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Abstract: The introduction of metallic nanoparticles (mNPs) into the diet is a matter of concern for
human health. In particular, their effect on the gastrointestinal tract may potentially lead to the
increased passage of gluten peptides and the activation of the immune response. In consequence,
dietary mNPs could play a role in the increasing worldwide celiac disease (CeD) incidence. We
evaluated the potential synergistic effects that peptic-tryptic-digested gliadin (PT) and the most-used
food mNPs may induce on the intestinal mucosa. PT interaction with mNPs and their consequent
aggregation was detected by transmission electron microscopy (TEM) analyses and UV–Vis spectra.
In vitro experiments on Caco-2 cells proved the synergistic cytotoxic effect of PT and mNPs, as well
as alterations in the monolayer integrity and tight junction proteins. Exposure of duodenal biopsies
to gliadin plus mNPs triggered cytokine production, but only in CeD biopsies. These results suggest
that mNPs used in the food sector may alter intestinal homeostasis, thus representing an additional
environmental risk factor for the development of CeD.
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1. Introduction

Nanotechnologies and different types of nanomaterials are materials studied in depth
due to their unique features and diverse potential applications, from electronics to medicine.
Together with the investigation of their tailored beneficial properties, the need to consider
and evaluate their influence on the environment and on living organisms is growing.
Currently, a wide range of diverse materials are prepared in the form of nanostructures, and
the majority of studied nanomaterials are carbon-, metal-oxide-, or polymer-based particles
in nano dimensions (nanoparticles) [1]. By definition, nanoparticles (NPs) include materials
with dimensions of 1–100 nm, which can be in an unbound or an aggregate/agglomerated
state. In the latter case, 1–50% of the particles must be in this size range with at least one
external dimension or, if larger, must maintain NP properties [2].

NPs and their aggregates present different chemo-physical properties, compared
to their macro-counterparts, that are useful in a wide range of applications including
nanomedicine and the cosmetic and food sectors [3,4]. Therefore, consciously or not, a
large amount of nanoparticles comes into contact with our bodies.

Although the literature regarding the toxicity and safety of NPs has increased expo-
nentially in recent years, results are often controversial, and an extensive understanding
of the NPs effects on human health is still lacking. In fact, interactions between NPs and
biological systems are quite complex, involving several factors such as size, shape, and
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surface properties of NPs, cell type [5], and also the physicochemical properties of the
surrounding environment [6]. Thus, NPs that are theoretically safe could become dan-
gerous in a complex environment, such as the gastrointestinal tract, leading to unwanted
pathological consequences [7,8].

Metallic nanoparticles (mNPs) were enlisted in the Nanotechnology Consumer Prod-
uct Inventory as the most abundant category of nanomaterials entering through the in-
gestion route [9]. Different types are used in the food sector, mostly the food-whitening
agent TiO2NPs, ZnO-, and Ag-NPs for their antimicrobial effects in food-contact materials,
and AuNPs are used to improve plant yield and growth. Studies on the gastrointestinal
tract have shown that mNPs can alter intestinal homeostasis and permeability, potentially
increasing the passage of immunogenic molecules in the lamina propria and, in turn,
triggering the immune system [10]. This could be relevant in patients with autoimmune
disorders [11], such as those with inflammatory bowel disease (IBD) or CeD [12]. Celiac
disease is a common chronic enteropathy, and its incidence is rising worldwide [13]. It
develops in genetically predisposed individuals after the ingestion of gluten, the principal
environmental trigger present in wheat and other cereals. The presence of specific HLA
class II heterodimers, i.e., DQ, represents the necessary but insufficient genetic asset for
the development of the disease. According to the different reported cohorts, the HLA-
DQ2.5 heterodimer (DQA1*0501-DQB1*0201 in cis, DQA1*0505-DQB1*0202 in trans) is
present in at least 90% of CeD patients, whereas the other risk heterodimers are HLA-
DQ8 (DQA1*0301-DQB1*0302), HLA-DQ2.2 (DQA1∗0201-DQB1∗0202), or HLA-DQ7.5
(DQA1*0505-DQB1*0301). Thus, about 95% of CeD patients present the DQB1*02 allele,
as also recently evaluated by a metanalysis study [14]. Gluten peptides reach the lamina
propria, where they are deamidated by tissue transglutaminase 2, loaded onto antigen-
presenting cells, and then recognized by T cells. However, even if HLA-DQ2 is present in
about 30% of the Caucasian population and gluten is a common component of the Western
diet, only 2–5% of these subjects develop the disease, indicating that these factors alone
are not sufficient. In addition to other genetic components, several other environmental
etiological factors have been proposed, such as viral infections [15], impaired commensal
homeostasis [16], and increasing gastrointestinal permeability [17].

In this paper, we demonstrate that mNPs (Au-, Ag-, ZnO-, and TiO2-NPs) interact with
gliadin and affect the intestinal barrier homeostasis in an in vitro system; in addition, this
combination activates both the innate and adaptive immune response in duodenal biopsies
of celiac disease patients, but not in controls. Due to their ability to interact with the
intestinal mucosa, the introduction of mNPs into the human diet may thus represent one of
the environmental factors increasing the percentage of genetically susceptible individuals
developing this disease.

2. Results
2.1. Food Nanoparticles Interact with Digested PT-Gliadin

To evaluate the possible interactions between mNPs and gliadin, we initially in-
cubated mNPs with or without pepsin-trypsin-digested gliadin (PT) or bovine serum
albumin (BSA, known for its interaction with several NPs) and analyzed them by transmis-
sion electron microscopy (TEM). As expected, the measured mean particle diameter was
15.37 ± 3.02 nm and 44.36 ± 8.06 nm for Au- and Ag-NPs, respectively. The micrographs
showed well-distributed single NPs with a basic rate of aggregation at about 25% when
alone (Figure 1A,D). We observed high rates of aggregation, i.e., >90%, after 30 min of
incubation for both Au- and Ag-NPs with PT (92% and 99%, respectively, Figure 1C,F), but
not with BSA (aggregation rate 49% for AuNPs and 41% for AgNPs, Figure 1 B,E), with the
formation of large aggregates with diameters up to 248 and 569 nm, respectively (Figure 1).
We did not proceed with the analyses of TiO2- and ZnO-NPs by TEM since they appeared
to be poorly distributed and in a cluster, even on their own (data not shown).
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22 nm obtained after 30 min incubation with Ag-, Au-, ZnO-, and TiO2-NPs, respectively. 

Figure 1. 1 Nanoparticles TEM pictures, scatter plots, and histograms of frequency based on the mNPs’ diameter. (A) AuNPs;
(B) AuNPs plus BSA; (C) AuNPs plus PT; (D) AgNPs; (E) AgNPs plus BSA; (F) AgNPs plus PT.

We further evaluated the PT–mNPs interaction using surface plasmon resonance (SPR),
since mNPs’ characteristic maximum absorbance changes depending on the size, shape,
and interaction with proteins (protein corona) [18]. Au- and Ag-NPs spectra presented a
well-defined absorption peak (suggesting mNPs in a well-dispersed state), while ZnO- and
TiO2-NPs spectra did not. We observed a shift in the SPR after 30 min incubation with BSA
with all mNP except for AuNPs (Figure 2), whereas a stronger interaction was detected
between all the mNPs and PT, as indicated by the redshift of 48, 29, 9, and 22 nm obtained
after 30 min incubation with Ag-, Au-, ZnO-, and TiO2-NPs, respectively. The strong shift,
additional maximal absorbance, and broadening of the curves were also consistent with
NPs aggregation. The main food source of TiO2NPs is the food-coloring agent E171 [19],
which is constituted by different crystalline forms. The UV–Vis spectra of the commercial
E171 (Figure S1A) showed a different peak compared to that of TiO2NPs (Figure 2C),
suggesting a different composition; although, a wide peak was observed for E171 alone, the
broadening of the curve indicating the tendency to aggregate of E171 when combined with
PT. To further confirm that the interaction involved gliadin peptides and not the inactivated
residual trypsin and pepsin present in the preparation, we also employed PT filtered with
a 10 kDa cut-off membrane (able to separate the peptides from the enzymes), obtaining
similar results (data not shown).
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2.2. mNPs +/− PT Affect Cellular Viability

To assess whether the physical interaction between the single mNPs and the digested
gliadin was affecting cellular viability, an MTT assay was initially performed to generate a
dose–response curve for the various mNPs on undifferentiated Caco-2 cells (Figure S2A)
at several time-points (data not shown). Thus, for further experiments, 24 h was chosen
as incubation time, and only mNPs concentrations that did not induce more than 40%
of mitochondrial dysfunction (AuNPs: 12.5–25 µg/mL; AgNPs: 2.5–5 µg/mL; TiO2NPs:
50–100 µg/mL; ZnONPs: 10–25 µg/mL) were used, in order to assess the possible additive
effect of PT (0.5–1 mg/mL). Since a different effect of mNPs based on cell differentiation had
been demonstrated [20], an MTT assay was performed on both undifferentiated (80–90%
confluent) and post-confluent Caco-2 cells. In the undifferentiated cells, a significant
reduction in cell viability was observed after stimulations with the higher concentrations of
either PT-gliadin or Au-, Ag- (at least p < 0.001 vs. medium), and ZnO-NPs alone (p < 0.01
vs. medium), but worse effects were detected when these mNPs were combined with
gliadin (p < 0.0001 vs. medium) (Figure 3A). However, only the combination of PT with
Au- and ZnO-NPs, but not with AgNPs, significantly reduced viability compared to PT
alone (Figure 3A). When post-confluent cells were analyzed, a significant reduction in the
cell viability was observed after Ag- and TiO2-NP treatment either alone or combined
with PT, as well as after AuNPs combined with PT (p < 0.05 vs. medium) (Figure 3B). In
addition, data showed a worse effect of these combinations versus the PT alone: TiO2NP
treatments in combination with PT were significantly more toxic (p < 0.05 vs. PT alone) and
the combination of AgNPs plus PT induced a reduction in cell viability with borderline
significance (p = 0.069 vs. PT alone) (Figure 3B). Moreover, the combination of AuNPs
plus PT induced a 10% reduction in cell viability compared to PT alone, although this
difference did not reach significance (80.86 ± 4.22 in the combination vs. 90 ± 1.9 in PT,
mean ± SEM) (Figure 3B). A similar increase in toxicity was also observed when post-
confluent cells were exposed to E171; this food additive, either alone or combined with
gliadin, reduced viability compared to unstimulated cells. In addition, the treatment with
the combination of E171 and PT 0.5 mg/mL was significantly more damaging compared to
PT alone (p < 0.05) (Figure S1C). Non-cellular tests were also run, with null or negligible
signals (data not shown).

Caspase activation is a transient event that occurs before cellular membrane per-
meability alterations; therefore, we first performed a time-course analysis employing a
cytotoxicity assay able to detect membrane damage. An increase in cytotoxicity became
evident at 8 h after stimulations (Figure S2B); thus, we assessed apoptosis activation at an
earlier time point (6 h). We observed a significant increase in the caspase 3/7 activation
in both undifferentiated and post-confluent Caco-2 cells after stimulations with PT at the



Int. J. Mol. Sci. 2021, 22, 6102 5 of 20

higher concentration (p < 0.001 vs. medium), with a more robust activation when gliadin
was combined with Ag- and TiO2-NPs (p < 0.0001 vs. medium) (Figure 3C,D). Indeed,
the combination of PT with Ag- or TiO2-NPs resulted in a significantly higher caspase
activation compared to PT alone (Figure 3C,D). Even in this case, treatment with E171
induced similar results, with significantly higher levels of caspase activity after PT+E171
treatment vs. PT (Figure S1D,E).
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Figure 3. MTT and Caspase 3/7 activation assays. Data are expressed as percentage of untreated cells (Medium). Significance
versus untreated cells is indicated above each column (* p < 0.05; # p < 0.01; § p < 0.001; & p < 0.0001), whereas versus
PT is represented by bars. (A) MTT on undifferentiated cells; (B) MTT on post-confluent cells; (C) apoptosis assay on
undifferentiated cells; (D) apoptosis assay on post-confluent cells. Data are shown as mean value and SD (n = 8).

Collectively, the obtained data suggest that food mNPs increase the toxicity exerted
by PT on both undifferentiated and post-confluent Caco-2 cells.

2.3. Gastrointestinal Barrier Impairment

In the development of celiac disease, an important role could be played by intestinal
barrier dysfunction. To assess the possible effects of mNPs, Caco-2 cells were seeded
on Transwell filters until their differentiation (21 days), and monolayer integrity was
assessed by measuring both the transepithelial electrical resistance (TEER) and the passage
of 14C-sucrose and 3H-propranolol, probes for the paracellular and transcellular pathways,
respectively. Data showed a significant TEER reduction (p < 0.05 vs. medium) after 4 and
6 h of stimulation with PT and all the mNPs, either alone or in combination compared
to the untreated cells. However, only the combination of PT with AgNPs, at 4 h, was
able to significantly reduce TEER in comparison to PT treatment (Figure 4A). In addition,
the combination of AgNPs with PT induced a significant increase in the paracellular
permeability compared to both the untreated cells and the PT alone (p < 0.01 vs. medium;
p < 0.001 vs. PT) (Figure 4B).
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To assess if tight junction alterations could be an effect of the various treatments,
we evaluated the mRNA level of occludin (OCLN) and zonula occludens-1 (ZO-1) in
post-confluent Caco-2 cells. Cells were treated for 24 h with the higher concentration of
mNPs with or without PT, but no alteration was detected at the mRNA level (Figure 5).
In order to evaluate possible protein expression variation and/or redistribution, we also
performed immunofluorescence studies. In controls, the signal of both ZO-1 (Figure 6)
and occludin (Figure 7) was localized at the periphery of the cells, delineating the cell
contour. Treatment with PT, NPs, or their combination caused a membrane ruffling that
was particularly evident for ZO-1, whereas the alteration in the expression/distribution
was more pronounced for occludin since a strong decrease in the cell contour signal
was observed after incubation with all the different stimuli. In particular, we observed
the presence of a punctate intracellular signal after the treatment with Ag-, TiO2-, and
ZnONPs, either alone or in combination, suggestive of an alteration of occludin intracellular
trafficking. Lastly, we assessed the capacity of E171 to induce OCLN and ZO-1 protein
rearrangements, detecting even worse effects after gliadin combination with E171 than
with TiO2NPs. In fact, the data obtained suggest a disintegration of the occludin junctions
after E171 plus gliadin treatment, an effect confirmed by the ZO-1 signal showing an initial
separation of the cells (Figure S1F).
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2.4. NPs Induce an Immune Response in the Duodenal Mucosa of CeD Patients

We also evaluated the potential effect of the interaction between mNPs and gliadin ex
vivo on duodenal biopsies from both celiac (on a gluten-free diet) and healthy subjects.

The activation of the apoptosis pathway was assessed, evaluating the ratio of the
mRNA expression of BCL-2 (anti-apoptotic) and BAX (pro-apoptotic) genes. Among the
various treatments, we observed a reduction, although not statistically significant, of the
BCL-2/BAX ratio only after stimulations with PT in combination with Ag-NPs in biopsies
from CeD on a gluten-free diet (GFD) (PT + AgNPs 0.18 ± 0.07 vs. 0.39 ± 0.24 in medium-
incubated biopsies) (data not shown). We also investigated the expression of ZO-1 and
OCLN genes and, as expected, no alterations of their mRNA levels were induced by 4-hour
treatments (data not shown).

To assess if mNPs could also modify the immune system response, we evaluated the
mRNA levels of the most representative cytokines involved in the development of the
celiac disease lesions: IFNG for the adaptive immune system and IL-15 and IL-8 for the
innate immunity. We observed their increase only in duodenal biopsies from celiac patients
on a gluten-free diet but not in those from healthy individuals. Results showed an increase
in IFNG expression after stimulations with PT. A significant increase in IFNG mRNA levels
was observed in CeD biopsies after incubation with AuNPs at a concentration of 25 µg/mL,
both with and without the addition of PT (p < 0.05 vs. control, Figure 8A). Interestingly,
the combination of AuNPs plus PT induced a higher IFNG expression compared to PT
alone, although this difference did not reach significance (3.19 ± 0.84 in the combination vs.
1.59 ± 0.57 in PT, mean ± SEM). Conversely, AgNPs at both concentrations were able
to induce a significant increase in INFG expression only in combination with PT versus
medium (p < 0.05 vs. controls, Figure 8B); even, in this case, AgNPs in combination with
PT were able to increase IFNG mRNA level compared to PT alone (2.16 ± 0.66 in the
combination vs. 1.30 ± 0.31 in PT, mean ± SEM). TiO2NPs exposure did cause a modest
increase in INFG only when it was in combination with PT, whereas ZnO did not have
any effect (Figure 8C,D). The analysis of IL-15 expression revealed a significant increase
in the mRNA amount of the cytokine after stimulations with AgNPs at the concentration
of 2.5 µg/mL ± PT (p < 0.05 vs. control, Figure 9B), whereas no other stimulation was
able to induce a significant change. No alteration of the IL-8 level was detected after
Au-, Ag-, or ZnO-NPs stimulation, whereas a significant increase was observed after
treatments with PT and TiO2NPs (p < 0.05 vs. control, Figure 10C). Again, the combination
induced a higher increase in expression (1.01± 0.25 in the combination vs. 0.44± 0.07 in PT,
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mean ± SEM), although the difference did not reach significance. To further evaluate innate
immunity, TLR2 and TLR4 mRNA expression were also investigated (Figures S3 and S4).
Interestingly, results showed a statistically significant increase of TLR2 after treatment with
TiO2NPs + PT (Figure S3C). No alteration of their expression was observed after treatments
with the other NPs alone or in combination with the gliadin.
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3. Discussion

Several studies showed that the mNPs can alter the intestinal microbiota composition,
impair the gastrointestinal barrier permeability, and induce immune modulation [21,22],
thus having an important effect on patients with diseases characterized by intestinal
damage and immune response alterations such as inflammatory bowel diseases [10,12,23].
Herein, we continue in that direction, pointing to CeD as another possible disorder in
which the dietary intake of mNPs could play a significant role. Moreover, our work is one
of the few testing the toxicity of the mNPs associated with food components [23–27].

We initially evaluated the potential interaction between mNPs and PT by TEM and
UV–Vis analyses, showing that gliadin peptides can bind the surface of the mNPs herein
studied, inducing their aggregation. This could induce a change in size that can affect
mNPs’ performance in crossing biological barriers, the epithelial barrier included [28].
However, it has been shown that the average optimal reported size for NP transcytosis in
the gastrointestinal tract varies according to the cell type. In fact, enterocytes preferentially
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take up NPs of 20–100 nm, whereas particles with 100–600 nm in diameter are transported
by M cells [29]. Thus, the aggregates formed by gliadin and the mNPs could cause a change
in the type of cells able to vehiculate their passage across the intestinal barrier, in absence
of any other damage able to increase the paracellular transit. The passage through M
cells, however, could play an important role in CeD since these cells are specialized in the
translocation of large molecules from the intestine to the immune cells. It must also be
noted that these data have been obtained in a “simplified” environment, i.e., not evaluating
the interactions with other food components or changes in pH, which actually occur in the
gastrointestinal tract [6]. The interaction between NPs and food and/or digestion juices
have been analyzed by several papers, but the published data do not seem to clarify these
issues, due to the differences in the type of NPs, their size, the chosen food components, or
the simulation of the digestive process [30–34].

Even the cytotoxic effect of digested NPs can vary in different studies, as recently
reported by Cao et al. [35] and Marucco et al. [36]. In the first paper, the toxicity of digested
food-grade TiO2 was observed to be higher for E171 digested without the presence of
other food components, but there was no comparison with undigested TiO2. On the
other hand, Marucco et al. [36] found no difference in cytotoxicity between digested and
undigested TiO2. The cytotoxic effects, however, can also depend on the formation of a
protein corona as well as the aggregation state of the NPs, as observed by Wang et al. [27]
and Albanese et al. [37]. The propensity of NPs to be dissolved and to release heavy metals
is also a key point to be considered in the study of the NPs’ toxicity. Recently, it has been
shown that copper, silver, and titania nanoparticles can release about 8 µg/mL of ions
when dissolved in oxygen-saturated aqueous suspension, starting from 48 h. These levels
are low compared to those found in natural media, thus suggesting that the toxicity due
to released ions in our experimental conditions should be negligible [38]. In our model,
mNPs alone were able to induce toxicity in Caco-2 cells, although the effects were quite
different according to the cell status (i.e., proliferating or post-confluent), in particular for
Au- and TiO2-NPs. Moreover, stimulations with Au- and ZnO-NPs combined with PT
induced a significant reduction of cell viability compared to PT alone in non-confluent
cells, whereas TiO2NPs induced the same effect in the post-confluent ones. Apoptosis
is a pivotal mechanism involved in CeD pathogenesis [39], and in Caco-2 cells, PT alone
induced significant activation of apoptosis, as demonstrated in other works [39]. However,
the activation of apoptosis after stimulations with TiO2- and Ag-NPs combined with PT
was significantly higher compared to the cells treated with PT alone. These results suggest
a possible additive effect of mNPs and PT that also depends on the cell characteristics, as
previously detected by Hanley et al. [5], who showed a different NP toxicity based on the
cell proliferative status. This could be important not only in considering the normal mucosa
but also in the case of celiac disease, since the exposure of duodenal mucosa to gluten
leads to a situation of hyperproliferation in an attempt to restore the normal intestinal
architecture, thus changing the ratio of completely differentiated/immature cells.

From the literature, it is clear that both gliadin and mNPs can impair the gastroin-
testinal barrier [17,21,40,41]. Since this alteration may facilitate the gliadin passage from
the intestinal lumen to the lamina propria and, in turn, increase the immune response, we
evaluated whether the combination of PT-mNPs could cause worse effects than the single
components. TEER values were significantly decreased starting from 4 h after treatments,
but an additional effect was only observed after the stimulation of AgNPs + PT versus PT
alone. In addition, when paracellular permeability was analyzed, a significant increase
in the passage of radiolabeled sucrose was observed after the same stimulation versus
both the untreated cells and PT alone. The data obtained on paracellular permeability
differ from what was reported by Sander et al. [40], in which an increase in the paracellular
transport of the 4 kDa FITC dextran marker was registered after stimulation with the
digested gliadin alone. However, although the same cellular model was employed, the
timing of the experiment and the permeability marker used by the authors were different,
a fact that could explain the difference in the obtained results. TJ protein redistribution
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was observed by immunofluorescence, with both OCLN and ZO1 showing membrane
ruffling after all the stimulations. This pattern was slightly present after stimulation with
the PT alone, which is in line with the findings of Sander et al. [40], but the combination
of the NP treatment with PT increased the disruption of cell-to-cell junctions. Moreover,
we observed an increase of cytosolic punctate staining consistent with an alteration of the
intracellular vesicular trafficking of the occludin protein, particularly after treatment with
Ag- and TiO2-NPs, both alone and combined with PT.

TiO2NPs are commonly used as a food-whitening agent in E171, but their size, com-
position, and concentration are often controversial. The composition of E171 involves a
mixture of anatase (usually the most elevated component) and rutile with P, Si, and Al
contaminants, and it is estimated that its NPs components range from 10% to 45%, ac-
cording to the commercial source [19,42]. Therefore, we also performed experiments with
the commercial food-grade E171 to confirm our findings on TiO2NPs. Although UV–Vis
spectra proved a different composition between the commercial E171 and TiO2NPs, both
cytotoxic effects and TJ protein rearrangements after E171 exposure were comparable to
those induced by TiO2NPs. These results support the need for a profound rethinking of the
guidelines for the use of this additive in commercially available food. The FDA allows E171
at up to 1% of the weight of the food, whereas in Europe, this food additive is authorized
ad quantum satis [43]. The percentage of its absorption, as well as the entry route, remains
to be completely elucidated, although a recent paper by Comera et al. [44] demonstrated
that E171 absorption in mice occurs through the paracellular route. The authors were
also able to demonstrate the presence of E171 in the lamina propria, a fact that could be
important since the binding of gluten peptides to mNPs may lead to an increased passage
of immunogenic molecules able to trigger the immune response (hypothesis of the “Trojan
horse”) [11].

In addition, metal nanoparticles can potentiate the immune response [45], which
represents a potential benefit in biomedical application, but could be harmful for dietary
mNPs. Various studies proved that food particles, particularly E171, could have a role in
IBDs [10,12,23,46]; Ruiz et al. [23] performed the studies on DSS-induced ulcerative colitis
mice, and Powell et al. [12] and Evans et al. [10] on biopsy specimens from IBD patients,
showing an increased activation of the innate immune system after E171 exposure.

Although our results demonstrate the deleterious effects of the interaction of mNPs
and gliadin peptides on an in vitro model system, further studies are necessary to confirm
these effects in the complex environment of the gastrointestinal tract. In fact, in addition to
the variables cited above, i.e., the presence of other food components and of intestinal juices,
other factors could modify the interaction between NPs and the epithelium. Particularly,
in addition to the epithelium, the gastrointestinal barrier also includes the mucus layer,
which can trap the mNPs, reducing their uptake and toxic effects. In turn, mNPs can alter
the mucus layer, affecting its thickness or its composition [47,48].

Thus, to evaluate the effect of mNPs +/− gliadin in a system more comparable to
the intestine, we employed an ex vivo system with duodenal biopsies obtained from CeD
patients and healthy subjects. For this study, we selected CeD on a gluten-free diet, with
absent or minimal residual inflammation and normal villi/crypt ratio; this choice allowed
us to better evaluate the response to the stimuli in term of cytokine production, and also to
have a number of enterocytes comparable with that present in control biopsies. Cytokines
and TLRs were selected as representative of the involvement of the immune system in CeD;
IFNG was evaluated for the adaptive response; IL-15, IL-8, TLR2, and TLR4 were evaluated
for the innate response. Interestingly, an increase was observed only after stimulations of
the duodenal biopsies from CeD patients, but not from controls, suggesting that although
mNPs could be innocuous for healthy subjects, they could be harmful for the celiac subjects.
Although a recent paper by Gokulan et al. [49] analyzes the effect of AgNPs on the human
intestinal mucosa, it is quite difficult to compare their data with ours, due to differences in
the time of the exposure as well as in the AgNPs concentration. However, even in their
experimental conditions, no significant increase in IFNG expression was observed after
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2 h exposure in normal mucosa. Moreover, the higher increases in expression in CeD
biopsies were induced by stimulation with the combination of mNPs and PT, although the
difference did not reach significance compared to PT alone.

The effect was not the same for all the tested mNPs since AuNPs induced IFNG expres-
sion, Ag-NP treatments induced IL-15 and IFNG expression, whereas TiO2NPs increased
IL-8 and TLR2, but also IFNG levels. In this latter case, the increase observed after the com-
bined treatment reached a borderline significance compared to PT alone. The IFNG increase,
directly linked to the adaptive immune response, leads to the hypothesis that the analyzed
mNPs may interfere with the antigenic presentation of gliadin mediated by dendritic
cells. In fact, Schanen et al. [50] demonstrated that TiO2 nanoparticles induced dendritic
cell maturation and naïve T cell activation and proliferation; Fogli et al. [3] showed how
different NP cores and coatings can induce different responses in dendritic cells, and
Galbiati et al. [51] proved an immunostimulatory effect on THP-1 cells and peripheral
blood monocytes. Interestingly, data obtained in a mouse model have suggested that
the prolonged ingestion of TiO2NPs is able to alter the Th1/Th2 balance in the intestine,
favoring the Th2 response, an imbalance that, in turn, can lead to epithelial damage. In
fact, in this model, the authors observed a decrease in the villi/crypts ratio, with histology
similar to findings in CeD [52]. Although the immune response in CeD is mainly Th1, an
increase in the secretion of the Th2 cytokine IL-13 has been reported in refractory CeD,
and this mechanism could be important in maintaining the villous damage [53]. Therefore,
studies regarding dendritic and T cell activation/proliferation with the combination of
mNPs and PT are needed to clarify whether mNPs only promote the gliadin passage into
the lamina propria or whether they can also increase the immune cell response to gliadin.
Finally, there is another possible interaction between mNPs and intestinal components
that was not the focus of this paper but deserves further investigation, i.e., the effect of
mNPs on microbiota [48]. In fact, the interaction works both ways since microbiota can me-
tabolize mNPs, changing their biological effects, whereas mNPs can affect the microbiota
composition. Alteration of microbiota could be quite important in an autoimmune disorder
such as celiac disease, due to the possible interactions between microbiota and immune
system, as well as microbiota and gluten. However, it must be underlined that a specific
microbiota signature has not been identified yet, neither in children [54] nor adults [55].
In addition, most of the published studies have been cross-sectional and thus unable to
discriminate the causal role of an altered microbiota composition; therefore, prospective
studies are needed, in particular evaluating the duodenal microbiota.

To the best of our knowledge, our work appears to be the first to document the synergy
between food mNPs and gliadin peptides, leading to the hypothesis that mNPs could be
one of the unknown factors playing a role in the increasing CeD incidence. The specific
mechanisms involved, and whether the mNPs lead to a higher gliadin passage into the
lamina propria [7,56] or increase the immune cell responsiveness to the gliadin [57], need
to be further evaluated.

4. Materials and Methods
4.1. Peptic-Tryptic Digested Gliadin (PT)

The digestion procedure was performed as described by Frazer et al. [58], with some
modifications. Briefly, gliadin (Sigma-Aldrich, St Louis, MO, USA) was digested with
pepsin (0.1 M HCl, pH 1.8) (Sigma-Aldrich, St Louis, MO, USA) and then trypsin (pH 7.8)
(Sigma-Aldrich, St Louis, MO, USA) at 37 ◦C for 4 h with vigorous agitation. Adjustment
of the pH to 4.5 resulted in a precipitate, which was removed by centrifugation. To inhibit
the residual enzymatic activity, both N-tosyl-l-phenylalanine chloromethyl ketone and N-
α-tosyl-l-lysine chloromethyl ketone hydrochloride (Sigma-Aldrich, St Louis, MO, USA)
were used. After dialysis, PT was sterile filtered and lyophilized. The resulting powder
was dissolved in sterile water and stored at −20◦ C.
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4.2. Transmission Electronic Microscope (TEM) and UV-Vis Spectra Analyses

AgNPs (40 nm in diameter), TiO2NPs (<25 nm in diameter, anatase), and ZnONPs
(<100 nm in diameter) were purchased from Sigma-Aldrich (St Louis, MO, USA). AuNPs
(15 nm in diameter) were obtained from Cytodiagnostics Inc. (Burlington, Canada). E171
whitening agent was purchased from an Italian commercial supplier of food coloring. For
TEM analyses, Ag-, Au-, TiO2-, and ZnO-NPs were sonicated for 1 min then incubated
with/without PT or bovine serum albumin (BSA) (Sigma-Aldrich, St Louis, MO, USA) for
30 min. A drop of these suspensions was deposited onto carbon-coated copper grids and
allowed to dry at room temperature. Images were obtained using Hitachi H-7500 TEM
(Hitachi Ltd., Tokyo, Japan) and analyzed using ImageJTM software version 1.48 (NIH,
Bethesda, MD, USA). The surface area of mNPs/aggregate was used to calculate the radius,
diameter, and three-dimensional area. The number of mNPs in every cluster was obtained,
dividing these values for the three-dimensional area of one mNPs, considering 15 nm
as AuNP’s diameter and 40 nm as AgNP’s diameter (as the datasheet specifics). All the
clusters with two or more NPs were regarded as aggregates. UV–Vis spectra were acquired,
using 2-nanometer intervals after 30 min of mNPs incubation with/without PT or BSA
with a SpectraMax Plus 384 Microplate Reader (Molecular Devices, San Jose, CA, USA).
For each condition, three separate experiments were performed, and five images for each
experiment were analyzed.

4.3. Cell Viability Assays

Caco-2 cells (Istituto Sieroterapico, Bergamo, Italy) were cultured in complete DMEM
supplemented with 100 IU/mL penicillin/2 mM L-Glutamine and 10% fetal bovine serum
at 37 ◦C (Euroclone, Pero, MI, Italy) in a 5% CO2 atmosphere. For all the viability assays,
undifferentiated cells were grown until 80–90% confluence, and post-confluent cells were
grown until domes were formed, then stimulations were performed. For the MTT assay,
after 6/24 h of stimulation, 3-(4.5-dimethylthiazolo-2-yl)-2.5-diphenytetrasolium bromide
(Sigma-Aldrich, St Louis, MO, USA) was added at a concentration of 0.5 mg/mL and
incubated for 2 h at 37 ◦C in a 5% CO2 atmosphere. The formed salts were dissolved in
100% EtOH, and the plates were read at 570 nm with a Model 550 Microplate Reader (Bio-
Rad,Hercules, CA, USA). Eight separate experiments were performed for each condition.
The CellTox™ Green Cytotoxicity Assay (Promega, Milan, Italy) was used to determine the
appropriate time for measuring the transient caspase activity. For the Caspase-Glo® 3/7
assay (Promega, Milan, Italy), cells were treated for just 6 h, the luminogenic substrate was
added, and plates incubated at room temperature for 2 h and read with the Tecan Infinite®

200 PRO plate reader (Mannendorf, Switzerland).

4.4. Transepithelial Electrical Resistance (TEER) and Apparent Permeability (Papp)

Caco-2 cells were seeded on Transwell polyester inserts (0.4 µm pore size) with a
density of 165 × 103 cells/insert. TEER was monitored with STX2 electrode Epithelial
Volt-Ohm (TEER) Meter (World Precision Instruments, Sarasota, FL). Only inserts with
TEER ≥ 300 Ω/cm2 were used. Paracellular Papp was assessed using [14C]-sucrose and
the transcellular Papp by [3H]-propranolol transport (0.045 mCi/upper chamber for each
probe). After 150 min, Papp was determined as

Papp = dQ/dt·1/C0A

where dQ/dt is the transport of the probes from the upper to the lower chamber as a
function of time, C0 is the initial probe concentration, and A is the superficial area of each
insert. For each of the conditions, three separate experiments were performed.

4.5. Immunofluorescence

Caco-2 cells were plated on 35-millimeter, collagen-coated glass-bottom dishes and
were treated at 4 days post-confluence. After 24 h of stimulation, cells were fixed in
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methanol for 10 min at −20 ◦C, washed three times with high salt buffer, and incubated
overnight at 4 ◦C with Anti-ZO1 (1:100, Cat. 402200; Invitrogen, Thermo Fisher Scientific,
Waltham, MA, USA) or Anti-OCLN (1:100, Cat. 331588, Invitrogen, Thermo Fisher Scien-
tific, Waltham, MA, USA) primary antibodies in BSA 1X or BSA 1X with 0.1% saponin,
respectively. For Anti-ZO1 Ab, cells were washed and treated with the secondary antibody
Alexa Fluor® 568 Goat Anti-Rabbit (IgG) (1:100; Abcam, Cambridge, UK) at room tem-
perature for 1 h. One micromolar of DAPI(Sigma-Aldrich, St Louis, MO, USA) was used
to stain cell nuclei. Images were acquired by an SM710 inverted confocal laser scanning
microscope (ZEISS, Oberkochen, Germany).

4.6. Patients’ Biopsies

Biopsy specimens were collected by upper endoscopy from 15 healthy subjects (un-
dergoing the exam for gastro-esophageal reflux and/or dyspepsia, H. pylori negative) and
26 celiac patients on gluten-free diets for at least 1 year, with absent or minimal inflamma-
tory infiltrate (Marsh 0–1) to better evaluate the cytokine production. Biopsies were treated
in vitro with mNPs and/or PT for 4 h at 37 ◦C and at 5% CO2, frozen in liquid nitrogen
and maintained at −80 ◦C until RNA extraction. The study was approved by the ethics
committee of the Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico (protocol
number 167/2012), Milan, Italy, and informed consent was obtained from all patients.

4.7. RNA Extraction and RT-qPCR

Total RNA was extracted using the miRCURY RNA Isolation Kit (Exiqon, Vedbaek,
Denmark) following the manufacturer’s instructions. RNA quality analysis and quantifica-
tion were performed by NanoDrop 1000 Spectrophotometer (Applied Biosystems, Thermo
Fisher Scientific, Waltham, MA, USA). High Capacity cDNA Reverse Transcription kit
(Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, USA) was used with random
primers to obtain cDNAs, and TaqMan™ Gene Expression Assays (Applied Biosystems,
Thermo Fisher Scientific, Waltham, MA, USA) were used for gene expression studies. Then,
qPCR was performed using a 7900HT Fast Real-Time PCR System (Applied Biosystems,
Thermo Fisher Scientific, Waltham, MA, USA). For all analyses, each sample was exam-
ined in triplicate. The used probes are: OCL hs00170162_m1; TJP1 hs01551861_m1; IFNG
hs00989291_m1; IL15 hs01003716_m1; IL8 hs00174103_m1; HPRT1 hs99999909_m1; BAX
hs00180269_m1; BCL2 hs00608023_m1; TLR2 hs00152932_m1; TLR4 hs01060206_m1.

All data were normalized using HPRT1 (Hypoxanthine Phosphoribosyltransferase 1),
and the relative expression was assessed by the 2-∆∆Ct method using an external control.

4.8. Statistical Analyses

Data obtained by experiments with different stimulations on cells were compared with
ANOVA multiple comparisons, both against the basal condition and the PT stimulation.
ANOVA on ranks followed by Dunn’s posthoc test was used when data failed the equal
variance test. Experiments were conducted with at least n = 3 and in triplicate. A paired
t-test was used to compare the gene expression data of ex vivo stimulations. Evaluation of
outliers was performed using the Grubbs’ and ROUT tests. All the statistical evaluation
was performed with SYSTAT software (SPSS, Chicago, IL, USA).

5. Conclusions

Our work documents the synergy between food mNPs and gliadin peptides in causing
damage to an in vitro model of the intestinal barrier but, more importantly, demonstrates
that mNPs plus gliadin are able to trigger an increase in cytokine production in duodenal
biopsies from celiac patients but not from controls. These results thus suggest that the
effects of mNPs on healthy subjects could be negligible, but they could represent an
additional risk factor for celiac patients, being able to elicit an inflammatory response and
possibly induce immune activation. In fact, the potential ability of the various mNPs to
facilitate the passage of potential immunogenic molecules from the lumen to the lamina
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propria could increase antigen availability, which, in turn, could lead to the activation of the
immune system. Based on our results, studies on the interaction between food additives
and CeD should be increased, especially considering the broad spectra of used additives,
which, apart from mNPs, also include transglutaminase and gluten nanoparticles [59], in
order to assess their role in the increase in individuals developing this pathology among
the genetically susceptible ones.
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