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Performing whole genome sequencing (WGS) for the surveillance of antimicrobial resistance offers the ability to determine 
not only the antimicrobials to which rates of resistance are increasing, but also the evolutionary mechanisms and transmission 
routes responsible for the increase at local, national, and global scales. To derive WGS-based outputs, a series of processes are 
required, beginning with sample and metadata collection, followed by nucleic acid extraction, library preparation, sequencing, 
and analysis. Throughout this pathway there are many data-related operations required (informatics) combined with more 
biologically focused procedures (bioinformatics). For a laboratory aiming to implement pathogen genomics, the informatics 
and bioinformatics activities can be a barrier to starting on the journey; for a laboratory that has already started, these activ-
ities may become overwhelming. Here we describe these data bottlenecks and how they have been addressed in laboratories 
in India, Colombia, Nigeria, and the Philippines, as part of the National Institute for Health Research Global Health Research 
Unit on Genomic Surveillance of Antimicrobial Resistance. The approaches taken include the use of reproducible data parsing 
pipelines and genome sequence analysis workflows, using technologies such as Data-flo, the Nextflow workflow manager, and 
containerization of software dependencies. By overcoming barriers to WGS implementation in countries where genome sam-
pling for some species may be underrepresented, a body of evidence can be built to determine the concordance of antimicrobial 
sensitivity testing and genome-derived resistance, and novel high-risk clones and unknown mechanisms of resistance can be 
discovered.
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The utility of whole genome sequencing (WGS) for public health 
purposes has been proposed and implemented in a few countries, 
mostly to supplement existing methodologies with the expecta-
tion that it will become more widely used in the future [1]. The 
application of bacterial WGS specifically for the purposes of anti-
microbial resistance (AMR) surveillance has also been the subject 
of scientific review [2, 3]. On one hand, these reviews are careful 
to highlight how WGS is not currently able to completely replace 
phenotypic antimicrobial sensitivity testing (AST), due to factors 
such as cost and the lack of concordance between the genotypic-
derived and phenotypic results for some bug-drug combinations. 

For some species, such as Salmonella spp, Staphylococcus aureus, 
and Mycobacterium tuberculosis, the concordance is very good, 
but for others, such as Pseudomonas aeruginosa or Acinetobacter 
baumannii, the concordance is lower due to an incomplete under-
standing of mechanisms responsible for resistance [4, 5]. However, 
while a complete switch from phenotypic to WGS-based AMR 
surveillance is not likely in the near future, performing WGS of 
targeted pathogen samples has many benefits. WGS can enhance 
surveillance by providing information about the determinants 
responsible for resistance, the “vehicles” that carry them, such as 
plasmids and other mobile genetic elements, and the clonal lin-
eages within which they are found. This enables the study of the 
emergence and expansion of AMR with a One Health approach, by 
facilitating the investigation of possible transfer of AMR between 
different reservoirs, such as humans, animals, and the environ-
ment. Because of this, many public health organizations are en-
thusiastic to adopt WGS in a targeted way to complement existing 
phenotypic-based surveillance, as exemplified in the Philippines 
[6]. Balancing the enthusiasm for adoption are the challenges in 
the implementation. These include challenges related to labora-
tory aspects of the process, such as cost and turnaround, and are 
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covered in more detail in [4, 7, 8]. The processes required to trans-
form raw sequence data into human-interpretable results are often 
grouped under the umbrella term “bioinformatics.” Bioinformatics 
has its own set of challenges, which may also be barriers to intro-
duction. Several manuscripts detail these, including a review of the 
steps required for the implementation of bacterial WGS, a recent 
report by the World Health Organization (WHO) on WGS for 
AMR surveillance, and others [2–4, 9]. These include availability of 
computing resources to run analytical pipelines; the wide range of 
software and associated catalogues of AMR determinants available 
to determine their presence, often confounded by lack of compre-
hensive benchmarking; standardization of bioinformatics pipelines 
used to produce the predictions based on WGS so that results are 
reproducible, including the use of standard operating procedures; 
requirements for quality assessment throughout the process from 
the raw sequence data through to the final interpretation; and 
trained personnel who are able to run and interpret the analyses.

For any institute starting on the journey toward the imple-
mentation of genome-based surveillance, these factors can be-
come bottlenecks that impede adoption. In this manuscript we 

will describe the barriers that may prevent implementation of 
the bioinformatics required for WGS-based AMR prediction. 
Through examples derived from the implementation of WGS 
within the National Institute for Health Research Global Health 
Research Unit on Genomic Surveillance of Antimicrobial 
Resistance (GHRU), we illustrate possible avenues to overcome 
them. Crucially, and in addition to implementation, the final 
step in the pathway to WGS adoption is the interpretation of the 
bioinformatics outputs. This gap is primarily filled by hands-on 
training to analyze and interpret “real” data produced by bioin-
formatics processes [10].

BIOINFORMATICS IMPLEMENTATION CHALLENGES

Laboratory and bioinformatics processes generate various 
data types when performing pathogen genomics for AMR 
surveillance as illustrated by an example workflow (Figure 1).

Data Collection and Integration

Metadata describing samples are critical to contextualize genomics 
outputs by describing epidemiological and clinical background of 

Figure 1.  An overview of 1 potential pathway from sample to phenotypic and genomic outputs. The bottleneck icons represent some of the steps in the process that can 
cause particular implementation challenges. ① Sample metadata cleaning and validation. ② Conversion of antimicrobial sensitivity testing minimum inhibitory concen-
tration data into standardized formats for downstream processing and interpretation. ③ Quantitative quality assessment of raw reads and assemblies. ④ Processing raw 
reads to detect the presence or absence of genetic loci, genes, specific nonsynonymous mutations, and variants. ⑤ Aggregating results to produce human readable reports. 
Abbreviations: AMR, antimicrobial resistance; AST, antimicrobial sensitivity testing; MLST, multilocus sequence typing; ST, sequence type.
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samples, allowing association between sample features and ge-
nomic markers. Data may be collected at a central site such as a 
public health laboratory, or by local sample collection sites such 
as hospitals, and sent to the center performing WGS. In the latter 
case, data may be stored in a variety of file formats, each structured 
in different ways. Once AST has been performed, results require 
merging with sample metadata. Further integration of data will 
be required later in the process to join these data to the genomic 
outputs. These data parsing steps can be performed manually but 
are person-hour expensive and subject to human error. In order 
to make these processes efficient and minimize turnaround time, 
automation is crucial.

Sequence Analysis

Once raw WGS data have been generated, sequence reads need 
to be processed to derive human interpretable results. This pro-
cess has often been the hardest to implement, requiring spe-
cialist training (see next section), computing infrastructure, and 
software. Important considerations include using well-defined 
pipelines so that the outputs are reproducible, and utilizing a 
solution that is scalable so the hands-on time taken to generate 
results is, in general, independent of the numbers of samples 
processed.

Training

The specialist knowledge required to process WGS data, and 
understand the databases underpinning interpretation and 
the principles required when working with big data, is not 
often a component of the education of many healthcare pro-
fessionals. If the WGS analysis software has a familiar web-
based interface, such as those found on the Galaxy, Centre 
for Genomic Epidemiology, and Pathogenwatch web applica-
tions, less training is required with a focus being on interpre-
tation of the data rather than performing the analysis [11–14]. 
However, this limits users to the analyses available on the web 
applications and does not prepare those wanting to perform 
more in-depth bioinformatics analyses. This requires training 
in running Linux command-line tools and interpreting the 
outputs.

IMPLEMENTATION SOLUTIONS

The GHRU project has sought to address the challenges de-
scribed in the previous section. We present these as examples of 
how bottlenecks can be overcome, rather than promoting them 
as the only or best methods (Figure 2). In addition, the 4 units 
that have implemented a WGS AMR surveillance pathway pre-
sent their experiences, unique circumstances, and implementa-
tion journeys.

Data Collection and Integration

Although there are multiple data files and many formats 
describing metadata, it is usually possible to describe the steps 

to turn them into consistent formats as a series of defined trans-
formations. There are many alternative data science software 
solutions for this. We chose to use Data-flo software (https://
data-flo.io/), which builds transformation dataflows by com-
bining ready-to-use data adaptors. This technique is very sim-
ilar to command-line approaches, such as R, or the Python 
pandas library, but allows users to construct and debug the 
data flow in a visual way [15, 16]. This enables data science 
specialists to construct a complex data parsing pipeline and 
share it with non-bioinformatics staff, such as those responsible 
for sample receipt, who are then able to run Data-flo without 
command-line experience. Within the project, we used Data-
flo for several purposes: cleaning and transforming sample met-
adata data before combining with AST outputs (Figures 1 and 2,  
bottleneck ①; Supplementary Figure 1); converting different 
VITEK outputs into a single format that could be used as the 
input source for the WHONET AMR software (Figures 1 and 2, 
bottleneck ②) [17]; transforming bioinformatics outputs into a 
readable tabular format before uploading to a Google Sheet for 
ongoing storage of the results; and reading data from multiple 
sheets in different Google Sheets and joining them, in order to 
produce an aggregated table of epidemiological, laboratory, and 
bioinformatics results.

For example, a downstream Data-flo workflow was con-
structed to combine epidemiological metadata, AST data, and 
genomics outputs into the text format required as the source for 
visualization in Microreact (Figures 1 and 2, bottleneck ⑤) [18]. 
A  suite of programmatic functions was compiled within the 
ghruR package [19]). However, an important difference is that 
this did not require a relational database management system to 
be installed, backed up, and maintained. This would have rep-
resented a barrier to sustainability of the data storage solution.

Sequence Analysis

The analytical procedures to transform raw sequence into mean-
ingful results are complex, often involving multiple steps and soft-
ware. In order to efficiently parallelize this, so that multiple samples 
can be processed simultaneously on multicore workstations or in 
high-performance computing clusters, the use of workflow man-
agers is recommended [20]. Installation of software with specific 
versions that may differ in different workflows can be one of the 
main hindrances to running bioinformatics analyses, especially as 
in many settings a UNIX system administrator with the necessary 
skills is not available. The use of containerization technology to 
bundle together specific software versions in a sandboxed environ-
ment is the most common solution for this [20–22]. For the GHRU 
project we took both these approaches, using workflows written for 
the Nextflow workflow manager, and Docker or Singularity con-
tainers to analyze the raw sequence data and produce de novo as-
semblies, AMR predictions, the 7-locus multilocus sequence type, 
and mapping-based single-nucleotide polymorphism phylogenies 
(Figures 1 and 2, bottleneck ④; Supplementary Table 1) [23–25]. 

https://data-flo.io/
https://data-flo.io/
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab785#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab785#supplementary-data
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Figure 2.  Diagram showing the flow of data from sample receipt to final outputs and highlighting the solutions used for each step. The numbers refer to the same data 
bottlenecks described in Figure 1. The diagram starts when each bacterial sample is submitted accompanied by associated metadata. The sample is processed by traditional 
phenotypic antimicrobial sensitivity testing to produce minimum inhibitory concentration data. In parallel, genomic DNA from the sample is extracted and sequenced and 
whole genome sequencing data are processed through reproducible bioinformatics pipelines to produce multiple outputs such as multilocus sequence type, antimicrobial 
resistance determinant prediction, and single-nucleotide polymorphism–based phylogenies. These data are aggregated using Data-flo and stored in Google Sheets where 
they can be combined and manipulated using downstream processes such as R scripts or Data-flo pipeline to make final visualizations or reports. Abbreviations: AMR, anti-
microbial resistance; AST, antimicrobial sensitivity testing; MIC, minimum inhibitory concentration; MLST, multilocus sequence typing; QC, quality control; RIS, Resistant, 
Intermediate, Susceptible; SNP, single-nucleotide polymorphism; WGS, whole genome sequencing.
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To further simplify the software build process, the containers were 
built using the Conda package management software [26, 27]. 
This has allowed a total of 5979 genomes from species listed by 
the WHO as requiring priority research for AMR [28] to be pro-
cessed across the GHRU partners in Colombia, India, Nigeria, and 
the Philippines (Supplementary Figure 2), and in parallel at the 
Wellcome Sanger Institute to confirm reproducibility.

The computational setup required for this was minimal. In 
each partner center, samples were processed on either high-
specification laptops, or a workstation only requiring the in-
stallation of Ubuntu Linux, Java RE, Nextflow, and Docker, 
with either a simple command-line recipe or automated 
with ansible [29]. An example of a workstation specification 
is included in Supplementary Table 2. At Wellcome Sanger 
Institute, Docker images were converted to Singularity images 
and run on the high-performance computing Load Sharing 
Facility (LSF) cluster for a combined total of <24 hours. 
Analytical outputs were compared and shown to be identical, 
demonstrating the reproducible nature of the pipelines. A crit-
ical aspect to automate the processing of samples for WGS is 
a simple quality control procedure whereby samples that meet 
the appropriate studies can be triaged. We developed a Python 
package named Qualifyr to allow sorting of sample outputs 
into a red/amber/green status based on quality metrics derived 
from the fastqc read quality assessment package, confindr, and 
quast [30–33]. This produces a web-based graphical report as 
well as a text version for computational parsing, so samples 
that should be taken for further analysis can be easily assessed 
(Figure 1 and 2, bottleneck ③; Supplementary Figure 3).

Training

Bridging the knowledge gap is perhaps the most important 
requirement for effective implementation of WGS. It is im-
portant to consider trainee requirements. When processing 
pathogen WGS data for public health, there are 2 broad use 
cases: routine interpretation of the data for epidemiological 
investigation and intervention, and basic research to extrap-
olate the routine results and explore hypotheses. The first use 
case requires training to be able to run analytical pipelines 
and interpret the results, whereas the second use case requires 

additional training to be able to run more in-depth analyses. 
In this project, a tiered training program was developed. An 
example of a training stream for genome assembly is shown in 
Table 1 [29].

In this example, a public health bioinformatician would likely 
take the first and last tiers if they are going to run pipelines. An 
academic research bioinformatician would take the second tier 
in addition, in order to understand the commands used so they 
could make edits to the pipeline if required.

The training was enhanced logistically by delivering some of 
the command-line tutorial through shared terminal sessions 
(eg, with Tmux), allowing interactive training. This was sup-
ported by using a forum style chat application to allow trainees 
to talk and assist one another across different time zones [34]. 
A  relatively stable internet connection is therefore a crucial 
requirement for collaboration in this kind of project. Once 
training was completed, a series of versioned standard oper-
ating procedures were designed to help the project users follow 
uniform procedures when generating results [35]. An impor-
tant part of the training aimed to equip local bioinformaticians 
to train others [10]. Use of these training materials combined 
with application of the pedagogical techniques taught in the 
train-the-trainer course has allowed the GHRU units to train 
public health scientists and researchers outside of their own 
teams to run the same reproducible analyses [36].

IMPLEMENTATION VIGNETTES

One of the GHRU’s primary objectives is to build sustainable 
capacity in AMR laboratories. The goal is for each laboratory 
to be self-sufficient in the processes of laboratory sequencing 
and WGS analysis of samples collected for the purposes of AMR 
surveillance. Each laboratory has a unique set of local circum-
stances and objectives. These are described in Figure 3, in con-
junction with the major milestones achieved.

DISCUSSION

There are many significant potential hurdles to overcome when 
implementing genomics for routine pathogen surveillance. 

Table 1.  Genome Assembly Training Stream

Tier Outcome Tier Title User Proficiency Notes

Understand the principles and be able to  
perform hands-on analysis using web tools

Genome assembly tutorial:  
principles and web-based 
analysis

Genomic scientist Use the Galaxy web platform to run examples 
samples and assess output

Be able to implement analysis using  
command line 

Genome assembly tutorial: 
command-line analysis

Command-line user Run assembly with the command-line tools 
underpinning the Galaxy interface. The same 
parameters are employed so that the connec-
tion between running the assembly via the 
website and on the command line is apparent.

Be able to run reproducible high-throughput 
analysis and interpret the results

Genome assembly tutorial: repro-
ducible batch processing

Command-line user An in-depth knowledge of the command line is 
not required for this training.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab785#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab785#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab785#supplementary-data
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Through the use of standardized bioinformatics and a struc-
tured training program, 4 institutes in different countries and at 
different starting points along the genomics journey have been 
able to process hundreds of pathogen genomes from many clini-
cally significant species. Further developments are still required 
to ensure sustainable and reliable analysis and interpretation 
of genome data for AMR surveillance. To check competency, 
running regular internal quality assessments and taking part in 
an external quality assessment (EQA) scheme will be essential. 
The GHRU has designed and implemented a pilot EQA that is 

currently in progress in the low- and middle-income country 
partner units. It has been reported that multiple bioinformatics 
processes for prediction of AMR are often discordant with each 
other and with phenotypic result, emphasizing the need for 
quality control standards, which an accredited EQA will par-
tially address [37]. This also highlights the need for standard-
ization in AMR databases. Currently, there are several widely 
used databases containing catalogues of AMR determinants. 
The incompatibility between these databases in terms of the 
nomenclature, use of different reference sequences for allelic 

Figure 3.  Implementation vignettes. Abbreviations: AMR, antimicrobial resistance; KIMS, Kempegowda Institute of Medical Sciences; SOP, standard operating procedure; 
WGS, whole genome sequencing.
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variants, and nonstandardized assignation of determinants to 
resistance to a specific antimicrobial is one of the remaining 
challenges facing those working in the field of genomic AMR 
surveillance. The hAMRonization software aims to rationalize 
the outputs from different AMR software, but a greater need re-
mains the harmonization of the nomenclature and assignations 
of AMR determinants [38, 39]. This will be crucial for con-
structing a globally viewable database that stores genome-based 
AMR data, which is one of the future aims of the WHO Global 
Antimicrobial Resistance Surveillance System (GLASS) [40].

Future directions for the GHRU project include implementing 
cloud-based pipelines [41]. The advantages include no require-
ment for physical workstation procurement, installation, or 
maintenance, resulting in overall cost savings. However, slow 
and intermittent internet bandwidth may prove an insurmount-
able barrier in some locations. The workflow manager Nextflow 
that was used in the project already has an interface to launch 
pipelines in cloud computing environments [42]. Training 
will also be improved using online notebooks such as Google 
Colaboratory and Kaggle, so that trainees can take advantage 
of command-line training without requiring a Linux machine 
and with interactive examples [43, 44]. Additional training in 
interpretation of results as well as running analyses will be im-
plemented, because the genetic factors contributing to pheno-
typic AMR are complex. Furthermore, our understanding of the 
genetics of AMR is constantly changing, and therefore training 
to build skills that allow the assessment and incorporation of 
new software into pipelines will be required to ensure sustaina-
bility. Together, these iterative improvements will further lower 
the barriers for bioinformatics implementation for WGS-based 
surveillance.

CONCLUSIONS

There are several alternate routes to implementing pathogen ge-
nome sequencing for surveillance of AMR, each of which has its 
own strengths. Here we have set out principles for overcoming 
some of the challenges. The fundamental process is running 
reproducible analytical pipelines so that consistent results are 
obtained from multiple centers, as measured by the text/digital 
output from the pipelines, prior to interpretation. Just as impor-
tant are the processes to clean incoming data pertaining to the 
samples, and the downstream processes to amalgamate these 
with the genomic outputs. We chose to use online spreadsheets 
as a proxy for database tables and programmatic means to fetch, 
join, and filter these to produce aggregated data that could be 
tabulated or visualized. Training was crucial for the implemen-
tation and allowed bioinformatics scientists to both run stand-
ardized pipelines and perform more specialized, species-directed 
analyses. For those wanting to run consistent pipelines, online 
platforms offer capacity without requiring more in-depth bioin-
formatics expertise. Pathogenwatch offers a web-based platform 

for AMR analysis and phylogeny generation of Campylobacter, 
Klebsiella, Neisseria gonorrhoeae, Staphylococcus aureus, and 
Salmonella Typhi [13, 14]. The Center for Genomic Epidemiology 
website offers services for phylogenetic tree building and AMR 
prediction [45]. However, when using these services it is impor-
tant to realize that the underlying analyses may change and re-
cording the exact version of the analysis software becomes more 
challenging.

In the long term, the WHO GLASS system will accept 
genomic-based AMR prediction and supporting information 
[40]. Several factors will be important for its success: a mech-
anism to check the quality of incoming data; a standardized 
data format; and a minimal data specification. The implementa-
tion described here will help inform these factors.
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