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A B S T R A C T   

Mucormycosis is a serious and potentially fatal fungal infection caused by a type of rare but opportunistic fungal 
pathogen called mucormycetes. Recently, mucormycosis, also known as black fungus, made severe chaos in India 
during the second wave (between April and June 2021) of the tragical COVID-19 epidemic by its sudden and 
devastating surge with up to 50% mortality rate. While the exact cause of its sharp rise suddenly and specifically 
during the second wave still remains debatable, it has been noted that the people who are diabetic and have 
recovered from COVID-19 infection are more predisposed to mucormycosis. Nevertheless, the precise reason and 
mechanism(s) underlying the surge of this deadly infection needs to be investigated to comprehend its patho-
genesis and pathological elements and discover rationale preventative/ therapeutic solutions. It is speculated 
that the indiscriminate use of steroids, antibiotics and zinc as a self-medication practice that increased during the 
COVID-19 epidemic may have promoted the dysbiosis of gut microbiota thereby inducing immune-suppression 
and making the risk group highly susceptible to this mycotic disease. In these contexts, this timely article at-
tempts to contemplate and discuss some of the possible factors and potential mechanisms that can help to un-
derstand and explain the conundrum of sudden, steep and deadly upsurge of mucormycosis infections during the 
second wave of COVID-19 epidemic.   

Introduction 

Since its inception in late 2019s, COVID-19 has devastated the 
human health worldwide while also heavily impacting the global 
economy. SARS-CoV-2 has affected over 220 countries and territories, 
with approximately 4176,185 deaths so far across the globe (world-
ometers 2021). While the ‘second wave’ of SARS-CoV-2 and its 
variants-mediated COVID-19 continue to affect the global population 
(Kirby, 2021), the deadly rise of myriads of manifestations and com-
plications and, specifically, the rise of fatal fungal infection, the 
mucormycosis, has put the lives of COVID-19 patients further at high 
risk (Revannavar et al., 2021; Werthman-Ehrenreich, 2021). COVID-19 
and mucormycosis (also known as black fungus) are causing comorbid 
conditions to worsen the extent of infection and mortality rates. 
Aggressive mucormycosis may infect nose, eyes and sometimes the 
brain. In severe cases, eyes have to be removed to save the life of 
patients. 

Notably, the developing countries such as India, the second most 
COVID-19-affected country in the world, have seen a sudden surge of 
mucormycosis incidences with variable degree of severity and pathol-
ogies. In India, more than 45,432 cases and 4252 deaths due to 
mucormycosis have been reported as on 15th July 2021, either among 
COVID-19 infected patients or in patients who had recovered from 
COVID-19 with Rhinocerebral mucormycosis (77.6%) being the most 
common type of presentation (Hindustantimes 2021). 

Etiologically, mucormycosis is a serious fungal infection caused by a 
family of mold called mucormycetes. These fungi are widely distributed 
in the environment, with particularly higher prevalence in moist soils, 
decaying plants and foods, bird and animal feces, water and air around 
construction sites (Sugar, 1995; Meyers and Gurtman, 1998). Mucoy-
mycocetes are rare but opportunistic pathogens and primarily affect 
immunocompromised people. Their invasion in blood vessels and vas-
culotropism leads to tissue infarction (Meyers and Gurtman, 1998; 
Eucker et al., 2000). It has been noted that people with co-morbidities 
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such as diabetes, neutropenia, iron overload, deferoxamine therapy, 
renal failure, protein-calorie malnutrition, cancer and other diseases, all 
of which affect or are linked with immune system, are particularly 
highly susceptible (Bhattacharyya et al., 1992; Radner et al., 1995; 
Brown et al., 1998). 

An epidemiological survey conducted about two decades ago sug-
gested that mucormycosis, if left untreated, could be fatal, with mor-
tality rate rising as high as up to 54% (Roden et al., 2005). Previously, 
the anticipated load of mucormycosis in India was about 14 cases per 
100,000 populations, which is one of the highest at the global level. 
Whereas, recently, an alarming increase in the number of 
COVID-19-associated mucormycosis has been observed in India (A Patel 
et al., 2021) (Table 1). In view of this, the Government of India has 
declared mucormycosis as an epidemic in many states and territories. 
Since there was almost no instance of COVID-19-associated mucormy-
cosis throughout the first wave of SARS-CoV-2, questions arise about the 
factors and elements that may have instigated or caused this sudden 
surge of mucormycosis, particularly during the second wave (Box-1). 

There are multiple views regarding the current mucormycosis 
outbreak in India. As per the WHO statistics, India has a total of 15.3% of 
the global diabetic population (Roglic, 2016; Zhou et al., 2016). It has 
been noted that the people who are diabetic and have recovered from 
Covid-19 infection are more predisposed to mucormycosis (Garg et al., 
2021). On the other side, it has also been observed that about 85% of 
mucormycosis patients have diabetes or uncontrolled diabetes (To, 
2021). 

The fungal disease has been found to be more prevalent in co-morbid 
or sometimes in non-diabetic Covid-19 patients, particularly those who 
were given high doses of steroids for a long time or were on oxygen/ 
ventilator support. In addition, poor clinical hygiene and/or inappro-
priately managed diabetes provides opportunistic environment for 
fungal infection. Earlier studies implicated poorly controlled type-2 
diabetes as one of the main risk factors for mucormycosis, although 
type-1 diabetes (10–15%) and secondary diabetes have also been re-
ported in few cases (Chakrabarti et al., 2006). Type-2 diabetes has been 
implicated as the main cause of up to 44–88% cases and nearly half of 
the cases were diagnosed with ketoacidosis (Chakrabarti et al., 2006; 
Nithyanandam et al., 2003; Chakrabarti et al., 2009). It was recorded 
that of all the cases of COVID-19 associated mucormycosis, about 
80.4–96.7% of the patients had diabetes mellitus (mean HbA1c ~ 10) 
and 87.8% patients were on corticosteroid treatment (AK Singh et al., 
2021; John et al., 2021; Ravani et al., 2021). Apart from systemic use of 
corticosteroid and diabetes, several other factors including the 
immune-suppressive therapy (for example, the use of tocilizumab), 
immunodeficiency, organ transplant, and iron overload may also 

predispose for mucormycosis. In addition, post-pulmonary tuberculosis 
and chronic kidney disease are also speculated to be the emerging risk 
factors for increased incidences of mucormycosis (Sen et al., 2021; AK 
Singh et al., 2021). 

Other reasons could be the excess of uncontrolled conventional 
precautions. One such example is repeated steaming, which may distress 
the nasal tract’s beneficial microbiome and virome. Nasal microbial 
imbalance (dysbiosis) may suppress local immunity and thus may pro-
vide opportunity for fungal infection. During Covid-19, in an attempt to 
prevent/ameliorate viral infection, an increasing number of people have 
been taking Zn disproportionately through vitamins and other dietary 
supplements. It is evident that the Zn deprivation inhibits fungal growth 
in the body (Staats et al., 2013). Therefore, Zn-depletion-based 
approach could be used for mucormycosis therapy (Leonardelli et al., 
2019). In addition, many patients that were receiving medical treatment 
and were not on oxygen therapy were infected and diagnosed with 
mucormycosis. Therefore, there seems no definite link between oxygen 
therapy and the susceptibility to infection. In addition, mucormycosis 
depends on climatic factors such as seasonal variation, humidity, and 
ambient temperature (Al-Ajam et al., 2006); therefore, such and other 
reasons thereof must be investigated to figure out potential conclusion 
and rationale solutions. 

Self-medication, drugs overuse, and microbial dysbiosis: effects 
on immune system 

During COVID-19, many countries have reported remarkably high 
incidences of self-medication and home remedies among infected as well 
as uninfected people (Fig 1a), which may have had high probabilities of 
incorrect dosages. Extensive use of steroids during COVID-19 lockdown 
period has been observed in India, which seems to be the highest ever at 
the global level (Chaudhry et al., 2021). There has been a trend towards 
increased use of different antibiotics, steroids, vitamins, and Zn, etc. that 
may cause dysbiosis of gut and nasal microbiomes (He et al., 2019; 
Kishimoto et al., 2020). Steroids function mainly through interaction 
with glucocorticoid receptors, or by causing defects in the function of 
macrophages and neutrophils (Barshes et al., 2004), which down-
regulates the expression of proinflammatory cytokines such as tumor 
necrosis factor (TNF)-α, IL-1β, IL-6, IL-8, and IL-12 secreted by macro-
phages thereby leading to immunosupression. 

Gut-associated lymphoid tissue (GALT), the well-developed and 
largest lymphoid immune organ in the human body, protects the host 
against various pathogens and infectious agents, besides also playing an 
important role in postnatal immunity (D’Inca et al., 2010). The gut 
bacteria, particularly the well-studied commensal genus Bacteroides 

Table 1 
Number of mucormycosis cases reported in India before and during COVID-19.(* Consist of 187 cases of CAM, # ROCM cases only in COVID-19 patients).   

Study Period Study duration Place of study Total 
cases 

References 

Pre-COVID-19 
period 

1990–2004; 2006–2007 15 years 6 months Chandigarh (North 
India) 

382 (Chakrabarti et al., 2001; Chakrabarti et al., 2006;  
Chakrabarti et al., 2009) 

2005–2015 10 years Tamilnadu (South 
India) 

184 (Manesh et al., 2019) 

2010–2014 5 years Chandigarh (North 
India) 

82 (Chander et al., 2018) 

January 2013– May 2015 2 years 5 months Gujarat (West of India) 27 (Patel et al., 2017) 
2013–2015 3 years North and South India 388 (Prakash et al., 2019) 
January 2016–September 
2017 

1 year and 9 
months 

Across India 465 (Patel et al., 2020) 

2015–2019 4 years Tamilnadu (South 
India) 

38 (Priya et al., 2020) 

September 1–December 31, 
2019 

4 months Across India 112 (A Patel et al., 2021) 

COVID-19 period September 1–December 31, 
2020 

4 months Across India 295* (A Patel et al., 2021) 

January 1, 2020 - May 26, 
2021 

17 months Across India 2826# (Sen et al., 2021)  
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Fig. 1. (a) Trend of self-medication and usage of different types of drugs during the COVID-19 epidemic55–61. (b). Climatic conditions of the three Indian states most 
heavily affected by mucormycosis. (Ramakrishna et al., 2019; Choudhary et al., 2021; Sadio et al., 2021; Chopra et al., 2021; Quispe-Cañari et al., 2021; Makowska 
et al., 2020; Wegbon et al., 2021; Dare et al., 2021) 
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fragilis, promote symbiosis and host immune system education by pro-
ducing Polysaccharide A (Ramakrishna et al., 2019), thus playing a vital 
role in the progression and maturation of intestinal mucosal immunity 
(Chung et al., 2012) and contributing to host’s health by colonizing the 
mucosal entry sites of pathogens. Excessive use of systemic glucocorti-
coids impairs the gut epithelial barrier and causes gut dysbiosis thereby 
allowing toxins and bacteria leak into the bloodstream (leaky gut). This 
in turn affects immune response while providing favorable conditions 
for fungal growth and nourishment, which may in turn damage the gut 
lining (Paray et al., 2020). The excess of vitamin A is known to attenuate 
humoral immunity (by impairing the antibody response against New-
castle disease virus) (Yuan et al., 2014) and hamper vitamin D absorp-
tion (Maurya and Aggarwal, 2017). Excessive usage of typical vitamins 
is likely to cause toxicity and adversely affect the immune system and 
the utilization of other vitamins. 

The barrier function of the nasal mucosa along with the regulation of 
local and distal immune responses are modulated by the colonizing 
microbial symbionts and are directly in contact with external ambiance 
(Man et al., 2017; Liu et al., 2020) . The microbiota modulate host 
physiological and pathological processes through multiple mechanisms 
(Atarashi et al., 2013; Atarashi et al., 2011; Faith et al., 2014). The GI 
microbiota cross-talk with the pulmonary microorganisms via the 
so-called ‘gut-lung axis’ and impact the immune system, thereby regu-
lating and influencing the host’s vulnerability to respiratory infections 
(Hua et al., 2018). Moreover, mucorales-specific T-cells producing 
CD4+ and CD8+are known to play a role in both resolution and wors-
ening of invasive fungal infections by interacting with the gut micro-
biota, which influences the functionality of immune cell populations 
crucial for controlling the microbial infections (Speakman et al., 2020). 

Like other mucosal surfaces, the nasal tract is also colonized by 
commensal microorganisms that are important for mucosal homeostasis 
and protection against infections (Dimitri-Pinheiro et al., 2020). 
Staphylococcus epidermidis, which increases during the process of 
human nasal microbiome maturation, stimulates the synthesis of anti-
microbial peptides in nasal epithelium (Liu et al., 2020). Nasal- or 
nasopharynx-associated lymphoid tissue (NALT), which represents the 
immune component of mammalian mucosa-associated lymphoid tissue 
(MALT), provides additional support to the nasal barrier. NALT is widely 
diffused in children’s nose, but may also be present in nasal posterior 
airways space in adults (Debertin et al., 2003). 

Nasal microbiota is important for nasal immune responses against 
viral, bacterial and fungal infections (Salzano et al., 2018). Nasal 
microbiota acts in concert with different nasal immune responses found 
in persons with nasal inflammation (Salzano et al., 2018). Of note, the 
nasal microbiome is essential for the development and maturation of 
MALT as well as the modulation of IgA- and T cells-mediated adaptive 
immune responses. 

We hypothesize that excessive water steaming and the uncontrolled 
use of drugs might have led to the dysbiosis of nasal and gut micro-
biomes and the suppression of immune system, which altogether may 
have promoted fungal infection. However, it is important to generate 
scientific/clinical evidence to unravel the relationship of the use of 
specific drugs or home remedies with the dysbiosis of gut and nasal 
microbiome. 

Environmental factors and mucormycosis 

Although mucormycosis is present in the environment throughout 
the year, a strong seasonal infection pattern is observed (Al-Ajam et al., 
2006; Talmi et al., 2002; Shpitzer et al., 2005). Most infections are 
prevalent during the initial phases of hot and dry summer season, with 
peaks reaching at around the end of the season. During this period, the 
temperature goes high while both relative humidity and precipitation 
are minimal (Al-Ajam et al., 2006). Same has been observed with the 
mucormycosis prevalence in India, particularly during the current or 
second wave of Covid-19 epidemic. 

The rise in mucormycosis infections has been observed mainly dur-
ing May, the month of dry summer. Most of the highly affected Indian 
states such as Maharashtra, Gujarat and Rajasthan face a hot and dry 
summer during this month (Fig 1b). Therefore, the observed seasonality 
of mucormycosis can be correlated to the dominant weather conditions. 
And if seasonality prevails in India, it can be expected that during the 
upcoming monsoon season (mid June to September), the mucormycosis 
infection will decrease, albeit the persistence of hospital-acquired in-
fections in immune-compromised individuals may not be ruled out. 
However, the availability of scientific data on the seasonality of 
mucormycosis in context to India is scanty. 

Conclusion and perspectives 

It is important to maintain and restore the natural gut and nasal 
microflora with dietary/lifestyle modification, prebiotics, probiotics, 
and digestive enzymes. Research is required to determine the associa-
tions of current treatment regime, the potential co-morbidities, and the 
environmental factors with mucormycosis infection. However, there is 
more than adequate evidence to justify the implementation of policies 
and interventions that might reduce mucormycosis in recovered COVID- 
19 patients. 

Excessive use of antibiotics (such as azithromycin) and antifungal 
drugs (such as amphotericin B) during Covid-19 epidemic may lead to 
the development of resistance to these antibiotics and drugs in future 
(Sulis et al., 2021; Pelfrene et al., 2021). Therefore, the mucormycosis 
treatment should be screened continuously for the development of such 
resistance. Although there is a paucity of data on antimicrobial drug 
resistance during COVID-19 period, some recent studies have high-
lighted the prevalence of antibiotic resistance in bacteria causing sec-
ondary infections, mostly of nosocomial origin (Vijay et al., 2021), and 
antifungal resistance in Candida spp. in India (Vijay et al., 2021; 
Chowdhary et al., 2020). Further research must assess the antibiotic 
usage and stewardship in hospitals and to find out the correlation of 
drugs being used in Covid-19 with the gut microbiome dysbiosis, in 
particular context to immune suppression. Prescription-based policies 
must be strictly followed, and self-medication should be closely moni-
tored and prohibited. 

Though prime concern of healthcare authorities is to promote laws 
and guidelines in favor of prescribed drugs usage, the challenges 
accompanied with self-medication practices among general population 
cannot be ignored. Thus, improved public awareness and education 
about safe and rational use of drugs and ethnic herbal remedies are 
imperative and indispensable to overcome the challenge of self- 
medication. This information will help to develop and execute effi-
cient health information system and protocols with public interventions 
to curb black fungus infections in recovered Covid-19 patients as well as 
to control its dissemination to healthy persons. 

In conclusion, this communication contemplates and puts forward 
specific hypotheses related to the increased prevalence of and human 
susceptibility to mucormycosis during the Covid-19 epidemic in coun-
tries like India. We have retrospected, surveyed and extrapolated basic 
and causative elements of mucormycosis based on the current under-
standing and have put forward possible future directions. Understanding 
these mechanisms will pave the way to control mucormycosis epidemic 
through sustainable therapeutic strategies.  
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Box 1. Outstanding Questions: 

Though co-morbidities with diabetes seems a major risk factor for mucormycosis, to what extent does diabetes render the patient vulnerable to 
mucormycosis? 

Why was mucormycosis low during the first wave of Covid-19 epidemic? Did the load of black fungus in environment vary during both waves? 

How does the gut microbiota respond to COVID-19 treatment regimens such as steroids, antibiotics, zinc and multivitamins? What is the long- 
term downstream impact of these remedies on microbiome and immune health during and after recovery from COVID-19? 

What are the microbial and host molecular interactions through which recovered COVID-19 patients become vulnerable to mucromycosis? Is it 
due to dysbiosis of gut and pulmonary microbiota and subsequently affected host immune system? 

How do home-based treatments such as excess use of hot water or steaming and the ethnic or homemade decoction (kahda) interrupt normal 
resident gut and nasal bacterial, fungal and viral microbiomes?  
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