be optimized in order to increase its binding and signal-
ing properties. Interestingly, the persistence and strength of 
CAR-Ts can also be modulated by the design of the intracel-
lular signaling domains.

CAR-Ts have three main domains: the extracellular 
domain, which includes the antigen recognition domain, a 
transmembrane domain, and the intracellular domain, which 
is important for signal transmission (Fig. 1A). CAR-Ts are 
able to recognize antigen on any HLA background and can 
target tumor cells that have downregulated HLA expres-
sion or proteosomal antigen processing, mechanisms often 
attributed to tumor escape. A crude version of CAR-Ts was 
initially reported in 1987 by Yoshihisa Kuwana et al., [13] 
and almost concomitantly by Gideon Gross and Zelig Esh-
har in 1989 [14]. While the first generation CAR-Ts were 
developed based on work from the Weiss lab demonstrating 
that inclusion of a CD3ζ domain could activate T-cells [15] 
(Fig. 1A), more versions followed quickly. Margo Roberts 
and Finney and colleagues during the 1990s contributed to 
the development of second generation CAR-Ts by incorpo-
rating co-stimulatory domains [16] such as CD28 which 
improved IL-2 production in Jurkat cells by 20-fold [17] 
(Fig. 1B). One of the advantages to CAR-Ts is their modular 
design properties that provide flexible domains which can 
be adjusted or swapped. Another seminal clinical improve-
ment was the key finding of Rosenberg et al. in 1988, who 
demonstrated that that mild lympho-depletion in treated 
patients improved the proliferation of infused tumor-infil-
trating lymphocytes (TILs) [18]. However, lympho-depletion 
is accompanied by very severe side-effects. All these crucial 
developments, and many others [19], paved the way for the 
eventual success of CAR-T cells clinically.
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However, unequivocal CAR-T results in a clinical set-
ting were not demonstrated until two groups, one lead by 
Drs. June and Levine and funded by the Alliance for Cancer 
Gene Therapy or ACGT, and another by Rosenberg et al., 
from the NIH who showed remission in B-cell leukemia and 
lymphoma patients using a CAR-T approach [20, 21]. After 
this initial success combined with a little luck [22], more 
clinical trials followed [19, 23]. Experience with CD19-tar-
geted CAR-Ts have had remarkable outcomes for patients 
with CD19-positive B cell malignancies which lead to FDA 
approval in 2017 [24, 25]. These CD19-targeted-CAR T 
therapies and the adoptive cellular therapy that followed 
in melanoma have also raised optimism for the treatment 
of CNS malignant tumors. For example, in patients with 
metastatic melanoma, Hong reported that 35% of patients 
achieved complete response in the brain metastases as well 
as extra-cranial disease [26].

As a result of the success of CAR-T cells on refrac-
tory liquid tumors, CAR-T technology has expanded sub-
stantially in recent years. Tagging the CAR-T at its amino 

(N)-terminus, upper or lower stem without losing functional-
ity (Fig. 1A) has also been described when availability for 
detection is difficult [27]. Also of importance is the length of 
the CAR-T hinge [28], which ultimately can make a CAR-Ts 
effective in vitro but not in vivo [29]. This phenomenon is 
very unfortunate, because the vice-versa effect could also 
happen, i.e., where CAR-Ts don’t work in vitro but may 
work in vivo. Unfortunately such CAR-Ts would never be 
developed because very seldom do in vitro failures lead to 
in vivo testing.

Given the clinical success of CAR-Ts, development of co-
stimulatory domains has been extensively characterized [30] 
as shown in Fig. 1B, as well as using nanobodies instead 
of antibodies as the targeting domain [31]. Nanobodies are 
smaller than conventional antibodies and are being explored 
in CAR-Ts in order to gain accessibility to difficult antigens 
[32]. Owing to the flexible nature of proteins, many more 
versions have been generated including third, fourth and 
next-generation CAR-Ts by incorporating JAK/Stat signal-
ing (Fig. 1C).

Fig. 1  CAR-T design and current generations. A The basic CAR-T 
architecture consists of a target domain followed by a stem or hinge, 
a transmembrane domain and intracellular co-stimulatory motifs. 
Tags for easy identification can be placed in different key locations 
as shown. B Several types of co-stimulatory domain targets have been 
characterized to be used with CAR-T. C CAR-T have experienced a 

fast evolution, from the initial First Generation (First Gen) compris-
ing only one stimulatory domain, all the way to second, third, fourth 
and next-generation CARs, comprising several combinations of co-
stimulatory domain molecules as well as JAK/STAT signaling (Next-
Gen)
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While liquid tumors such as B-cell malignancies have 
experienced breathtaking success in achieving remission 
in up to 70–90% of treatment-refractory cancers, CAR-
Ts designed to treat solid tumors have had considerably 
less success so far. Solid tumors pose greater challenges 
than liquid given the existence of a complex and heavily 
immuno-suppressed TME that surrounds the tumor and pro-
tects it from destruction [33]. The TME may also hamper 
the T-cell trafficking and infiltration necessary, resulting in 
T-cell exhaustion [34], and CAR-Ts that address the TME 
problem display enhanced anti-tumor efficacy in vivo [35]. 
Further, in some solid tumors, such as glioma, the TME 

is characterized by low nutrient regions and hypoxia [36]. 
However, given the versatile nature that CAR-T cell engi-
neering offers, several improvements can be made to CAR-
Ts in order to address the unique challenges that solid tumors 
present (Fig. 2). Other approaches to minimize TME effects 
have been; (1) designing CAR-Ts with dominant-negative 
TGFβrII receptors –dnTGFβII-, expression of mutant forms 
of FAS [37], (2) PD-1-CAR-T [38], dominant-negative PD-1 
[39] or 3) as we describe below-secretion of key cytokines 
or heparanase [40].

Fig. 2  Types of CAR-T developed. Several different strategies have 
been developed involving CAR-Ts owing to their flexible nature. A 
Bi-specific CAR, targeting two antigens independently. B iCAR, 
targeting two independent antigens leads to inhibition (thus sparing 
healthy tissues). C Intra-CAR-T can be designed to target antigens 
that are located intracellularly but expressed via MHC. D Syn-Notch 
CAR-T where a secondary-targeting antigen is strongly controlled by 
binding of a primary one. E Split CAR-T are created by targeting two 
independent antigens with the co-stimulatory domains split. Thus, 

only when both antigens are present is the CAR-T fully activated. F 
Supra-CAR: the CAR-T construct is split allowing for one co-stim-
ulatory domain (B-zip) to bind several targeting domains (A-zip). G 
Tan-CAR-T are achieved by fusing two antigen-targeting domains 
into one. H Trivalent CAR-T, where three independent antigen-target-
ing CAR-T are expressed independently within the same cell. I Uni-
CAR-T consist of an antigen-binding domain that bind not an endog-
enous target but a soluble one administered exogenously acting as a 
bridge (purple)
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Methods

Electronic databases, Pubmed, Google Scholar, Directory of 
Open Access Journals, and Web of Science, were searched 
from January 1987 to August 2021. Database searches 
included the following key words: ‘glioblastoma or glioma’, 
‘solid tumor immunotherapy’, ‘CAR-T’, ‘immunotherapy’, 
and ‘CAR-T combination’. We further manually screened 
references within the related articles to expand the search 
range. Two researchers (AKF and DS) extracted the rele-
vant information and validated their inclusion in the current 
review.

CAR‑T versus GBM

Several CAR-Ts have been developed to treat GBM and 
other solid tumors, but to-date none has led to long-term 
remission [11]. Despite these initial failures, the use of CAR-
Ts against GBM is ongoing with multiple designs undergo-
ing clinical trials (Table 1). The flexibility that T-cell genetic 
engineering offers is a very strong impetus to improve tumor 
targeting in a way no other treatment allows: i.e., using the 
plethora of cell-killing mechanisms that the immune sys-
tem offers. CAR-Ts have been successfully used to treat sev-
eral liquid (blood) cancers owing to the existence of very 
specific tumor targets. Thus, the rationale behind using 
CAR-Ts to treat GBM is that sooner or later a way to target 
multiple highly-specific tumor targets will be discovered. 
Indeed, multiple GBM-specific targets have already been 
identified, the most notable including EGFRvIII [41–43], 
HER2 [44], EphA2 [45] or IL-13Rα2-CAR [46, 47] among 
many others identified in Fig. 3 and Supplementary Table 1. 
Novel designs include an IL-13Rα2-CAR developed by 
Brown et al. [48], using a peptide as the targeting-domain 
(zetakine) or by Pituch et al., using an antibody [47]. Both 
approaches showed promise in murine studies targeting 
the IL-13Rα2 receptor in glioma cells and the zetakine 
version induced remission in a Phase I human GBM trial 
[46]. However, in this clinical trial the remission was rela-
tively short-lived, since under the IL-13Rα2-CAR pressure, 
the tumor is suspected to have undergone antigenic loss, 
an acknowledged major obstacle in combating GBM with 
CAR-T therapy, since it represents the disappearance of the 
primary CAR-T target, which renders CAR-Ts ineffective. 
To compound this problem, antigenic loss can be the result 
of the heterogeneous cellular nature of GBM, with existence 
of GBM IL-13Rα2neg cells that expand to bypass CAR-T or 
instead IL-13Rα2+ cells that somehow undergo gene loss 
of IL-13Rα2. However, a clinical trial conducted by Brown 
et al., demonstrated that despite a heavily immunosuppres-
sive milieu, CAR-Ts were able to eradicate IL-13Rα2+ cells. 
More recently, a T cell receptor fusion construct (TRuC) 

against IL-13Rα2 has been developed and tested in a U251 
NG1 murine model of GBM, showing superior reactivity 
and safety profiles compared to conventional CAR-T cells 
[49].

CAR-T cells have also been developed against the 
EGFRvIII antigen as mentioned above. The interest in the 
EGFRvIII variant stems from it being a mutated form of 
EGFR present in about 52% of glioma cells, but not healthy 
tissues [50]. In an EGFRvIII clinical study, the patients’ 
tumors also underwent antigenic loss, rendering the tumor 
CAR-T resistant [41]. It is interesting to note that despite 
knowledge regarding this phenomenon, it is not discouraging 
other groups from developing additional EGFRvIII-targeted 
CAR-Ts using novel higher affinity antibodies as recently as 
2021 [51, 52]. Others have developed CAR-T secreting Bi 
specific T cell Engagers or BiTEs targeting EGFRvIII [53].

On another front, in order to improve CAR-T control even 
further, recent work by Dr. Wendel Kim, building on the 
development of Syn-Notch receptors [54], has developed a 
sigmoidal Syn-Notch that can discriminate tumor antigens 
very accurately [55]. Even more recently, another take on 
Syn-Notch by their creators has been developed using a 
two-strike trivalent CAR-T against EGFRvIII and EphA2/
IL-13Rα+ TanCAR in a GBM murine model [56]. However, 
Syn-Notch circuits are exogenous and could lead to allergic 
reactions, as mentioned in the original publication [57].

Several approaches have been developed to address the 
obstacle of antigenic loss (Fig. 2). Most notably, a novel 
CAR-T employing the scorpion toxin peptide Chlorotoxin 
(CLTX) has been developed recently to target CAR-Ts 
towards GBM antigens [58]. This CLTX-CAR-T induced 
long-term remission in murine studies [58]. Since CLTX 
is known to recognize 100% glioma cells through at least 
three tumor-associated proteins while not affecting healthy 
tissue [59], the clever rational behind this approach is that a 
CLTX-CAR-T could potentially reduce antigenic loss once 
and for all. However, through their very elegant set of stud-
ies, Wang et al., identified expression of the surface protein 
MMP-2 on glioma cells as necessary to mediate the CLTX 
binding. Loss of MMP2 in GBM -which has been described 
[60]- may hamper CLTX targeting. Current clinical trials 
are underway (NCT04214392) that will determine whether 
CLTX-CAR-Ts can improve GBM prognosis in patients. It 
is interesting to note that a CLTX-antibody was developed in 
2012 but its clinical application remains unknown [61]. We 
have also compiled updated lists of current trials in Table 1 
and completed trials in Table 2 adapted from reviews by 
Land C.A. et al. [62] and Maggs L. et al. [63]

Other CAR-T approaches to treat gliomas have been to 
include helper genes. As such, a recent advancement has 
been reported from Huang et al., who have engineered a 
CD70-CAR [64]. Over-expression of CD70 on glioma cells 
has been known to induce apoptosis on T-cells via CD27 
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[65] and Huang et al., cleverly replaced the intracellular por-
tion of CD27 by 41BB and CD3ζ, thus basically turning 
CD27 into a CD70 targeting CAR-T. The authors showed 
that this type of CAR could kill  CD70+ glioma cells in vitro 
and in vivo, although remission was only achieved using 
100 ×  106 CAR-T cells [64]. Then, in a follow-up study, they 
co-expressed CXCR2 expression using a Furin-V5-P2A 
sequence [66] with their CD70-CAR in order to guide the 
modified T-cells towards IL-8 producing glioma cells [67]. 
Since IL-8 expression is known to promote tumor resistance 
and invasion [68] besides being one of the predominantly 
expressed chemokines in GBM [69], the authors rationale 
is that it would help T-cells hone in on, and infiltrate tumors 
more efficiently. Using this approach, the authors needed 
only 2 ×  106 CARs to achieve remission in vivo in preclinical 
modeling after 150 days [67]. Interestingly, since the authors 
were able to treat not just U87 murine xenographs but also 
pancreatic and ovarian-type cell lines, it seems co-expres-
sion of CXCR2 could improve treatment of solid tumors 
overall. However, it is unknown whether  CD70+ glioma cells 
can undergo CD70 loss under long-term CAR-T pressure, 
so reproducibility and clinical feasibility of these studies 

needs further investigation. However, CD70 CAR-T clini-
cal trials involving solid tumors such as pancreatic, renal 
and breast cancer were recently suspended after enrolling 
only two patients (NCT02830724). CD70 has also been 
combined with targeting B7-H3 (CD276) with a TanCAR 
strategy (Fig. 2G) that showed enhanced anti-tumor func-
tionality against gliomas and many other solid tumors [70].

Another helper gene recently used has been IL-15 [71]. 
IL-15 is a cytokine that has been demonstrated to enhance 
survival of T-cells. However, use of this cytokine in vivo 
is complex, since it needs to be expressed in trans with its 
receptor in order to extend IL-15 half-life and thus function 
effectively in vivo [72].

In order to address the glioma antigenic escape problem, 
a daring Trivalent CAR strategy was developed by Bielamo-
wicz et al. [73], using a single lentiviral construct expressing 
three individual CARs directed against IL-13Rα2, HER and 
EphA2. The authors reported almost 100% success using 
two different patient-derived cell line xenographs in five 
mice during a 60-day period. However, several limitations 
appear to surround this approach. Requirements for produc-
ing high enough viral titers for such long constructs in a 

Fig. 3  List of anti-GBM CAR-T amino acid sequences. A compre-
hensive list of several CAR-T targeting different antigens on GBM 
is shown based on an extensive literature search. Within each CAR-

T, different colors on amino acid sequences identify their nature and 
functionality. TMD transmembrane domain, CLTX chlorotoxin pep-
tide
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clinical setting remains to be seen [74] and the inter- and 
intra-patient GBM variability appears to be wider than what 
the authors describe a Universal CAR or UCAR can achieve 
[75]. However, if such strategy can be proven effective at 
containing the growth of GBM, surely the manufacturing of 
such large constructs would find a way to translate clinically.

Owing to the versatility that transmembrane proteins 
confer, several other types and combinations of CARs have 
been developed and are listed in Supplementary Table 1, 
however, their viability and utilization against GBM remains 
to be seen.

However, solving the challenge of antigenic loss may not 
be the only obstacle in order to achieve long-term remission 
of gliomas. The TME and the alleged detrimental effects it 
exerts on T-cells such as T-cell exhaustion and poor tumor 
trafficking, are major obstacles that need to be account for in 
any new strategies [76–78]. As Wang et al., suggest in their 
studies, some CLTX-CARs that failed to achieve durable 
remission in murine models may be due to T-cell exhaus-
tion [58].

Combined CAR‑T use with other therapies

Recently, CAR-T therapeutics aimed at GBM have been 
used in combination with existing anti-tumor agents, such 
as temozolamide [79] or immune checkpoint inhibitors (ICI) 
PD1/PD-L1 against refractory diffuse large B-cell lymphoma 
[80]. However, the clinical efficacy of ICI against GBM may 
be moot with open questions regarding their usefulness 
against GBM [81] after usage of Nivolumab –a PD1/PD-L1 
inhibitor- failed to show any clinical benefit to patients with 
recurrent GBM [82]. Owing to the plastic nature of CAR-Ts, 
work has also been published using CAR-Ts of many carri-
ers of oncolytic viruses [83] or oncolytic viruses targeting 
IL-13Rα2 [84]. Additionally, modified CAR-NK cells have 
been used to eliminate MDSC before CAR-T administration 
in murine models [85] as well as co-expressing CXCR4 and 
EGFRvIII in NK cells to improve immunotherapy against 
CXCL12-secreteing GBM [86].

Special details of CAR‑T modules

Since the development of additional co-stimulatory mod-
ules to CAR-Ts in order to improve their in vivo potency 
and lasting effect (Fig. 1B), several additional modifica-
tions to certain modules have been reported or are de facto 
known and used in the CAR-T community. One of these 
is a key modification on the CD28 co-stimulatory domain 
where a single amino acid change involving an aspara-
gine to a phenylalanine (N193F) improves long-term sur-
vival and exhaustion of T-cells [87]. Interesting too is the 
recently reported non-canonical CD3e motif -RKxQRxxY- 
that has also been described to provide improved function 

[88]. Improvements on the stem/hinge section of CAR-Ts 
have also been reported. For example, a mutant with two 
amino acid changes -L235E and N297Q- thus coined EQ 
on the IgG4 domain is reported to improve T cell persis-
tence and anti-tumor efficacy while avoiding Fc receptor 
binding in CD19-CAR-Ts [89]. One should also note that 
several modifications of co-stimulatory domains or hinges 
are not reported in the literature, but are described in filed 
patents, such as the change of two leucines to glycines in the 
CD28 intracellular domain (L186G and L187G) designated 
LLmGG [90] and recent patent WO2017066481A1. Schön-
feld et al., have also filed a patent reporting that a serine to 
cysteine change in the CD8 hinge regions (S164C) improves 
functionality and expression of CAR-T [91] and patent 
EP3115373A1. Finally, a double mutant CD3ζ domain with 
mutation Q65K and deletion Q101 has been reported from 
Mackall’s group, albeit no functional difference from the wt 
sequence was noted (Dr. Benjamin Salzer, personal commu-
nication and present in patent WO/2020/118076).

Untested approaches in gliomas

Several novel therapeutic approaches involving T cell engi-
neering have been developed, but none have been tested 
against gliomas or GBM. For example, CD40 is known to 
be upregulated in 40% of all GBM [92] and constitutive 
expression of its ligand CD40L on CAR-T has been shown 
to enhance IL-12 secretion, extend survival of T cells, and 
increase cytotoxicity against tumors [93]. Other groups have 
engineered heat-controlled CAR-T that display enhanced 
intra-tumoral activity [94].

Last year a novel monomorphic MHC class I-related pro-
tein, MR1, was described to be expressed in virtually all 
types of cancers but not healthy cells [95]. Authors showed 
this particular surface MR-1 molecule could be targeted 
by a TCR that recognizes vitamin B-related metabolites 
present in malignant cells but not healthy ones. Although 
MR1-restricted mRNA has been detected in glioma cell lines 
such as U-373 [96], its expression in another commonly used 
glioma cell line U87 or patient-derived GSC is unknown. 
Another promising approach has been the development 
of Supra-CARs, i.e., inter-changeable CAR-Ts that can be 
modulated by soluble adaptors [97]. Protein logic, i.e., com-
binatorial antigens- targeting  HER2+ cells, have also been 
developed to achieve precise discriminatory effector func-
tions targeting antigens present in tumor, but not healthy, 
cells [98].

Another promising approach to developing CARs tar-
geting difficult tumor antigens was used by Rafiq et al., in 
2017, creating a CAR with the ability to target intracellular 
Tumor-Associated Antigens (TAA) such as Wilms tumor 1 
(WT1), known to be up-regulated in gliomas [99]. Using 
this approach, the CAR is guided by an antibody portion 
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that recognizes a surface MHC molecule loaded with peptide 
fragments of WT1 [99], which otherwise cannot be accessi-
ble to T-cells as it is ordinarily intracellular (Fig. 2I). WT1 is 
an oncogenic, zinc-finger transcription factor involved in dif-
ferentiation, proliferation and apoptosis among other func-
tions [100]. WT1 is known to be over-expressed in many 
malignancies, including GBM [101], offering broad tumor 
therapeutic potential. Expanding on this strategy to target 
MHC-presented peptides from key intracellular oncopro-
teins, Yamarkovich M. et al. have recently created a pep-
tide-centric CAR (PC-CAR) that can target neuroblastoma 
dependency gene and intracellular transcriptional regulator 
PHOX2B and induce remission in a murine model of neu-
roblastoma [102].

In order to increase local potency of CAR-Ts, Fourth Gen-
eration CAR-Ts—“T cells redirected for antigen-unrestricted 
cytokine-initiated killing” (TRUCKS) have been tested in 
murine models [103]. As shown in Fig. 2, CAR-T along 
with NFAT-controlled cytokines IL-12 or IL-18 can increase 
potency against tumors only after the primary CAR-T is 
engaged and T cells activate [104, 105]. However, although 
IL-12 TRUCKs showed efficacy in murine models, they pro-
vided little therapeutic effects in a Phase 1 clinical trial for 
metastatic seminal vesicle cancer, although no adverse side 
effects were reported [106]. An additional detrimental effect 
of this approach is that NFAT-controlled cytokines might 
activate independently of the primary CAR-T engagement 
if the T-cell is activated by alternative mechanisms. This 
hindrance may be solved using Syn-Notch receptors as intro-
duced above. Other cytokines that have been constitutively 
co-expressed along with CAR-Ts include IL-7 and CLL19, 
which promote survival via decreased T-cell exhaustion- and 
tumor infiltration respectively [107]. More recently, CAR-Ts 
constitutively expressing IL-9 have also been described as 
having a superior tumor-fighting phenotype against liquid 
and solid tumors, displaying central memory phenotype, 
decreased exhaustion markers and robust proliferative capac-
ity [108].

Delivering the gene cargo into CAR-Ts has also been 
a logistical problem, and its difficulty in clinical transla-
tion of bench developments have been mentioned. Buch-
holz et al., have developed a lentivirus capable of creating 
CD19-CAR-T cells in vivo without the requirement for cell 
expansion [109]. Utilization of this approach versus solid 
tumors remains to be explored.

Many CAR-T improvements have been developed using 
combinatorial antigens [110] or AvidCARs [57] to improve 
selective tumor eradication. It has also been demonstrated 
that it is possible to restrict CAR-T expression to anoxic 
conditions similar to the hypoxic environment, a hallmark of 
GBM, by C-terminally attaching a HIF motif into the CAR 
that grants it oxygen-sensing features [111]. Scientists have 
also developed adaptor molecules that can recognize specific 

antigens while engaging the TCR machinery, thus minimiz-
ing tonic signaling [112]. One such approach is called T 
cell antigen coupler or TAC and has demonstrated efficacy 
in murine models against  HER+ cells [113], another known 
surface antigen over-expressed in GBM. Other approaches 
have been even more daring such as directly combining 
antibody-based targeting domains with the TCR-like activa-
tion machinery itself [114]. In this approach, Yue Liu et al., 
showed that synthetic TCR and antigen receptor or STAR 
receptors, offer greater functionality compared to conven-
tional CAR-Ts.

However, besides the clinical feasibility of these ground-
breaking studies, a major obstacle that plagues most CAR-T 
or T cell engineering studies is the virtual impossibility 
to exactly reproduce CAR-T or similar expression experi-
ments. Most often published reports do not include the exact 
protein sequence of the constructs used, or they do so in a 
convoluted manner that makes reproducibility very difficult 
and time consuming. Obtaining the original plasmids used 
by the authors from which the constructs are expressed is 
even more difficult—even though it is encouraged in pub-
lished work. Sometimes, the only recourse is to reverse 
engineer the constructs or obtain the sequences from other 
source documentation such as patent applications. This adds 
another level of ambiguity, where one can never be com-
pletely sure whether the construct is the actual one used or 
not in the published work. This observation is compounded 
by the inflexible nature of proteins, where a single amino 
acid change can be very influential. In order to help read-
ers regarding this issue, we have compiled a list in Fig. 3 
and accompanying Supplementary Table 1 describing the 
constructs used in each study for which we were able to find 
the precise amino acid sequences. Hopefully, this will aid 
researchers in dissemination of vital information necessary 
to propel research forward and advance potential treatments 
for this devastating disease.

CAR safety, efficacy and caveats in GBM

Safety concerns are a major issue when using CAR-Ts [115]. 
Targeting tumor cells while ensuring normal tissue remains 
undamaged needs to be extensively assessed using in vitro 
and preclinical in vivo testing prior to testing their clini-
cal efficacy in human patients. One of the main toxicities 
associated with CAR-T therapy is induction of cytokine 
release syndrome (CRS) as well as poorly understood neu-
rological sequelae. Fortunately CRS can be managed with 
the use of anti-IL-6 [116] and corticosteroids, but it can 
reduce the benefits of CAR-T as a result. For example, it 
was recently mentioned in an online conference-CelliCon 
Valley 2021- by Dr. Carl June, that a subgroup of neurons 
express very low levels of CD19 which might make them a 
target for the CD19-CAR-T approved clinically. However, 
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the physiodynamics underlying CRS are extensive and could 
well fill a separate review [25, 115, 117–119].

Since existing patient T-cells need to be engineered in 
order to express the CAR-T, isolation, extraction and expan-
sion of functional peripheral T-cells in a Glioma patient is 
required. This can be a challenge itself as GBM patients 
are heavily immunosuppressed and their T-cells are docu-
mented to have a wide range of T-cell dysfunction including, 
senescence, anergy, tolerance and exhaustion [120]. On top 
of this, the GBM median survival of 15–17 months after 
diagnosis can limit the timing of isolation, expansion and 
re-infusion of modified T-cells back into patients, since pro-
duction alone of CAR-T can generally take approximately 
2–4 weeks or more depending on the patient’s clinical status 
and chemotherapy usage [121, 122]. In order to shorten this 
step, off-the-shelf CAR-T are under investigation but their 
clinical usefulness has not been assessed yet [123].

Conclusions

GBM tumors are among the most devastating types of can-
cers to afflict humans. As such, it is highly unlikely any sin-
gle conventional or unconventional treatment that worked 
against other tumor types will decisively reverse unstoppa-
ble growth or adaptability and escape of GBM tumors. In 
this regard, CAR-T therapies have proven to be no excep-
tion despite their decisive role in reversing the prognosis 
of patients with liquid tumor malignancies. However, the 
advantage CAR-Ts offer versus other therapies is the unlim-
ited potential for improvement via refined T cell engineer-
ing. Taking advantage of the flexible nature of DNA and 
delivery systems, it is possible that effective CAR-T combi-
nations versus solid tumors such as GBM will be developed 
in the foreseeable future. In order to achieve this goal, a 
holistic approach should be undertaken. One in which sev-
eral immunologic obstacles are addressed simultaneously 
including the challenge of antigenic loss, protecting CAR-T 
from the TME, T cell exhaustion, improving tumor homing, 
and making T cells resistant to immunosuppression. There 
is also room for improvement on safety profiles in order to 
reduce cytokine release syndrome, neurotoxicity and long-
term control through iCasp9 [124], HSV-TK [125] gene or a 
suicide epitope [126]. However, the future is very promising, 
with novel and very innovative improvements being reported 
almost weekly. As such, the possibilities of CAR-T and T 
cell engineering has never looked more promising in design-
ing potential therapeutics for treatment of solid tumors and 
specifically GBM, the meanest of them all.
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