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Abstract

Motivation: Read alignment is central to many aspects of modern genomics. Most aligners use heuristics to acceler-
ate processing, but these heuristics can fail to find the optimal alignments of reads. Alignment accuracy is typically
measured through simulated reads; however, the simulated location may not be the (only) location with the optimal
alignment score.

Results: Vargas implements a heuristic-free algorithm guaranteed to find the highest-scoring alignment for real
sequencing reads to a linear or graph genome. With semiglobal and local alignment modes and affine gap and
quality-scaled mismatch penalties, it can implement the scoring functions of commonly used aligners to calculate
optimal alignments. While this is computationally intensive, Vargas uses multi-core parallelization and vectorized
(SIMD) instructions to make it practical to optimally align large numbers of reads, achieving a maximum speed of
456 billion cell updates per second. We demonstrate how these ‘gold standard’ Vargas alignments can be used to
improve heuristic alignment accuracy by optimizing command-line parameters in Bowtie 2, BWA-maximal exact
match and vg to align more reads correctly.

Availability and implementation: Source code implemented in Cþþ and compiled binary releases are available at
https://github.com/langmead-lab/vargas under the MIT license.

Contact: langmea@cs.jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biological gold standards, such as the Platinum Genomes (Eberle
et al., 2017), synthetic diploid (Li et al., 2018) and Genome in a
Bottle (Zook et al., 2014), catalog the variants present in a genome
and are used to benchmark variant calling algorithms on real
sequencing data. For benchmarking and algorithm development,
using gold standard call sets is more realistic than simulating
sequencing reads from a synthetic genome with known variants.
However, read alignment algorithms, which determine a sequencing
read’s point of origin with respect to a reference genome, are instead
often evaluated using simulated sequencing reads due to the lack of
a biological gold standard that directly answers questions about
where sequencing reads should align.

In a typical read-aligner benchmark, sequencing errors and gen-
etic variation are added to a substring of the reference genome,
which is mapped back to the reference genome (Smolka et al.,
2015). The simulated coordinate is then compared to the aligned

coordinate. If the coordinates are equal (or within a predetermined
range), the alignment is considered correct. We refer to this defin-
ition as ‘correct-by-location’. Critically, this procedure assumes that
the desired (optimal) alignment is at the same location where the
read was simulated, which may not be the case due to the simulation
process and genomic repetitiveness. Furthermore, the base-level
alignment may be suboptimal even if the read is mapped to the simu-
lated location; e.g. the alignments may disagree about the exact
placement and number of gaps in the alignment. Additionally, simu-
lated reads may not faithfully capture more subtle aspects of the
sequencing processing, especially any sequence-specific error modal-
ities (Aird et al., 2011).

A central component of all read aligners is defining a scoring
function. The scoring function penalizes differences between the
read and reference; i.e. it is the objective function that the aligner
seeks to optimize. When the optimal alignment score for a read
equals the score reported by the algorithm, we call this alignment
‘correct-by-score’. Optimal alignments of real sequencing reads
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could be considered a computational gold standard for read align-
ment algorithms (c.f. Holtgrewe et al. 2011). These can be used to
evaluate alignment algorithms using real data in the same way as
biological gold standard variant catalogs are used to assess variant
callers. To serve as a computational gold standard, the optimal
alignment should be calculated with respect to the same alignment
mode [local or semiglobal (SG)], scoring function and reference gen-
ome of the algorithm being evaluated.

While most current heuristic and heuristic-free read alignment
algorithms assume that the reference genome is linear, with greater
understanding of genetic diversity has come increasing focus on
alternatives to the linear reference genome. Various solutions have
been proposed that incorporate information about genetic variation
in the population, including graph-shaped reference genomes (Paten
et al., 2017), pan-genomes (Yang et al., 2019) and a genome that
contains the most common (major) allele at each variable site
(Ballouz et al., 2019; Pritt et al., 2018). The most recent human ref-
erence genome assembly, GRCh38, includes alternate assemblies for
hypervariable loci (Church et al., 2015). Alignment algorithms that
account for genetic variants have likewise been proposed (Garrison
et al., 2018; Huang et al., 2013; Jain et al., 2019; Rautiainen et al.,
2019; Schneeberger et al., 2009; Vijaya Satya et al., 2012).

Whether the genome is linear or a variant graph, calculating the
optimal read alignment using dynamic programming is extremely
work-intensive. Popular algorithms for aligning to linear genomes
such as Bowtie 2 (Langmead and Salzberg, 2012) and BWA-
maximal exact match (MEM) (Li, 2013), or to graph genomes, such
as HISAT2 (Kim et al., 2019) and vg (Garrison et al., 2018), scale to
genomic-scale datasets because they use heuristics to find approxi-
mate solutions to the optimization problem defined by the objective
function. A widely used heuristic is ‘seed-and-extend’ in which short
exact sequence matches are used to anchor the search for longer
matches. Relatedly, aligners apply various heuristics to prioritize
which candidate seed matches are most likely to lead to a high qual-
ity alignment. These computational shortcuts limit effort spent on
candidate alignments that appear like they will be suboptimal, but
may cause the algorithm to return a suboptimal alignment or no
alignment.

Alignment errors due to heuristics can ultimately lead to con-
founding of scientific results downstream. At the same time, it is dif-
ficult to study the precise effects of heuristics. This is both because
they are varied and complex, and because it is computationally
demanding to disentangle the effects of heuristics from those of scor-
ing functions and other read-alignment parameters. A case in point
is the Qtip study (Langmead, 2017), where mapping-quality predic-
tions were improved by modifying the source code of heuristic align-
ment algorithms to report specific information about the heuristic
search procedure for each read. Because a computational gold stand-
ard can be constructed to match the aligner’s scoring function and
other parameters, it uniquely allows us to isolate the effects of
heuristics.

General-purpose computer processors have recently become cap-
able of running hundreds of separate threads of execution simultan-
eously in parallel. Within each thread, single-instruction multiple
data (SIMD) (‘vector’) operations can be employed that operate on a
group of values at once instead of a typical processor instruction
that operates on individual scalar values. Vargas implements a form
of the Smith-Waterman (Smith and Waterman, 1981) algorithm for
query-reference sequence alignment to a linear reference or a
directed acyclic graph (DAG). Rognes (2011) proposed a query-
parallel strategy that fills the same element (same row and column)
in several dynamic programming matrices at once. This has been
shown to be efficient and practical in prior studies (Jain et al., 2019;
Rahn et al., 2018). We adopt this approach in Vargas and provide
further evidence that it is efficient on modern general-purpose archi-
tectures for both linear and graph alignment.

Vargas is the most efficient and flexible tool for establishing
computational gold standards for evaluating read alignment heuris-
tics and scoring schemes. While the need for such standards was dis-
cussed and partially addressed in the previous Rabema study
(Holtgrewe et al., 2011), Vargas is an advance over those methods

owing to its handling of graph-shaped as well as linear reference
genomes, efficient scaling to many threads, use of modern SIMD
instructions and handling of flexible affine-gap-penalty scoring
schemes such as those used in modern aligners like vg, Bowtie 2 and
BWA-MEM. Using RNA-seq reads aligned to the transcriptome, we
can also assess the accuracy of alignment scores reported by the
pseudoaligner Salmon. We demonstrate the utility of the method by
showing how it can be used to assess alignment correctness and
mapping quality (MAPQ) predictions, and to optimize Bowtie 2,
BWA-MEM and vg alignment parameters for whole-genome
sequencing and ChIP-seq reads. Importantly, in these cases the anal-
yses are guided by real reads.

2 Materials and methods

Vargas is a heuristic-free read aligner for linear and graph reference
genomes. Among currently available software and libraries, only
Vargas has the features required to calculate optimal alignments for
SG and local alignment to linear and graph genomes, with affine
gap penalties and base-quality-dependent mismatch penalties. These
optimal alignments of real sequencing reads, calculated with respect
to the particular optimization problem each heuristic algorithm
seeks to approximate, can be used to systematically evaluate the be-
havior of the heuristic tools and improve the algorithms. We provide
the first thorough evaluation comparing graph alignment to linear-
genome alignment without the confounding factors that come when
comparing tools with differing scoring functions or heuristics and
using real rather than simulated sequencing reads.

2.1 Graph alignment
The Smith-Waterman algorithm uses dynamic programming to find
the optimal local alignment of a query sequence to a reference se-
quence under a scoring function rewarding matches and penalizing
mismatches and gaps (Smith and Waterman, 1981). Affine gap pen-
alties (Gotoh, 1982) are often employed, where the penalty to start
a gap is greater than the penalty to extend the gap, encouraging
larger consecutive gaps rather than multiple smaller gaps. The algo-
rithm was further extended to support local alignment of a linear
query to a DAG reference (Lee et al., 2002). Genetic variants induce
‘forks’ and ‘joins’ in the DAG (Fig. 1). The classical dynamic pro-
gramming recurrence is computed for each column of each vertex in

Fig. 1. The multiple alignment of three sequences (ACGTACGT, ACGTTCGT and

ACGTCGT) can be represented as a four-node graph. Suppose we want to compute

the dynamic programming alignment matrix for three length-3 queries to the graph-

shaped reference. The columns of the matrices correspond to characters in the refer-

ence and are numbered 1 through 9 in the order they will be computed in the dy-

namic programming algorithm. Query characters label the rows of each matrix.

Matrices are shown stacked because SIMD instructions operate on the same row

and column in multiple matrices simultaneously (e.g. the cells connected by the blue

arrow). The optimal score for query Q1 is in column 7 (shaded cells show the align-

ment traceback); for Q2 the optimal score is in column 6 and for Q3 two equally

good alignments end in columns 4 and 9 (possible traceback is shown)
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a topological-sort order, taking into account cases where a column
has more than one predecessor in the graph structure (e.g. column 7
in Fig. 1).

Before alignment, Vargas constructs the DAG from a linear ref-
erence sequence and optionally a set of genetic variants in a Variant
Call Format file. The graph can be computed once and is stored on
disk in a format that includes the sequence represented by each node
and links between nodes. To reconcile coordinate shifts introduced
by insertions and deletions, alignments are anchored to the reference
sequence. Nodes representing parallel paths with different sequence
lengths are right-aligned to the reference sequence. Vargas produces
read alignments in SAM format. For the best and second-best align-
ment scores, Vargas reports the reference position of the rightmost
aligned query base and the count of equally scoring alignment loca-
tions at least one read-length apart in custom SAM tags. For linear
genomes, the alignment traceback can optionally be computed to
populate the CIGAR and POS fields.

2.2 Vectorization strategies
Vectorized dynamic-programming alignment strategies involve fill-
ing several cells of the dynamic-programming matrix at the same
time. An early approach computed chunks of cells along the minor
diagonal (Wozniak, 1997), a later approach achieved a more pre-
dictable memory-access pattern by filling vertical chunks (Rognes
and Seeberg, 2000) and a ‘striped’ variation on this idea achieved
better performance by simplifying the loops (Farrar, 2007). In these
later algorithms, elements in a chunk are inter-dependent because
the final value of an element depends on the final values of neigh-
bors above. Thus, the initial filling step must be followed by a ‘re-
pair’ step to resolve dependencies. As architectures evolve to allow
more elements to be computed at once, the amount of work required
for repair increases. These methods are therefore not well positioned
to benefit from increases in vector width, such as those afforded by
AVX512BW (byte and word) extensions that allow for simultaneous
calculation of 64 8-bit matrix elements (Intel Corporation, 2015).
Instead, Vargas uses the query-parallel strategy of Rognes (2011). In
this paradigm, the value of each vector element is independent so no
repair step is required. For a particular row and column position in
the matrix, SIMD instructions are used to compute the value for 8–
64 queries simultaneously, depending on the vector capacity. The
query-parallel strategy has been used for alignment to linear referen-
ces in SeqAn (Rahn et al., 2018) and to DAGs in PaSGAL (Jain
et al., 2019).

2.3 Implementation
Vargas is implemented in Cþþ using SIMD instructions and sup-
ports the SSE4.1, AVX2 and AVX512BW instruction sets, which
can be compiled for many architectures including Intel Xeon Phi
[Knights Landing (KNL)] and Xeon Platinum [Skylake (SKX)]. The
KNL architecture supports 256–288 threads across 64–72 cores
(Jeffers et al., 2016; Sodani, 2015) and SKX can be configured with
up to 28 cores, each with two AVX (advanced vector extensions)
processors (Tam et al., 2018). In Vargas, to maximize throughput,
each SIMD word (vector) is split into 8-bit operands allowing for
the simultaneous alignment of 16, 32 and 64 sequences with 128-
bit, 256-bit and 512-bit vectors for SSE4.1, AVX2 and
AVX512BW, respectively. If the difference between the maximum
and minimum possible alignment scores exceeds 255 based on the
read length and scoring function, 16-bit operands are selected at
runtime.

3 Results

First, we used Vargas to study the performance and accuracy of
heuristic read aligners on real sequencing data. While most bench-
marks use simulated reads, using a heuristic-free aligner allows us to
determine whether the alignment for a real read is correct-by-score,
as others have observed (Holtgrewe et al., 2011). We explored how
alignment settings can affect which reads are incorrect-by-location,
incorrect-by-score, or completely fail to align due to heuristics. We

evaluated the time-accuracy tradeoff of the Bowtie 2 and HISAT2
effort presets and propose a comparable set of parameters for BWA-
MEM and BWA aln. Based on the correct-by-location definition, we
compare BWA-MEM and Bowtie 2 MAPQ to the mathematical
ideal before and after adjustment with Qtip (Langmead, 2017).
Finally, we show how a small set of reads annotated with optimal
alignment score using Vargas can be used to optimize Bowtie 2
alignment parameters and suggest a possible algorithmic improve-
ment. Data and scripts to reproduce the experiments in this section
and the next are available at https://github.com/cdarby/vargas-
experiments.

3.1 Computational performance
We measured performance using GCUPS (giga cell updates per se-
cond), which is the number of cells in the dynamic programming
matrix computed per second. This standard metric used extensively
in the literature normalizes performance to enable comparisons be-
tween experiments conducted using reads and references of different
lengths (Daily, 2016; Jain et al., 2019; Liu and Schmidt, 2014;
Liu et al., 2013; Rahn et al., 2018). Evaluation was performed on an
Intel Xeon Phi 7250 (KNL) computer with 68 cores and four threads
per core, and an Intel Xeon Platinum 8160 (SKX) computer with
two 24-core processors and two threads per core. GCUPS results for
SG alignment are shown in Figure 2; GCUPS results for local align-
ment and wall time results are in Supplementary Figures S1–2. Ideal
scaling would be linear. Instead we see less-than-ideal (sublinear)
scaling owing to hyperthreading and, more generally, to contention
for shared resources. SKX employs two-way hyperthreading on 48
physical cores, and speedup is observed up to 64 threads with
AVX512BW instructions (Fig. 2a and b). KNL employs four-way
hyperthreading on each of its 68 physical cores, allowing a max-
imum of 272 simultaneous threads. With AVX2 instructions, the
GCUPS performance doubles from 68 threads (one per core) to 136
threads (two per core) but does not continue to double when there
are 3 or 4 threads per core (Fig. 2c and d).

The best speed we observed using Vargas is 456 GCUPS, which
was observed for SG alignment to the linear reference of chromo-
some 19 using AVX512BW instructions with 64-way vectorization
on 48 threads of the SKX computer. When the chromosome 19
graph contained all 1000 Genomes Phase 3 SNPs and indels (5.1
million nodes and 3.66% increase in linearized genome size) we
observed 237 GCUPS with the same configuration. When aligning
150 bp reads to chromosome 10, SeqAn (Rahn et al., 2018) reported
420 GCUPS using 40 threads on SKX with AVX512BW; on the
same dataset, Parasail (Daily, 2016) recorded 74 GCUPS, but used

(b)(a)

(d)(c)

Fig. 2. Scaling results for SKX; (a and b) and Knight’s Landing (KNL; c and d) archi-

tectures and the instruction sets available for each. The input number of reads is

scaled in proportion to the number of threads, so that each thread aligns a full vec-

tor of 100 bp reads against the reference eight times. (a) and (c) Reads were aligned

to chromosome 19 with no variants (Linear, 1 node), 1000 Genomes Project Phase

3 variants with minor allele frequency > 10% (MAF >10% 1 KGP, 436 K nodes),

or all 2504 individuals’ variants from 1000 Genomes Project Phase 3 (All 1KGP,

5.1 M nodes). (b) and (d) Reads were aligned to chromosome 19 with no variants.

Vector size is shown in parentheses after the instruction set name on the right pan-

els. Note, KNL does not support the AVX512BW instruction set. GCUPS ¼ giga

cell updates per second
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AVX2 instructions that offer only half the throughput per instruc-
tion. PaSGAL (Jain et al., 2019), reported 317 GCUPS with 48
threads on SKX with AVX512 instructions when aligning 100 bp
reads to a graph genome of the 1Mbp Leukocyte Receptor Complex
locus including all variants from 1000 Genomes Project Phase 3, not
including traceback.

Vargas SG alignment to the linear genome on Xeon Phi (KNL)
with AVX2 instructions and 271 threads achieved a maximum
speed of 194 GCUPS. Alignment to the all-variant graph described
above achieved 110 GCUPS with the same configuration. This com-
pares favorably to previous Xeon Phi-based efforts such as SWAPHI
(58.8 GCUPS) (Liu and Schmidt, 2014), as well as to GPU-based
aligners such as CUDASWþþ3.0 (119 GCUPS, GTX680) (Liu
et al., 2013). While several exact dynamic programming pairwise
alignment algorithms are available in the literature (summarized in
Supplementary Table S3), Vargas offers the most flexibility in terms
of scoring function and options for local, SG, linear and DAG align-
ment with comparable speed and scaling to the state of the art.

3.2 Alignment accuracy
We use 100 000 unpaired 100 bp reads from the 1000 Genomes
Project sample NA18505, SRA accession ERR239486 and 100 000
unpaired 250 bp reads from the 1000 Genomes Project sample
NA19017, SRA accession SRR1295544. All aligners were evaluated
with respect to the human reference genome GRCh38 primary as-
sembly. Since HISAT2 and vg have graph alignment capabilities, we
also built graph-genome indexes for both using the 6.2 million SNPs
and indels from the 1000 Genomes Phase 3 call set with allele fre-
quency at least 10% (Lowy-Gallego et al., 2019). Vargas alignments
to the linear genome took about 40 h and alignments to the graph
genome took about 57 h, using 96 threads on a SKX computer with
AVX512BW instructions and 64-way vectorization.

Figure 3 shows the performance of Bowtie 2 (Langmead and
Salzberg, 2012), BWA-MEM (Li, 2013), HISAT2 with graph gen-
ome (Kim et al., 2019) and vg with graph genome (Garrison et al.,
2018) on the 100 bp read set with respect to the correct-by-score
definition. Bowtie 2 and HISAT2 were run multiple times using their
‘preset’ parameters that trade between runtime and alignment accur-
acy. We also determined a sequence of settings that create a similar
tradeoff for BWA-MEM. Additional results for BWA aln (Li and
Durbin, 2010), Bowtie 2 with local alignment (default is SG), vg
with linear genome and HISAT2 with linear genome are in
Supplementary Figure S3; plots evaluating alignments based on the
correct-by-location definition are in Supplementary Figure S4.

Bowtie 2. Bowtie 2’s default SG alignment mode offers four ‘pre-
sets’ providing four sets of values for the -D (extension effort), -R
(re-seeding), -L (seed length) and -i (seed spacing) parameters. We
found that these presets effectively trade between time and accuracy
when evaluated using correct-by-score. For the settings that are

faster but less accurate, the number of reads failing to align increases
and the number of reads aligned correctly decreases. Correctness
decreases approximately linearly with optimal alignment score
(Fig. 3a). Interestingly, when the optimal alignment score is below –
40, approximately 50% of the reads are incorrect-by-score, meaning
no alignment was reported or the heuristics have lead to an errone-
ous suboptimal alignment for the majority of these reads.

HISAT2. The latest version of HISAT2 (version 2.2.0-beta
https://github.com/DaehwanKimLab/hisat2/tree/hisat2_v2.2.0_beta)
provides two modes that change the –score-min (minimum score for
reporting alignments) and –bowtie2-dp parameters to align more
reads. Very-sensitive uses ‘unconditional dynamic program-
ming’ and sensitive uses ‘conditional dynamic programming’.
Compared to the default ‘fast’ mode, more reads are correct-by-
score using the very-sensitive and sensitive modes, but more reads
are incorrect-by-score. This is possible because more reads are
aligned. In contrast, the slowest Bowtie 2 and BWA-MEM presets
have the least incorrect reads (Supplementary Table S1). More in-
correct alignments are likely reported because the HISAT2 presets
also alter the minimum score of alignments reported, which is an in-
dependent parameter in Bowtie 2/BWA-MEM.

BWA-MEM. While BWA-MEM does not offer presets like
Bowtie 2 and HISAT2, we selected four settings for -k (seed length)
and -r (re-seeding) that trade between speed and accuracy. With
the default parameter settings (blue line) and our proposed presets,
correctness decreases with optimal score for reads with score greater
than 50, but then increases with optimal score for reads with opti-
mal score between 50 and 30, the minimum alignment score
reported (Fig. 3b). This appears to be because most of the aligned
reads with optimal score below 50 have an exact or near-exact
alignment that does not include all the bases in the read, sometimes
referred to as ‘soft clipping’. The BWA-MEM heuristic algorithm
for local alignment is often able to correctly identify optimal align-
ments of this sort, even though they have low alignment score. In
contrast, illustrating a fundamental difference between the local and
SG alignment problems, the Bowtie 2 and HISAT2 strategies for SG
alignment seldom identify the optimal low-scoring alignments which
have many mismatches and gaps because every base of the read
must be included in the alignment.

vg. Like BWA-MEM, vg performs local alignment. Correctness
decreases with optimal score for reads with score greater than 50
but increases with optimal score for reads with optimal score be-
tween 50 and 20, which again appears to be due to low-scoring local
alignments frequently being soft-clipped to involve a short region of
high similarity and underscores the differences between local and
SG alignment.

Salmon. The Salmon pseudoaligner (Patro et al., 2017) version
1.1.0 will optionally perform SG dynamic programming alignment
and produce a SAM file with alignment scores based on an edit dis-
tance scoring function with the command-line flags –writeMappings
–validateMappings. While the alignments themselves are not
designed to be used in downstream analysis (e.g. the CIGAR string
does not correspond to the reported alignment score), the alignment
scores are used in this mode to select which alignments will be used
in expression quantification. Using an RNA-seq dataset and Vargas
alignments to the reference transcriptome, described fully in the
Supplementary Material, we evaluated the alignment scores
reported by Salmon with the default algorithm which performs
alignment only between and beyond the MEMs, and with the –
fullLengthAlignment flag, which performs alignment along the
whole read. The default algorithm had more correct-by-score align-
ments compared to the full-length algorithm (Supplementary Table
S5, Supplementary Fig. S6).

Supplementary Figure S4 compares the correct-by-score and
correct-by-location definitions for the genomic alignments of 100 bp
real sequencing reads with unique and repetitive optimal alignments.
When we consider only the reads that align uniquely, there is little
difference between the definitions of correctness. When we consider
reads that align repetitively, noticeably more reads are correct-by-
score than are correct-by-location, as expected. We also performed
Vargas alignments of 100 000 250 bp reads for the same aligners

(a) (b)

(c) (d)

Fig. 3. The 100 000 100 bp read set is binned by the optimal alignment score calcu-

lated by Vargas, shown on the horizontal axis, which is truncated at the point after

which no alignments are reported by the heuristic. A line is fitted to the scatterplot

of fraction of reads that are correct-by-score. Only primary alignments were eval-

uated for HISAT2 and BWA-MEM. Default parameter settings denoted by star (*)
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(Supplementary Table S2, Supplementary Fig. S5) and the results
closely match those obtained with 100 bp reads.

To compare the simulation-based definition of correct-by-
location, which is calculated by comparing the genomic coordinate
where the read is simulated from to the coordinate where it is
aligned and the correct-by-score definition, which is calculated using
Vargas matched to the scoring function of the alignment algorithm,
we generated simulated reads from human chromosome 19. For
alignments with Bowtie 2 to the chromosome 19 reference, we saw
that 7.79%, 2.80% and 1.31% of reads of length 50, 100 and 150
respectively, were correct-by-score but incorrect-by-location. BWA-
MEM produces similar results. Details of this experiment are in the
Supplementary Material and Supplementary Table S4.

3.3 Mapping quality
The MAPQ of a read alignment is defined (Li et al., 2008) as:

MAPQ ¼ �10 � log10 Pr½read is incorrectly mapped�

An accurate prediction for MAPQ requires an accurate predic-
tion for the probability the alignment is incorrect. Heuristics make
this difficult by effectively ‘censoring’ the space of alignments the
aligner can find. Because of this, heuristic aligners work with only
partial information when making a MAPQ prediction. This leads to
errors, such as predicting a high MAPQ for an incorrect alignment
or for an alignment that truly deserves a low one. Since downstream
tools such as variant callers depend on MAPQs to make decisions
about how to weigh and filter evidence, it is important to predict
accurately.

Aligners predict MAPQ based on features such as the alignment
score of the best and second-best alignments found or how repetitive
the seed hits are. It may also depend on the number of hits with the
same score as the reported alignment (Li et al., 2008). To condense
such features into a single score, BWA-MEM and vg use a formula,
whereas Bowtie 2 and HISAT2 use a decision tree-like approach.
Some aligners do not attempt to estimate MAPQ at all.

Qtip (Langmead, 2017) adjusts MAPQ using tandem simulation
and extra output from the heuristic during the alignment algorithm.
Using Vargas, we can assess how well MAPQ reflects alignment cor-
rectness by grouping reads by their aligner-assigned or Qtip-
adjusted MAPQ and calculating average correctness. In this case, it

is important to use the correct-by-location definition (within a 5 bp
buffer), to match the definition of MAPQ. Figure 4 shows results for
Bowtie 2 with SG or local alignment and BWA-MEM (red lines),
and Qtip-adjusted (blue line) along with a black line indicating
where the points would lie if they conformed perfectly to the math-
ematical definition of MAPQ, for the 100 bp and 250 bp read sets.
Consistent with past experiments, Qtip-adjusted mapping qualities
fall into a smaller numerical range than aligner-calculated MAPQ
and are generally more monotonic and closer to the ideal.

4 Optimizing read alignment

As an example of how Vargas alignments can be used to improve
the heuristic alignment workflow by a user who is not necessarily a
tool developer, we further examined the 100 bp reads described in
Section 3.2, specifically the 8365 reads that were unaligned by
Bowtie 2 or had an alignment with >1 mismatch or at least 1 gap,
with default parameters. All further analysis was performed on this
subset of the original dataset, which we refer to as ‘difficult reads’.

We wanted to determine whether more accurate alignments of
difficult reads could be obtained by tuning command-line parame-
ters without much increase in runtime, so we varied the seed length
parameter of each aligner from 10 to 32 (Supplementary Excel File
S1). In Table 1, we report results for the default seed length and the
seed length that minimized the average difference between the opti-
mal alignment score (first column for each aligner) and the heuristic
alignment score, for aligned reads (second column). Notably, the op-
timal seed length for Bowtie 2 in both SG and local (L) alignment
modes was faster than the default seed length. The optimal seed
length for BWA-MEM and vg was slower than the optimal seed
length, so we also included results for the optimal parameter that
had runtime less than 1.5 times slower than the default parameters.

This case study demonstrates how a set of real reads annotated
with the optimal alignment score can be used to tune heuristic align-
ment parameters that are exposed to the user on the command line.
While a 1–2% increase in correctly scored alignments may seem
marginal, this would have a significant impact on a dataset with mil-
lions or billions of reads and on use cases with a low signal-to-noise
ratio such as cell-free DNA analysis or somatic variant calling. The
parameters enabling this increase in accuracy can be identified with
Vargas alignments of just a few thousand reads.

We also performed a similar optimization experiment for Bowtie
2, BWA-MEM and vg with graph genome using ChIP-seq reads,
described in the Supplementary Material. By varying command-line
parameters on a small test set of 10 000 reads, we observed
increased alignment rate and correctness-by-score on 570 000 diffi-
cult reads from the dataset, at the cost of increased runtime
(Supplementary Table S6 and Supplementary Excel File S2).

5 Discussion

We presented Vargas, a heuristic-free read alignment tool achieving
extremely high multi-threaded throughput. Vargas works with

(b) (c)(a)

Fig. 4. The 100 bp read set (a-c) and 250 bp read set (d-f) are binned by MAPQ,

shown on the horizontal axis and correctness is measured using the correct-by-loca-

tion definition within 5 bp. The black line reflects the mathematical definition of

MAPQ

Table 1. Bowtie 2 SG alignment, Bowtie 2 local alignment (L), BWA-MEM and vg using MAF > 10% graph genome, were run on 8365 diffi-

cult reads from the 100 bp dataset with seed length varying from 10 to 35

Bowtie2 SG Bowtie2 L BWA-MEM vg

Seed length 28 32 14 17 10 12

% Aligned (ratio) 1.00 0.95 1.00 1.00 1.02 1.02

% Correct score (ratio) 1.01 1.02 1.00 1.00 1.01 1.01

Mean AS difference, all aligned reads (ratio) 0.82 0.90 0.93 0.98 0.61 0.66

Mean AS difference, incorrect-by-score aligned reads (ratio) 0.89 1.02 0.97 1.00 0.81 0.85

Alignment time (ratio) 0.76 0.56 1.97 1.20 1.99 1.41

Notes: The value in the table equals the ratio between the measurement (row) when using the stated parameter setting (column) versus when using default

parameters. For BWA-MEM and vg, the second parameter setting is the one that gave the lowest mean AS difference without taking more than 1.5 times as long

as the default.
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flexible alignment scoring functions (e.g. affine gap penalty) and
parameters (e.g. local and semi-global alignment), and with both lin-
ear and graph references. Read alignments produced by Vargas can
be used as a computational gold standard for evaluating short-read
alignment algorithms, including with real sequencing datasets and in
much the same way as biological gold standards are used to assess
variant calling algorithms. Vargas opens the door to comprehensive
study of the effects of alignment heuristics and, distinct from that,
the effects of alignment scoring functions. Though the default scor-
ing functions of tools like BWA-MEM and Bowtie 2 are widely
used, they are not very well studied, and this is in large part because
it is difficult to separate the effect of the scoring function from the
closely related effects of the heuristics. Vargas alignments could also
be used to evaluate the effects of different reference genomes on
alignment accuracy, such as comparing graph genomes containing
different variant sets to each other and to linear references, as inves-
tigated using simulation in the FORGe study (Pritt et al., 2018).

The Rabema study of Holtgrewe et al. (2011) highlighted the dis-
advantages of evaluating aligners using only simulated reads and the
correct-by-location definition. They developed the concept of the
‘trace tree’ to enumerate mapping locations and a tool, Rabema, for
computing all mappings of real or simulated sequencing reads less
than a certain Hamming or edit distance. Aligners were evaluated on
their ability to return all matches within the distance threshold, all
best matches, or any best match. However, using a single truth set of
the optimal locations of all matches leaves alignment heuristics and
scoring functions as confounding factors. Also, fixing a maximum dis-
tance k disregards reads where the optimal match is further than k
from the reference, which we show are the most error-prone in SG
alignment algorithms. Future benchmarking efforts comparing align-
ment algorithms, parameter settings and graph versus linear reference
genome paradigms can now be based on aligner-specific, real data
computational gold standards generated using Vargas.

Alignment methods developers can use Vargas alignments to
identify particular reads where the heuristic fails to find the optimal
solution to the optimization problem posed, and can revise the heur-
istic strategies accordingly. Knowing optimal alignments for a subset
of the input reads can serve as training data for identifying optimal
alignment parameters, as tools like Teaser (Smolka et al., 2015) do
using simulated reads. Such customization of parameters should be
particularly effective for short (e.g. ChIP-seq) and/or error-prone
(e.g. ancient DNA) reads.

Many short-read datasets use paired-end reads, where a DNA
fragment is sequenced from both ends, typically with a few hun-
dred bases between the read pairs. Heuristic aligners account for
the fact that pairs should align concordantly to the reference, i.e.
in a particular expected configuration based on the library prep-
aration. Since concordance is not defined by the scoring function
per se, and since checking for concordance of paired-end align-
ments can be implemented as a post-pass after each end has been
aligned individually, we left paired-end alignment to future work.
We evaluated Salmon’s RNA-seq alignments to the transcriptome,
but Vargas’ optimization functions do not extend to spliced
short-read alignment, such as aligning a RNA-seq read to a gen-
ome. Possible optimization functions for penalizing splicing
events could depend on intron length, genomic nucleotides at the
donor and acceptor sites and a transcriptome annotation.
Extending the dynamic programming model to find optimal solu-
tions would require that every position in the read could be
spliced to any pair of coordinates in the genome with a corre-
sponding alignment penalty, exponentially increasing the possibil-
ities to be explored. Vargas does not currently support the
minimum-of-two-affine-functions gap scoring function used by
Minimap2 (Li, 2018) or variation graphs that are not DAGs,
which would limit its evaluation of an aligner that worked with
variation graphs containing cycles, for example.

Because Vargas calculates all possible alignments of read to ref-
erence in the course of filling the dynamic programming matrix,
every match above a certain minimum score could be reported. This
could be useful in CRISPR guide RNA off-target analysis: current
approaches are limited to a few mismatches; using Vargas would

allow for a full edit distance scoring function and enumeration of
distant alignments, including in the presence of genetic variation.
Fully profiling all possible alignments of a read, or a substring
extracted from the genome, could also be applied to the problem of
characterizing mappability as explored in Lee and Schatz (2012)
and Wilson et al. (2019).
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