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Abstract: Chitosan begins its humble journey from marine food shell wastes and ends up as a
versatile nutraceutical. This review focuses on briefly discussing the antioxidant activity of chitosan
and retrospecting the accomplishments of chitosan nanoparticles as an anticarcinogen. The various
modified/functionalized/encapsulated chitosan nanoparticles and nanoforms have been listed and
their biomedical deliverables presented. The anticancer accomplishments of chitosan and its modified
composites have been reviewed and presented. The future of surface modified chitosan and the
lacunae in the current research focus have been discussed as future perspective. This review puts
forth the urge to expand the scientific curiosity towards attempting a variety of functionalization and
surface modifications to chitosan. There are few well known modifications and functionalization that
benefit biomedical applications that have been proven for other systems. Being a biodegradable, bio-
compatible polymer, chitosan-based nanomaterials are an attractive option for medical applications.
Therefore, maximizing expansion of its bioactive properties are explored. The need for applying
the ideal functionalization that will significantly promote the anticancer contributions of chitosan
nanomaterials has also been stressed.

Keywords: chitosan; nanochitosan; sea food waste; biomedical applications; functionalization;
surface modifications

1. Introduction

The biopolysaccharide chitosan is recovered from chitin through the deacetylation
process. Chitin, the primary structural polymer occurring in the exoskeletons of crustaceans,
mollusks, and insects [1–4], is second to cellulose, which is the first naturally abundant
polysaccharide [1]. Chitosan is derived from chitin following alkaline deacetylation, leading
to a structure having 2-amino-2-dedoxy-D-glucose and 2-acetamino-dedoxy-D-glucose
units linked by β-(1→4) bonds [1,2]. Amino groups are the principal functional groups
of chitosan. The degree of deacetylation (DDA) is opposed to the degree of acetylation
(DA), DA = 100-DDA or DDA = 100-DA. DA is also very important for solubility and in
separating the terms chitin and chitosan: if DA > 50%, the biopolymer is chitin-like, if
DA < 50%, the biopolymer is chitosan-like

Generally, chitosan has three types of reactive functional groups [5]. Chitosan has an
amino group at the C2 position of each deacetylated unit and hydroxyl groups at the C6
and C3 positions. These play a significant role while modifying chitosan for enhancing its
biological activity. The amine at the C-2” position is the one responsible for the biological
activity of chitosan [6]. Chitosan has received significant attention for accomplishing
several biological activities. The degree of deacetylation (DDA) has an important say on
the bioactivity of chitosan [3,4,7–10].
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Chitosan and its derivatives have been extensively applied into medical and phar-
maceutical applications (Figure 1). This is because of their highly competitive biological
properties that include: biocompatibility, biodegradability, hypocholesterolemic, antimi-
crobial, nontoxic and antitumor, analgesic, hemostatic, and antioxidant properties [11,12].
These properties promote chitosan as an ideal candidate for biomedical applications,
wound healing, tissue engineering, and for drug and gene delivery [13–17]. Chitosan
morphologies include: films, gels, membranes, nanoparticles, coatings, suspensions, and
hydrogels. Each of these unique morphologies are capable of influencing their biomedical
activities and properties [18].

Figure 1. Overview of chitosan nanomaterial-based biomedical applications.

Because of its status ‘generally recognition as safe’ (GRAS) and its excellent biodegrad-
ability, chitosan has been extensively employed for the encapsulation of bioactive com-
pounds [19]. The ability of chitosan towards the loading and delivery of sensitive bioactive
compounds [20,21], polyphenolic compounds [19,22], and vitamins [23] has been well
documented. The functional amino groups and their flexibility to modifications enhance
their mechanical and physical properties. Because of chitosan’s high molecular weight, it
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shows limited bioavailability. Depolymerization by hydrolysis of polymer chains helps
acquire low molecular oligomers of chitosan [24]. The enzymatic (using lysosome, chiti-
nase, pectinase, cellulose) degradation of chitosan is also gaining attention [23,25]. Pepsin,
papain, pronase [26,27], hepatopancreas [28], and chitosanase [25] can yield chitosan of
low molecular weight [3].

Aranaz et al. reported that when the DDA increases, chitosan’s solubility also increases
and biological interactions also increase [3]. The cationic characteristic of chitosan promotes
its interaction with proteins, phospholipids, therapeutic DNA or RNA, bile, fatty acids,
and anionic polyelectrolytes [11,13,14,29]. The high viscosity and low solubility of chitosan
limits its biological applications [18].

The following review summarizes the antioxidant milestones reached through engag-
ing chitosan for biomedical applications. The importance of nanochitosan and its allies,
ideally in areas of biomedical applications, has been extensively reported. The reports on
the antioxidant activity of chitosan have been briefly discussed and duly acknowledged.
Surface modification of nanochitosan and specific functionalization that has aided in at-
taining significant medical milestones have been discussed. The need for furtherance of
more such nanochitosan modifications and their prospective candidature in expanding its
bio-applicability has been speculated and discussed as a future perspective.

2. Antioxidant Activity of Chitosan

Much research work has been directed in the area of free radical reactions, since they
have been held responsible for several specific human diseases. Reactive oxygen species
(ROS) are formed within the human body, in the process of normal metabolism. ROS are
highly interactive with biomolecules and they oxidize lipids, proteins, carbohydrates, and
DNA, ultimately leading to oxidative stress [2]. Enzymes such as catalase, superoxide
dismutase and glutathione peroxidase are the innate cellular defense systems available
against ROS-mediated cellular injury [30]. On excessive generation of ROS, the defense
mechanism becomes inadequate and leads to oxidative stress. Oxidative stress is now
associated with hypertension, dyslipidemia aging, rheumatoid arthritis, cancer, myocardial
infraction, atherosclerosis, heart failure, angina pectoris, wrinkle formation, inflammation,
and neurodegenerative diseases such as Alzheimer, Parkinson, and amyotrophic lateral
sclerosis [31–34].

As a remedy to the ROS issue, the search for antioxidants intensified. It is in this
context, that the antioxidant activity of chitosan has become rather attractive. Chitosan
is an attractive option since it is a biopolymer and it is economical, biodegradable, and
versatile. Chitosan has demonstrated notable scavenging activity against different radical
species. Xie et al. proposed several theories on the scavenging activity of chitosan and
its derivatives against free radicals [35]: (i) The hydroxyl groups in chitosan react with
hydroxyl radicals via H-abstraction reaction. (ii) OH reacts with residual-free amino NH2
to form stable macromolecules radicals. (iii) The NH2 groups absorb H+ from the solution
to form ammonium groups and react with OH through other addition reactions. These are
the plausible mechanisms deciphered for the antioxidant strategies of chitosan [35].

The ROS scavenging capacity of chitosan largely rests on the DDA and MW of chi-
tosan [3]. Chitin being insoluble in water is limited from being used as an antioxidant agent.
The NH2 groups of chitosan deal with the scavenging activity and they can be protonated
in an acidic solution. Samar et al. assessed the antioxidant activity of different DDA and
MW chitosan samples. They concluded that higher DDA and lower MW are characteristic
patterns for higher antioxidant activity [9]. Hajji et al. studied antioxidant activity of
chitosan from crab (Carcinus mediterraneus) shells (DDA: 83%), Tunisian marine sources
shrimp (Penaeus kerathurus) waste (DDA: 88%), and cuttlefish (Sepia officinalis) bones (DDA:
95%) [36]. Chitosan from cuttlefish showed highest antioxidant potential. Kim and Thomas
proved that higher antioxidant activity was obtained with low MW chitosan (30 kDa) [37].

Sun et al. evaluated the scavenging capacity of chitosan oligomers with different
MW, against hydroxyl radicals and superoxide anion [38]. In both superoxide anion and
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hydroxyl radical, lower MW worked well. Chang et al. reported antioxidant activity of
chitosan against hydrogen peroxide, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, and
chelating ferrous ion [39]. The results confirmed that low MW chitosan (~2.2 kDa) has the
highest impact. Li et al. confirmed that the MW of chitosan and its concentration are major
attributes [40].

Although the antioxidant activity of chitosan is strongly proven, the lack of an H-atom
donor to serve as a good chain-breaking antioxidant is a key limitation [41]. The scavenging
capacity of free radicals is correlated with the O–H or N–H bond dissociation energy and
the stability of the radicals. Because the intramolecular and intermolecular hydrogen bonds
in chitosan molecules are strong, the OH and NH2 groups are hard to dissociate [35]. This
is the reason why various surface modifications and functionalization of chitosan were
sought after. Chitosan molecules were modified by grafting functional groups into their
molecular structure. We will briefly discuss the existing modifications of chitosan, for its
antioxidant activity as well as for serving enhanced bioactivities.

3. Surface Modifications of Chitosan

Surface modifications are ways by which superior properties replace weaknesses of
the core material through modifying the surfaces physically/chemically. In case of chitosan,
its backbone is modified to alter properties such as solubility, mucoadhesion, and stability.
Ideally, the -NH2 and -OH groups are the active modification sites. Chitosan polymers
are modified through: blending, graft co-polymerization, and curing [42]. The mixing
of two or more polymers involves blending, which is a form of physical modification.
This is the simplest form of surface modification. Few examples of surface modification
of chitosan by blending are poly (vinyl alcohol) (PVA), poly (vinyl pyrrolidone) (PVP),
and poly (ethyl oxide) (PEO). PVA modification of chitosan improves the tensile strength
and water vapor permeability of chitosan films [43]. PVA-chitosan also show improved
mechanical properties for controlled drug delivery [44]. Amoxicillin formulated with
a crosslinked chitosan/PVP blend with glutaraldehyde to form a semi-interpenetrating
polymer network (semi-IPN) is an example of physical modification [45].

Graft co-polymerization is the covalent bonding of polymers. Curing converts, the
polymers into a solidified mass by means of thermal, electrochemical, or ultraviolet ra-
diation [46]. Chemical modification is achieved by altering the functional groups in a
compound by chemical, radiation, photochemical, plasma-induced, and enzymatic grafting
methods [42]. Chemical modification of chitosan results in quaternized chitosan, thiolated
chitosan, carboxylated chitosan, amphiphilic chitosan, chitosan with chelating agents,
PEGylated chitosan, and lactose-modified chitosan. The primary amine (-NH2) group
is the chemical modification site, key to pharmaceutical applications [42], reacting with
sulphates, citrates, and phosphates [47]. This enhances the stability and drug encapsulation
efficiency of the modified chitosan [48]. Improved solubility of chitosan in intestinal media
is achieved through N-trimethyl chitosan chloride (TMC), a quaternized chitosan [49]. The
mucoadhesiveness of chitosan is enhanced incorporating thiolated chitosan [50]. Quat-
ernization of chitosan forms several derivatives such as dimethylethyl (DMEC), diethyl-
methyl (DEMC), trimethyl (TMC), and triethyl chitosan (TEC). Quaternization of chitosan
helps in increasing the permeability of insulin across Caco-2 cells [51]. Chitosan-thioglycolic
acid, chitosan-cysteine, chitosan-glutathione, and chitosan-thioethylamidine are some of
the thiolated chitosan derivatives presently in use. Grafting of polyphenols on chitosan
has been studied [52–55]. Phenolic compounds are oxidized to o-quinones and further
covalently grafted to nucleophilic amine groups (through Schiff-base and/or Michael-type
addition reaction) [52,56]. Chitosan modified by grafting polyphenols, showed significantly
enhanced antioxidant activity, a classic review of the above-mentioned modifications has
been published [57].
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4. Nanochitosan and Its Modifications
4.1. Methods Used to Prepare Nanochitosan

Nanotechnology has impacted almost every area of science and technology. Nano-
materials are now accepted to be highly versatile, and superior compared to their bulk
counterparts. Hence, the nanoforms of almost all successful materials are readily at-
tempted, since they are destined and proven to have a higher success rate. In case of
chitosan, formulation of chitosan nanoparticles and nanomaterials has been attempted.
Chitosan nanomaterials are synthesized using emulsification, emulsion based solvent
evaporation, ionotropic gelation, microemulsion, and solvent diffusion. Drugs are loaded
within the chitosan nanomaterials via electrostatic interaction, hydrogen bonding, and
hydrophobic interactions. Coacervation is done by separating spherical particles by mixing
electrostatically driven liquids [58,59]. In the polyelectrolyte complex (PEC) method, an
anionic solution is added to the cationic polymer under mechanical stirring, to obtain
nanoparticles [60,61]. In the coprecipitation method, chitosan solution is added, leading to
coprecipitation of highly monodisperses chitosan nanoparticles [62]. In the microemulsion
method, chitosan in acetic acid solution and glutaraldehyde are added to a surfactant in
an organic solvent such as hexane for cross-linking [63]. Emulsification Solvent Diffusion
Method is where an o/w emulsion is prepared under mechanical stirring followed by high
pressure homogenization [64,65]. Emulsion Based Solvent Evaporation Method is a slight
modification of the above method that uses no high shear forces. Reverse Micellar Method
is where a surfactant is added to an organic solvent followed by the addition of chitosan,
drug, and crosslinking agent [66].

4.2. Chitosan/Functionalized Chitosan Nanocarriers—A Snap Shot of Biomedical Achievements

Chitosan has been widely used to produce nanoparticles as standalone materials
or in combination with others. In addition to this, chitosan nanomaterial has been func-
tionalized with various bioactive moieties in order to enhance its biological properties
and overcome the limitations of the source material. Surface modification is the act of
modifying the surface of a material by altering the surface of the material to impact their
original physical, chemical, or biological characteristics. Surface functionalization intro-
duces chemical functional groups to a surface. The onset of nanotechnology has brought
about key advances in nanomaterial-based applications. Functionalization of nanoparticles
has overcome default properties of the nanomaterial and brought about improvisation.
This is believed to hold high promises towards pharmaceutical and biomedical sciences.
Functionalization of nanoparticles has emerged as a highly promising routine to yield
multifunctional nanoparticles that have overcome inherent weakness.

Functionalization of chitosan nanoparticles and their surface modification especially
to suit their therapeutic applications has been successfully demonstrated. We present a
brief overview of the reports on the diverse modified/functionalized chitosan nanoparticles
and their applications. Chitosan has been formulated as polymeric nanoparticles for oral
drug delivery by conjugating antioxidants, catechin and epigallocatechin (flavonoids from
green tea) with chitosan nanoparticles. Usually, these catechins are poorly absorbed across
intestinal membranes and undergo degradation in intestinal fluid. This is overcome by
encapsulating these catechins inside chitosan nanoparticles [67]. Tamoxifen, a water soluble
anti-cancer drug, is useful for oral cancer. Tamoxifen encapsulated in lecithin-chitosan
nanoparticles led to the successful movement of tamoxifen across the intestinal epithe-
lium [68]. Nanoparticles of doxorubicin hydrochloride (DOX)/chitosan/carboxymethyl
chitosan, increased the intestinal absorption of DOX [69]. Alendronate sodium (drug
for osteoporosis) suffers from gastrointestinal side effects and low oral bioavailability.
Encapsulation of alendronate sodium in chitosan nanoparticles overcame the above men-
tioned limitations. Sustained drug release of sunitinib (a tyrosine kinase inhibitor) was
achieved by encapsulating the drug in chitosan nanoparticles [70]. Insulin-loaded chi-
tosan nanoparticles were functionalized with tripolyphosphate (TPP), which enhanced
the NP uptake by the stomach epithelium [71]. Bay 41-4109, an active hepatitis B virus
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inhibitor, was formulated into chitosan nanoparticles improving drug solubility and oral
bioavailability [72].

One of the advantages of using chitosan is its mucoadhesive property, this makes
chitosan a successful candidate for nasal and intestinal drug delivery [73]. Carboxymethyl
chitosan nanoparticles of carbamazepine, enhanced their bioavailability and brain targeting
through the nasal passage [74]. Thiolated-chitosan nanoparticles of the drug leuprolide
showed significant enhancement in the transportation of the leuprolide drug across porcine
nasal mucosa. A nanoparticle based dry powder inhalation (DPI) of rifampicin (antituber-
cular drug) was formulated with chitosan as the polymer, achieving sustained drug release
upto 24 h and zero toxicity [75].

Itraconazole, an anti-fungal drug suffers low solubility during oral adminstration.
The drug in spray-dried chitosan nanoparticles alongwith lactose, mannitol, and leucine,
increased deposition of itraconazole in the lungs [76]. Giovino et al. developed chitosan
buccal films of insulin loaded poly (ethylene glycol) methyl ether-block-polylactide (PEG-
b-PLA) nanoparticles [77], that exhibited excellent mucoadhesive properties and sustained
insulin release. Curcumin prepared as polycaprolactone nanoparticles coated with chitosan
have been used for buccal delivery. Nanochitosan encapsulated enriched flavonoid fraction
(EFF-Cg) loaded PLGA nanoparticles were used for buccal delivery as chitosan films. The
bioavailability of EFF-Cg was improved with no cytotoxicity [78].

Nayak et al. prepared chitosan nanoformulations using ascorbic acid (Vitamin C),
α-tochopherol (Vitamin E), and catechol, along with green synthesized AgNPs for tar-
geted drug delivery to breast cancer cells. These nanoformulations possessed higher
antioxidant activity and also were hemocompatible [79]. Curcumin encapsulated by
chitosan-tripolyphosphate (CS-TPP) nanoparticles were demonstrated to show high radical
scavenging activity [80]. In another study, Kaur et al. [81] formulated catechin hydrate
(CH)-loaded nanoparticles functionalized with TPP. These catechin loaded nanoparticles
showed higher antioxidant activity. Chlorogenic acid (CGA), a polyphenolic antioxidant,
was encapsulated into chitosan nanoparticles and demonstrated for their improved an-
tioxidant activity [82]. Chitosan/DNA co-assemblies were used for the encapsulation of
astaxanthin, a carotenoid that possesses strong antioxidant properties [77,83].

Chitosan-vancomycin nanoparticles for colon delivery were prepared for better drug
release [84]. Coco et al. have studied the comparative ability of chitosan nanoparticles
against other polymers, for inflamed colon drug delivery [85]. Trimethyl nanochitosan
entrapping ovalbumin (OVA) showed high permeability of OVA. Chitosan-carboxymethyl
starch nanoparticles of 5-aminosalicylic acid were demonstrated for inflammatory bowel
disease, showing controlled drug release [85]. Rosmarinic acid loaded chitosan nanopar-
ticles have been used for non-cytotoxic ocular delivery. Imiquimod was prepared as
chitosan coated PCL nanocapsules embedded in hydroethylcellulose gel and also as PCL
nanocapsules embedded in chitosan hydrogel for vaginal delivery for treating human
papillomavirus infection [86]. The former showed higher mucoadhesion, and the latter
higher drug permeation.

Chitosan-based material have been used as bone substitutes, due to their excellent
biocompatibility and biodegradability. However, the hydrophobic surface of chitosan
films inhibits osteogenesis mineralization process during bone regeneration. To resolve
this issue, a novel polydopamine-modified chitosan film with good hydrophilicity has
been developed for bone tissue engineering applications. These films showed enhanced
growth rate of apatite on the modified chitosan film. Due to the method being capable
of generating large quantities in bulk, this sure has a huge potential in the area of bone
tissue engineering. Table 1 lists the various modified chitosan nanomaterials with their
biomedical applications.
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Table 1. Biomedical applications of modified chitosan nanomaterials.

Functionalized/Surface
Modified/Encapsulated
Chitosan Nanomaterial

Purpose Application Reference

Chitosan, soybean lecithin
nanoparticles Oral drug delivery Intestinal permeation of tamoxifen

through the rat intestinal wall [68]

Chitosan nanoparticles Oral drug delivery Sunitinib drug delivery [70]

LMW chitosan NP Oral drug delivery Solubility and bioavailability of
Hydrophobic Bay41-4109 in rats [72]

Chitosan, TPP Oral delivery of insulin

Decreased glycaemia in diabetic
rats after administering

insulin-chitosan nanoparticles,
in vivo

[71]

Chitosan HCl,
Poloxamer 188, sodium glycolate,

gelatin, soya lecithin

Oral delivery of
Cyclosporin-A

Beagle dogs showed relative
bioavailability of Cy-A was

significantly
increased by chitosan nanoparticles,

in vivo.

[64]

Chitosan carboxymethyl chitosan oral antigen delivery in fish
vaccination

Extra cellular products (ECPs) of
Vibrio anguillarum [87]

Chitosan LMW, sodium
tripolyphosphate (TPP),

fluorenyl-methyloxycarbonyl
chloride (FMOC)

Oral drug delivery
Chitosan nanoparticles released

Alendronate sodium faster in 0.1 N
HCl compared to PBS

[88]

Chitosan LMW, sodium
tripolyphos-phate,

tris[2-carboxyethyl] phosphine
hydrochloride (TCEP)

Oral drug delivery Enhanced intestinal absorption of
catechins [67]

Chitosan, STPP, sodium alginate Oral drug delivery

Alginate coated chitosan
nanoparticles containing

enoxaparin for oral
controlled release

[89]

Chitosan, deoxycholic acid,
vitamin B12 Oral drug delivery Enhancement of scutellarin

oral delivery [90]

Chitosan, Tc-methylene
di-phosphonate Oral drug delivery

Chitosan nanoparticles/F
nanoparticles stable in the

stomach and
decompose in the intestine

[91]

Chitosan, PLGA, streptozotocin Oral drug delivery of
Tolbutamide

PLGA nanoparticles modified with
chitosan to form TOL-CS-PLGA

NPs to improve bioavailability and
reduce dose frequency

[92]

Chitosan LMW, penta sodium
tripolyphos-phate Oral drug release

Gemcitabine-loaded chitosan
nanoparticles (Gem- Chitosan

nanoparticles) for oral
bio-availability enhancement

[93]

Sodium alginate, chitosan,
streptozotocin

Naringenin nanoparticles
have better efficacy in

lowering blood glucose levels
compare to free drug

Alginate coated chitosan core shell
nanoparticles for effective

oral delivery
[94]
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Table 1. Cont.

Functionalized/Surface
Modified/Encapsulated
Chitosan Nanomaterial

Purpose Application Reference

N-carboxymethyl chitosan,
chitosan hydrochloride Oral drug delivery

EGCG-chitosan/β-Lg NPs to
achieve prolonged release during

oral administration in
gastrointestinal tract

[95]

Chitosan, sodium alginate,
sodium pyruvate, L-glutamine Oral drug delivery

Quercetin-chitosan/alginate
nanoparticles high antioxidant
property no systemic toxicity

[96]

Chitosan nanoparticles -TPP, lactose,
Tween 80 Oral drug delivery 90% release of RFM from Chitosan

nanoparticles within 24 h, in vitro [75]

Hydroxypropyl-beta-cyclodextrin
(HPβCD), mannitol, lactose, TPP,

L-leucine
Pulmonary delivery

Chitosan nanoparticles for
pulmonary delivery of itraconazole

as a dry powder formulation
[76]

N,N,N-tri-methyl chitosan, TPP Pulmonary drug delivery

Cellular uptake of
Bac-TMC3/TPP/siRNA

nananoparticles greatly enhanced
by clathrin -mediated cellular

uptake pathway

[97]

Chitosan, lipoid S100,
glycol chitosan Pulmonary drug delivery

LMWH chitosan and glycol
Chitosan nanoparticles for

enhancing pulmonary absorption of
LMW heparin

[98]

Chitosan thioglycolic acid, TPP Pulmonary drug delivery

Theophylline-thiolated Chitosan
nanoparticles enhances

theophylline’s capacity to alleviate
allergic asthma

[99]

Thiolated chitosan Pulmonary drug delivery
In vitro slow and sustained release

of leuprolide from thiolated
chitosan about 43% in 2 h

[100]

Chitosan, methylated
β-cyclodextrin, TPP Intranasal administration

Estradiol-chitosan nanoparticles for
improving nasal absorption and

brain targeting
[101]

LMW Chitosan, TPP, trehalose Intranasal immunization

Tetanus toxoid chitosan
nanoparticles (TT-CS NPs) as a new

long-term nasal vaccine delivery
vehicle

[102]

Chitosan, 4-CBS, TPP,
1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide
HCl (EDAC)

mucoadhesive drug delivery

In vitro drug release of DOX loaded
4-CBS-chitosan/PLA nanoparticles

showed sustained release up to
26 days

[103]

Chitosan (MW = 600 kDa),
methane-sulfonic acid, oleoyl chloride,
sodium bicarbonate, glycidyl-trimethyl

ammonium chloride

oral administration with
enhanced mucoadhesion

In vivo toxicology study was
performed in zebrafish embryos [104]

Chitosan,
1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC.

HCl), N-hydroxyl succinimide

mucoadhesive drug delivery
Mucosal adhesion and drug

release of
cetirizine-chitosan

[105]
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Table 1. Cont.

Functionalized/Surface
Modified/Encapsulated
Chitosan Nanomaterial

Purpose Application Reference

Chitosan, lactic acid mucoadhesive drug delivery
Chitosan-based 5-ALA

mucoadhesive film to enhance its
retention in oral mucosa

[106]

Chitosan Low, polycaprolactone,
glycerol nanoparticle mucoadhesive drug delivery

Mucoadhesive films containing
curcumin-loaded nanoparticles to
prolong the residence time in the
oral cavity and to increase drug

absorption through the
buccal mucosa

[107]

Chitosan, TPP, Carbopol 940,
poloxamer 407 Drug delivery

Propranolol-chitosan nanoparticles
of transdermal gels to improve the
systemic bioavailability of the drug

[108]

Resomer PLGA, ploxamer 188, sorbitan
monoaleate, chitosan

flavonoid enriched cytotoxic
film

EFF-Cg nanocomposites chitosan
film containing PLGA NPs, showed

low toxicity
[109]

Chitosan, TPP, Triton X-100 Oral drug delivery of alginate
and pectin

Preparation of alginate and pectin
chitosan nanoparticles for oral drug

delivery
[110]

Chitosan MMW, PEG, PVP, trehalose Insulin release
Chitosan films with insulin loaded

PEG-b-PLA nanoparticles with
sustained release

[111]

Chitosan buccal films of insulin loaded
poly (ethylene

glycol) methyl ether-block-polylactide
(PEG-b-PLA) NP

Insulin release Excellent mucoadhesive properties
and insulin release [77]

Polycaprolactone nanoparticles coated
with chitosan Buccal delivery Delivery of curcumin [57,78]

EFF-Cg loaded PLGA nanoparticles as
chitosan films. Buccal delivery

The bioavailability of EFF-Cg was
improved and no signs of

cytotoxicity were seen
[78]

Conjugating C2-N position of chitosan
with aromatic

sulfonamide, 4-
carboxybenzenesulfonamide-chitosan

(4-CBS-chitosan)

drug release in small intestine
Mucoadhesive property of chitosan

in stomach acidic
environment increased

[57]

Entrapping ovalbumin (OVA) into
Eudragit S 100, trimethylchitosan,
PLGA, PEG-PLGA and PEG-PCL

inflamed colon drug delivery

Nanoparticles with trimethyl
chitosan have shown the highest

permeability of OVA. And
high permeability

[84]

chitosan-carboxymethyl
starch nanoparticles of
5-aminosalicylic acid

Drug delivery for
inflammatory bowel disease Controlled drug release [85]

Rosmarinic acid loaded
chitosan nanoparticles ocular delivery

The nanoparticles showed no
cytotoxicity against the retinal

pigment epithelium nor the human
cornea cell line.

[112]

Chitosan coated PCL nanocapsules
embedded in

hydroethylcellulose gel

vaginal delivery to treat
human papillomavirus

infection

Imiquimod formulated chitosan
coated PCL nanocapsules

embedded in
hydroethylcellulose gel

[86]
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Table 1. Cont.

Functionalized/Surface
Modified/Encapsulated
Chitosan Nanomaterial

Purpose Application Reference

PCL nanocapsules embedded in
chitosan hydrogel

vaginal delivery to treat
human papillomavirus

infection
Imiquimod delivery to vagina [113]

Limonene coated in chitosan Enhancing antioxidant
activity

Limonene-chitosan encapsulation
has antioxidant activity with IC50

value of 116 ppm
[114]

Carboxymethyl chitosan nanofibres
PEO and PVA-Ag Biomedical application Antibacterial [115]

Carboxymethyl chitosan
nanofibres—PVA\PVA\silk fibroin Biomedical application Wound dressing [116]

Quaternized chitosan
nanofibres-coPLA/DOX/PLA Biomedical application Antitumor [117]

Quaternized chitosan
nanofibres—PVA/PVP Biomedical application Antibacterial [118–120]

Quaternized chitosan
nanofibres—graphene Biomedical application Virus removal [121]

Quaternized chitosan nanofibres—PLA Biomedical application Wound dressing [122]

Poly-3-caprolactonegra chitosan
nanofibres Biomedical application Skin tissue engineering [123]

Chitosan/Albumin Nanoparticles Drug delivery

Used as a hydrophobic drug
nanocarrier in

pharmaceutical and medical
applications

[124]

Chitosan/Curcumin nanoparticles Drug delivery Transdermal delivery [125]

Chitosan/Sodium Nitrate nanoparticle Drug delivery Delivery of DOX [103]

Chitosan/HA nanoparticle Drug encapsulation Used to encapsulate a
chemotherapeutic drug [126]

Chitosan/Paromomycin nanoparticle Anti leishmaniasis
Treatment of leishmaniasis,

especially when the current drugs
are impaired by resistance

[127]

Chitosan/Lipid Hybrid
nanoparticles Drug delivery Controlled delivery of cisplatin [128]

Chitosan/Human serum
albumin nanoparticle Drug delivery Nose-to-brain drug delivery [129]

Chitosan/Polylactide nanoparticle Drug delivery
Delivery of therapeutics for
triple-negative breast cancer

treatment
[130]

Chitosan/Cadmium
Quantum Dots Drug delivery Drug delivery of Sesamol [131]

Chitosan/Silica Nanoparticles Thin
Film Drug delivery DOX delivery [132]

Chitosan/PVA nanoparticle Oral delivery
Sustained release of the

immunosuppressant drug
mycophenolate mofetil

[133]

Chitosan-carbon dot hybrid
nanogel Anticancer activity Photothermal therapy-chemo [134]
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Table 1. Cont.

Functionalized/Surface
Modified/Encapsulated
Chitosan Nanomaterial

Purpose Application Reference

PEGylated and fluorinated chitosan
nanogel Drug delivery Targeted drug delivery [135]

Chitosan grafted MPEG-PCL micelles Drug delivery Ocular delivery of
hydrophobic drug [136]

Arginine-modified nanostructured
lipid carriers Drug delivery Anticancer drug delivery [137]

Glycosaminoglycan modified chitosan
liposome Drug delivery Antimalarial [138]

Gold nanoshell-coated liposomes Anticancer Photothermal and
chemotherapy [139]

Glycol chitosan-coated liposomes Drug delivery pH-responsive
drug-delivery [140]

Chitosan nanoparticles-doped cellulose
films Antibacterial activity Inhibition of Escherichia coli [141]

5. Anticarcinogenic/Antitumour Activity of Chitosan Nanomaterials
5.1. Chitosan Nanocarriers—Anticancer Impacts

Chitosan nanocarriers have also been reported for their accomplishments in cancer
research. Nanochitosan have raised the impact of the chitosan polymer further through
nanostructurization. We summarize the available reports confirming the use of nanochi-
tosan as nanocarriers for cancer therapy. Mifepristone (MIF) is an anticancer drug used
against various cancers, Zhang et al. [142] developed MIF-loaded chitosan nanoparticles
(MCNs) that exhibited increased anticancer activity in several cancer cell lines. Pharma-
cokinetic studies in male rats orally administered with MCNs showed a 3.2-fold increase
compared to free MIF. Wang et al. [143] designed chitosan nanoparticles for co-delivery
of 5-fluororacil and aspirin and induced synergistic antitumor activity through playing
around with nuclear factor kappa B (NF-κB)/cyclooxygenase-2 (COX-2) signaling path-
ways. The designed chitosan nanocarrier operated via aspirin-induced suppression of
NF-κB and inhibition of COX-2.

The anti-metabolic compounds pyrazolopyrimidine and pyrazolopyridine thiogly-
cosides were synthesized and encapsulated by chitosan nanoparticles. Their cytotoxicity
against Huh-7 and Mcf-7 cells, related to liver and breast cancer cells, was successfully
demonstrated [144]. Deepa et al. demonstrated the successful release of cytarabine against
solid tumors, using nanochitosan formulations [145]. Cavalli et al. prepared chitosan
nanospheres with 5-FU, which were effective in reducing tumor cell proliferation and
were able to inhibit both HT29 and PC-3 adhesion to HUVEC [146]. Sahu et al. pre-
pared 5-FU loaded biocompatible chitosan nanogels (FCNGL) that released 5-FU in an
acidic environment, resulting in selective drug delivery, leading to sustained delivery of
5-FU for chemotherapy. This enabled high efficacy, patient compliance, and safety [147].
Keerthikumarc et al. synthesized chitosan encapsulated curcumin nanoparticles show-
ing sustained release of the drug and high anticancer efficacy in human oral cancer cell
lines [148]. Shahiwala et al. synthesized chitosan nanoparticles in an alcoholic extract of
Indigofera intricate and demonstrated 500-fold reduction in the extract concentration, when
the chitosan nanocarriers laden with plant extracts were used [149]. Alipour et al. demon-
strated the sustained release of silibinin-loaded chitosan nanoparticles (SCNP) against C6
glioma cells [150]. In another study [151], the effects of nanochitosan on tumor growth
were investigated using nude mice xenografted with human hepatocellular carcinoma
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(HCC) (BEL-7402) cells. The results demonstrated that the treatment of these nude mice
with nanochitosan significantly inhibited tumor growth and induced tumor necrosis.

5.2. Surface Modified/Functionalized Chitosan Nanocarriers—Anticarcinogenic Impacts

Chitosan modifications and functionalization have also been demonstrated for their
anticancer activity. Chitosan based nanoparticles of Bay 41-4109 showed prolonged cir-
culation in the blood and enhanced intestinal absorption [72]. Enoxaparin has less oral
bioavailability; this was overcome by enoxaparin-loaded alginate-coated chitosan NPs
(Enx-Alg-CS-NPs) and demonstrated using rat models. Novel hepatocyte-targeted delivery
system with glycyrrhizin (GL) modified N-caproyl chitosan (CCS) was demonstrated in
rats. These CCS-NPs-GL were demonstrated in these rate models to be able to bring
about effective drug delivery for hepatocyte targeting. Sharifi-Rad et al. have elaborately
published a review on chitosan nanoparticles as a promising tool in nanomedicine with
particular emphasis on oncological treatment [152].

Chitosan modified mesoporous silica nanoparticles (MSN) offer high surface area
and pore volume, including stability of chitosan at different pH values. Controlled release
profile of the curcumin drug molecule has been demonstrated [153]. Amphiphilic chitosan
derivatives (N-octyl-N-mPEG-chitosan, mPEG = poly(ethyl-ene glycol) monomethyl ether;
OPEGC) showing good water solubility and low cytotoxicity were successfully synthesized
via the Schiff base reduction reaction of chitosan [154]. Copper-loaded nanochitosan were
prepared for the effective treatment of osteosarcoma [155]. The copper-loaded chitosan
nanoparticles (CuCNPs) exhibited remarkable anticancer activity. The superior anticancer
effect of CuCNPs is attributed to the generation of a higher mitochondrial ROS level
compared to that of the control. Overall, the anticancer effect of copper has been enhanced
by delivering it within biocompatible nanochitosan.

Methotrexate (MTX) has poor water solubility, low bioavailability, and leading to
resistance in cancer cells. Novel folate redox-responsive chitosan (FTC) nanoparticles for
intracellular MTX delivery helped confer redox responsiveness and active targeting of
folate receptors (FRs) [156]. These possess tumor specificity and controlled drug release due
to the overexpression of FRs and high concentration of reductive agents in the cancer mi-
croenvironment. FTC-NPs showed better inhibitory effects on HeLa cancer cells compared
to non-target chitosan-based NPs. Methotrexate (MTX) and mitomycin C (MMC) loaded
PEGylated chitosan nanoparticles (CS-NPs) were developed as drug delivery systems [157].
MTX, as a folic acid analogue, was employed as a tumor-targeting ligand. Effective uptake
via FA receptor-mediated endocytosis and codelivery of MTX and MMC at the tumor
site have been reported. (MTX + MMC)-PEG-CS-NPs as targeted drug codelivery sys-
tems can have clinical implications for combinational cancer chemotherapy. Irinotecan
nanoparticles (NPs) using folate–chitosan conjugate (FCC) for more effective delivery of
Irinotecan for killing breast cancer cells was developed [158]. Since breast cancer cells
express folate receptors on their surface, these irinotecan-loaded folic acid–chitosan con-
jugated nanocarriers could be used for targeted delivery against metastatic breast cancer
with some modifications.

Liu et al. prepared chitosan grafted halloysite nanotubes (HNTs-g-CS) as poten-
tial nanocarriers for drug delivery in cancer therapy, as curcumin loaded HNTs-g-CS
increased apoptosis on EJ cells [159]. Abbas et al. introduced a chitosan (CS) and CS
magnetic nanoparticles (MNPs) encapsulating polyvinylpyrrolidone (PVP)/maltodextrin
(MD)-based microparticles (MPs) system that was inhalable delivering the drug to deep
lung tissues [160]. Almutairi et al. prepared raloxifene-encapsulated hyaluronic acid-
decorated chitosan nanoparticles that showed cytotoxicity against human lung A549
cancer cell lines [161]. Bae et al. prepared self-aggregates from deoxycholic acid-modified
chitosan for use as delivery vehicles of anticancer drugs [162]. Wu et al. synthesized 10-
hydroxycamptothecine nanoneedles integrated with an exterior thin layer of the methotrexate-
chitosan conjugates, for enhanced therapeutic performances in cancer treatment [163].
Li et al. synthesized the drug carrier (Fe3O4/carboxymethyl-chitosan nanoparticles) and
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demonstrated with the antitumour drug rapamycin (Fe3O4/CMCS-Rapa NPs) [164]. Roy et al.
encapsulated Fe3O4-bLf (Fe3O4-saturated lactoferrin) in alginate enclosed chitosan-coated
calcium phosphate (AEC-CP) nanocarriers (NCs) to be usesd against tumor in mice [165].
Arunkumar et al. synthesized composite injectable chitosan gel (DZ-CGs) comprising of
doxorubicin-loaded zein nanoparticles (DOX-SC ZNPs), which could bring about success-
ful in vitro drug release in a controlled manner. The composite DZ-CGs were more effective
in killing cancer cells [166]. Hwang et al. synthesized the hydrophobically modified glycol
chitosan (HGC) nanoparticles loaded with the anticancer drug docetaxel (DTX), leading to
reduced tumor volume of A549 lung cancer cells [167].

Gomathi et al. prepared letrozole with chitosan nanoparticles using sodium tripolyphos-
phate as the crosslinking agent for anticancer treatment. This was biocompatible and
possessed hemocompatible properties, which makes it an efficient nanocarrier for the
anticancer drug letrozole [168]. Wang and Zhao optimized the preparation of anticancer
drug—gefitinib with chitosan protamine nanoparticles [169]. Koo et al. reported the
preparation of water-insoluble paclitaxel encapsulated into glycol chitosan nanoparticles
with hydrotropic oligomers (HO-CNPs), these paclitaxel-HO-CNPs showed higher thera-
peutic efficacy than the commercial Abraxane® formulation [170]. Maya et al. prepared
O-carboxymethyl chitosan (O-CMC) nanoparticles, surface-conjugated with cetuximab
(Cet) for targeted delivery of paclitaxel. These can be used for targeted therapy of epi-
dermal growth factor receptor (EGFR) in overexpressing cancers [171]. Al-Musawi et al.
synthesized chitosan-covered superparamagnetic iron oxide nanoparticles (CS-SPION)
and applied them as a nano-carrier for loading of (5-FU) (CS-5-FU-SPION) [172]. Anitha
et al. prepared a nanoformulation of curcumin using dextran sulphate and chitosan,
leading to preferential killing of cancer cells compared to normal cells by the curcumin-
loaded drug [173]. Baghbani et al. prepared curcumin-loaded chitosan/perfiuorohexane
nanodroplets using a nanoemulsion process [174]. Rajan et al. synthesized curcumin
nanoparticles loaded in chitosan biopolymer and bovine serum albumin, which resulted
in selective drug targeting of colorectal carcinoma cells [175]. George et al. reported the
preparation of functionalized nanohybrid hydrogel using L-histidine (HIS) conjugated chi-
tosan, phyto-synthesised zinc oxide nanoparticles (ZNPs) and dialdehyde cellulose (DAC)
for sustained drug delivery of naringenin, quercetin, and curcumin. Anticancer studies
towards A431 cells (epidermoid carcinoma) exhibited excellent cytotoxicity, compared to
the free polyphenol drugs [176]. Chaichanasak et al. prepared chitosan-based nanoparticles
with damnacanthal (DAM), leading to improved anticancer effects [177]. Oh et al. have
elaborated on the various medical and drug delivery applications of chitosan and green
synthesized chitosan nanomaterials in previously published reviews [178,179].

Although the exact mechanism behind the anticancer activity of chitosan remains
elusive, Adhikari and Yadav (2018) have elucidated few plausible mechanisms that may
explain the mechanism involved in the anticancer activity of chitosan. Table 2 presents
a consolidated list of the mechanisms suggested for chitosan and nanochitosan mode
of anticarcinogenic activity. Those included are: (i) permeation enhancing mechanism,
(ii) antiangiogenic mechanism, and (iii) sustained release mechanism [180] (Figure 2). Chi-
tosan has been demonstrated for its anticarcinogenic effect on MDA-MB-231 [181,182] and
antiproliferative effect on T24 urinary bladder cell lines [183,184], while chitosan nanoparti-
cles have been proven for their antiangiogenic effect on human hepatocarcinoma [151,185]
and cell proliferation inhibition on BEL7402, HT-29 cell lines [186–192]. Mifepristone (MIF)
loaded chitosan nanoparticles have demonstrated an enhanced anticarcinogenic effect
through sustained drug release as well as enhanced bioavailability of MIF [142].
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Table 2. Established mechanisms for anticarcinogenic activity of chitosan and nanochitosan.

Test Chitosan Form Target Cell Line Mode of Action Reference

In vitro and
in vivo Chitosan MDA-MB-231

Permeation
enhancement,
lowering of
matrix metal-
lopeptidase 9
activity leading
to antimetastatic
effect

[180,181]

In vitro Chitosan T24 urinary
bladder cell lines

Disruption of
cell membrane,
necrosis
resulting in
antiproliferative
effect

[182,183]

In vitro Chitosan nano
particles

Human hepato
carcinoma

Antiangiogenic
effect through,
antiangiogenic
action of
chitosan
nanoparticles
and impairment
of vascular
endothelial
growth factor
(VEGFR) 2 levels

[184,185]

In vitro Chitosan nano
particles BEL7402, HT-29

Cell necrosis,
lipid
peroxidation,
decrease in
MMP, enhanced
permeation and
retention (EPR)
effect, resulting
in inhibition of
cellular
proliferation

[155,186–189]

In vivo

Mifepristone
(MIF) loaded
chitosan nano
particles

Solid tumor

Sustained
release and
enhancement of
bioavailability of
drug. Drug
accumulation
and growth
inhibition

[190]
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Figure 2. Overview of the anticarcinogenic mechanisms of chitosan and its forms that have been
reported in literature.

6. Limitations and Future Endeavors
6.1. Toxicity Aspects of Chitosan

Chitin has its own list of biomedical applications; chitosan has its own credentials
far surpassing those of chitin. Nanochitosan has also made significant progress. Chitosan
nanoparticles effectively deliver drugs to the specific sites by retaining the drug longer,
allowing extended time for drug absorption. As in the case of any material used for
biomedical applications, the toxicity aspects are quiet a concern. Chitosan is biodegradable
and its degradation is dependent on the degree of deacetylation and the availability of
amino groups. The toxicity of chitosan increases as charge density increases and degree
of deacetylation increases too [191]. As of now, no human toxicity reports on chitosan-
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based formulations exist, but there are several animal toxicity-reports on its safety in vivo
and in vitro. Aluani et al. have studied and confirmed the in vivo toxicity of two types
of quercetin-loaded chitosan NPs (QR-NP1, QR-NP2) on male Wistar albino rats [192].
Their data concluded that chitosan nanoparticle are safe carriers for quercetin in oxidative
stress associated injuries. Death and malformation of zebrafish embryos occurred with
increasing chitosan nanoparticle concentrations. Almost 100% mortality was observed at a
concentration of 40 mg/L for the 200 nm chitosan nanoparticles. Therefore, chitosan toxicity
appears to be dose-dependent and needs to be considered at high concentrations [193].
Toxicity studies of chitosan and chitosan nanoparticles is lacking; it is necessary that
chitosan should not be taken for granted in terms of its toxicity. When it specially comes
to chitosan nanoforms, it is essential that well defined toxicity assessment is made for
each and every study, with respect to specific cell lines and their relevant experimental
set ups. Nanomaterial properties are very different from their bulk and so toxicity aspects
need to be studied for each respective system. In fact, it is necessary that any application
reporting the use of chitosan nanocarriers for medical purposes should culminate in toxicity
assessment and toxicity validation of their nanocarrier system. This review points out to
this gap and the need to fill in.

Clinical use of oral or mucoadhesive drug formulations containing chitosan are yet
to be activated, however, human vaccines have been formulated that use chitosan as
an adjuvant [194,195]. Novel chitosan-modified polylactic-co-glycolicacid nanoparticles
(CS@PLGA nanoparticles) were formulated for improving the bioavailability of tolbu-
tamide (TOL) [92]. Using mice models, Bronchial Calu-3 and alveolar 549 cells were used to
study the effect of chitosan-based drugs targeted for drug delivery to lungs [196]. Chitosan-
coated PLGA nanoparticles showed better biodistribution and lower toxicity compared
to those without the chitosan coating [197]. Grenha et al. 2007 reported absence of tox-
icity in vitro using Calu-3 cells and A549 epithelial cells at specific concentrations [198].
In vitro cytotoxicity of chitosan nanoparticles against buccal cells (TR146) was evaluated
by Pistone et al. [110]. Chitosan nanoparticles were less cytotoxic than alginate and pectin
nanoparticles. Moreover, bulk chitosan was more cytotoxic than nanochitosan, because
of the linker attached to chitosan nanoparticles. It was also observed that the cytotoxicity
of chitosan nanoparticles was shown to be further reduced by increasing the concentra-
tion of the linker (TPP) or using chitosan with lesser degree of deacetylation. To date,
there are almost no toxicity reports in animal models and no reports of major adverse
effects in healthy human volunteers and clinical data are lacking. Even though chitosan is
approved in dietary use, wound dressing applications and cartilage formulations, yet a
chitosan-based drug formulations have not been approved for mass marketing [199].

6.2. Inadequate Clinical Testings

In terms of clinical studies, except for scattered one or two reports, no progress has
been made. Without putting the formulations to clinical trials, we will not get a clear picture
of its performance. This is a huge lacuna that this review points out, and one that needs to
be addressed specifically in order to see progress in this area of research. A chitosan-based
nasal formulation of morphine (RylomineTM) is currently in Phase 2 clinical trials (UK and
EU) and Phase 3 clinical trials in the U.S. When it reaches the market, it will pave way for
similar products in the near future, as well as assist in discerning any unanticipated effects
in humans [200]. A need for promoting the use of chitosan nanoparticles, in targeted cancer
theranostics, dermatologic applications, and targeted parenteral drug delivery systems
is also stressed [201–203]; apart from a few reports no concrete progress has been made
in this direction. We hope that future work on chitosan nanoparticles will also focus on
toxicity studies in humans.

6.3. Unexplored Arenas

In addition to the above concerns, this review points out the fact that almost 99%
of the nanochitosan work is surrounding chitosan nanoparticles alone. While chitosan
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nanomaterial includes quantum dots, micelles, nanogels, nanofibers, nanowhiskers, and
nanospheres, none of these advanced nanoforms have been involved as much as chitosan
nanoparticles have been involved. As is well known, morphological impacts of nanoma-
terial could be distinct and unique. Given this fact, it is rather intriguing why none of
these have been studied stand-alone or conjugated with the diverse modifications and
functionalizations that chitosan nanoparticles have been studied with. This is an area worth
addressing and applying for achieving more prominent deliverables. This review prompts
progress and inputs in this direction. Moreover, not much has been evaluated with respect
to enhancement of antioxidant properties of chitosan nanoparticles as yet. Antioxidant
activity of chitosan is one of the outstanding features of chitosan that validates its use in
biomedical applications. With this being the case, nanoantioxidant chitosan should have hit
the headlines by overcoming limitations. Compared to bulk materials, nanomaterials have
always outshined and broken barriers. In this case too, such positive reports were expected
and not much evidenced. We hope this review will trigger enthusiasm in this direction
too. Extensive reviews pertaining to drug delivery applications of chitosan nanoparticles
have been published by Li et al., 2018 [204] and Mohammed et al., 2017 [153], a lot less
has been achieved in other areas of biomedical applications, such as tissue engineering,
bone/skin grafts, antitumor applications, and the like. This review encourages expansion
under these themes.

As much as encapsulation, surface modifications of chitosan are reported, a lot less on
actual functionalization with usual functional moieties that are prevalently used for biolog-
ical functions, have been reported. PLA, PVA, and PEG are repetitively used, when there is
a school of other groups that could prove worthy of assessment. Moreover, a lot fewer less
reports on functionalization of well-known biocompatible inorganic nanomaterial such as
Au, iron oxides, TiO2, Ag, C, Pt, Pd, etc., with chitosan exist. Nanoantioxidants that are
reputed for their remarkable antioxidant features have been extensively reviewed [205] in a
recent review by Khalil et al., 2020. These include SiO2 nanoparticles, Au NPs, Ag NPs, and
Fe2O3 NPs, ceria nanoparticles that have proven to show enhanced antioxidant activity
when functionalized with 2′,3,4′,5,7-pentahydroxyflavone, PEG, Polly tannic acid, salvianic
acid, trolox, lignin, dextran, curcumin, and the like [205]. Such nanocomposites have been
proven to be highly effective in various other fields, nanoantioxidants such as these should
be combined with chitosan, to harness the full potential of such a nanocomposite. This is
one area worth probing and expanding. Figure 3 projects the areas that need to be explored
as future perspective in this subject area.

More focus on application of modified chitosan nanocarriers as well as chitosan
composites towards anticancer research is essential. Not much has been achieved in
this direction. This review expects expansion in these applications, via synthesis of such
composite materials as well as their application into anticancer research. Not many clinical
studies have been reported from the existing chitosan nanoformulations; this deserves
research inputs.
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Figure 3. Future of chitosan nanomaterial based biomedical applications.

7. Conclusions

This review highlights the importance of various modifications and functionalization
on chitosan and nanochitosan. Given the fact that a biodegradable material, obtained
from food waste, can be put to effective biomedical use, there is certainly plenty of room
to improvise and expand the horizons. When resources are already running out, such
recycled resources are essentially the future.
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