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Abstract

The stability of the ecosystems depends on the dynamics of the prey community, but

changes in the composition and abundance of prey species are poorly understood, espe-

cially in open ocean ecosystems. We used neon flying squid Ommastrephes bartramii, an

active top predator, as a biological sampler to investigate the dynamics of the prey commu-

nity in the southwestern part of the Western Subarctic Gyre in the northwestern Pacific

Ocean. Squid were collected monthly from July to November 2016. There were no signifi-

cant differences among months in stable isotopes (δ13C and δ15N) in the digestive gland, a

fast turnover organ reflecting recent dietary information. Similar findings were obtained from

analyses of isotopic niche width and fatty acid profiles. The potential influence of the envi-

ronment (monthly mean sea surface temperature, SST, and chlorophyll-a, Chl-a) on the

prey community was examined with SST and Chl-a both varying significantly among sam-

pling months. We found little evidence for significant effects of SST and Chl-a on the isotopic

values, nor on the fatty acid profiles except for 20:4n6 and 24:1n9. These lines of evidence

indicate that the prey community in the southwestern part of the gyre remains stable, with lit-

tle evidence for systematic changes at the community level. This study provides a novel

understanding of the dynamics of the prey community and highlights the use of top preda-

tors to study the trophic dynamics of an oceanic system where a long-term scientific survey

is unavailable.

Introduction

Concern about ecosystem functioning [1–3] highlights the need for a better understanding of

how the composition and abundance of species in natural communities respond to environ-

mental change. For instance, predatory animals are susceptible to reduction or extirpation of

available prey due to environmental processes, which undermines the stability of ecosystems

and the services they provide [3, 4]. Stability is central to ecosystem functioning, which

includes the ecological processes controlling the fluxes of energy, nutrients and organic matter
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[5–7]. Therefore, insight into the prey community and its stability is important for a compre-

hensive understanding of how an ecosystem responds to ongoing environmental change [8].

In the northwest Pacific Ocean, large areas are highly productive and support large popula-

tions of pelagic predators including squids [9–11]. Previous studies in this region have identi-

fied that oceanographic productivity is significantly driven by spatial-temporal variation of the

anticyclonic and cyclonic gyres [12], which greatly influences the abundance of higher trophic

level predators [9, 13]. However, the status of the prey community that supports higher trophic

level predators is poorly studied, which limits our understanding of the functioning of the

overall northwest Pacific ecosystem. The Western Subarctic Gyre, a cyclonic gyre in the north-

west Pacific Ocean, is one region with limited scientific monitoring and hence understanding

of the dynamics of prey communities, even though this information is needed for assessing

ecosystem functioning.

Squids grow rapidly, have short lifespans, and semelparous reproduction [14, 15]. They

impose considerable predation pressure on low- and mid-trophic level species [16] due to

their voracious and active feeding [17–19], and simultaneously support the productivity of

other predators [20]. They consequently play a key role in ecosystem functioning [20, 21].

Squid are highly adapted to the environment to exploit a diverse range of prey and habitat

resources [22, 23]. They occupy medium to top trophic positions in many marine food webs

and their trophic niche width differs among species and ecosystems [24, 25]. These character-

istics reflect not only their flexible feeding strategy [23, 26], but also provide information on

the trophic structure of the system in which they are found [27, 28]. Increasingly, squid have

been highlighted as indicators to examine major changes in trophic structure and ecosystem

functioning [20, 26, 29].

Many naturally occurring biochemical tracers such as stable isotopes and fatty acids have

increased the ability to quantify and characterize complex food webs and community dynam-

ics [24, 30, 31]. These techniques can assess a predator’s dietary history over a range of tempo-

ral scales, reflecting “you are what you eat” [32, 33]. Biochemical tracers are considered to be a

complementary or even alternative and cost-effective tool to stomach content analysis for

examining major changes in trophic structure and ecosystem productivity [26, 34]. For exam-

ple, Pethybridge et al. [26] reported that the comparison of fatty acid profiles of Todarodes
filippovae with those of its potential prey taxa revealed temporal dietary shifts related to site-

specific oceanography and ecosystem structure in continental slope waters in the Southern

Ocean. Stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) for higher trophic organisms

match of those of their prey [32, 34]: δ15N values are enriched by about 3‰ per trophic level,

while δ13C values change little among trophic levels in marine food webs. It is possible to esti-

mate the trophic width of species, populations and ecosystems by analyzing δ15N and δ13C

data together [34–36]. In relation to fatty acids, marine heterotrophs are subject to biochemical

limitations in biosynthesis and modification of carboxylic acids, and generally assimilate die-

tary fatty acids with little or no modification [37]. Many individual fatty acid tracers (e.g.,

20:4n6, 20:5n3, 22:6n3) have been used to study trophic ecology and have revealed the overlap-

ping influences of temperature, habitat, trophic guild and phylogeny (see Meyer et al. [38]).

Thus, by selecting an appropriate predator, stable isotopes and fatty acids could allow the esti-

mation of trophic structure and its dynamics at multiple time scales.

We use neon flying squid Ommastrephes bartramii as a biological sampler to investigate the

trophic dynamics of the prey community of the southwestern part of the Western Subarctic

Gyre in the northwest Pacific Ocean. This region is characterized by high productivity that

supports a large population of higher trophic level species including O. bartramii [9, 39]. O.

bartramii is an extremely widely distributed ommastrephid with a worldwide oceanic bi-sub-

tropical distribution, and inhabits the entire water column through the epipelagic, mesopelagic
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and upper bathypelagic zones [15]. More importantly, O. bartramii is a high trophic level spe-

cies, with an average δ15N value up to 13.6‰ [17, 19, 40, 41], which occupies a similar trophic

position as other top predators such as albatrosses (mean δ15N, 12.0‰ for Diomedea immut-
abilis; 14.4‰ for Diomedea nigripes) [40], and sharks (Prionace glauca, mean δ15N 12.1‰)

[42]. O. bartramii is an opportunistic generalist that preys on a wide variety of species, includ-

ing crustaceans, fishes and cephalopods [15, 17, 18, 43]. The diet of O. bartramii varies spatial-

temporally given the associated prey community, e.g., it may feed on transitional-water species

during its northward feeding migration [18], migratory mesopelagic species in the epipelagic

zone at night [44], and non-migratory species during the day in the mesopelagic zone [18]. O.

bartramii therefore has the potential to be an ideal trophic indicator of ecosystem functioning

[14], and represents a way of integrating ecological dynamics over a large area and across sev-

eral ecosystems that are difficult to study directly [4]. We analyzed carbon (δ13C) and nitrogen

(δ15N) stable isotope ratios and fatty acids from the digestive gland of O. bartramii—the diges-

tive gland having been shown to provide information on recent diet (10–14 days) of cephalo-

pods [45–48].

We aim to (a) determine the isotopic trophic niche and variation of the prey community of

O. bartramii; and (b) assess the dynamics of the prey community over a relatively long period.

These results will increase our understanding of the systematic changes in the ecological com-

munity in the region, and provide a basis for quantifying community dynamics in response to

environmental change.

Materials and methods

Ethics statement

Specimens were collected as dead squids from the small-scale trawl fishery landings, from July

to November 2016. The specimens were analyzed in the laboratory using methods consistent

with current Chinese national standards, namely Laboratory Animals—General Requirements

for Animal Experiment (GB/T 35823–2018). There was no requirement for ethics approval of

sampling protocols because all the material analyzed in this paper were obtained from com-

mercial fishermen and were already dead.

Study area

The Western Subarctic Gyre is the western cyclonic subgyre in the North Pacific Ocean and is

found in the northern Kuroshio-Oyashio transition zone [49]. It is nutrient rich owing to

upwelling, presumably due to the Oyashio Current in the southwest and Subarctic Current in

the south [49, 50]. It has shallow mixed depth and photic zone [51, 52]. The phytoplankton

biomass is maximal during spring and does not differ significantly during summer, autumn

and winter [53]. The zooplankton community is relatively simple [54], and the biomass assem-

blage is dominated by large interzonal copepods [55]. It is supposed that microzooplankton

and other mesozooplankton taxa replace phytoplankton as the primary food source for domi-

nant mesozooplankton species, which are then preyed on by micronekton and larger zoo-

plankton [54].

Biological data collection

Ommastrephes bartramii were collected monthly from July to November 2016 from commer-

cial fishing operations in the Western Subarctic Gyre (see the sample stations in Fig 1). This

period is considered to be one of active feeding and growth for the winter-spring cohort in the

northwest Pacific Ocean [15]. The specimens were frozen immediately onboard under -30˚C,
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and shipped to the laboratory for further analyses. After defrosting at room temperature, 129

specimens that covered all the sampling months were randomly selected (Table 1). Dorsal

mantle length (ML, 1 mm), body weight (BW, 1 g), and sexual maturation were recorded for

each specimen. Macro-scale maturity stages were assigned following [56], and all specimens

were found to be subadults with developing and maturing gonads.

The whole digestive gland of each selected specimen was dehydrated in a freeze-drying

chamber (Crist Alpha 1-4/LDplus; (Martin Christ Gefriertrocknungsanlagen GmbH, Ger-

many). After dehydration, each digestive gland was ground up in a mortar and pestle, and a

subsample (~1 g) was taken for fatty acid and stable isotope analysis.

Fatty acid analysis

The subsample of each digestive gland was extracted using a 2:1 (v/v) chloroform:methanol

solution [57]. The lipids were used for fatty acid analysis, while the lipid-extracted samples

were lyophilized again for at least 24 hours for stable isotope analysis.

Fig 1. Study area showing sample locations and selected bathymetric contour lines in the western subarctic Pacific

with a schematic illustration of western subarctic gyre and the near-surface current. The schematic diagram of

Western Subarctic Gyre and its currents is redrawn from Qiu [49].

https://doi.org/10.1371/journal.pone.0234905.g001

Table 1. Mantle length and body weight of O. bartramii from which samples of digestive gland were taken.

Sampled month N Mantle length (ML, mm) Body weight (BW, g)

Range mean±SD Range mean±SD

July 33 194; 283 225.39±20.82 163; 795 333.73±136.58

August 16 209; 275 251.56±20.3 246; 628 436.19±122.91

September 20 236; 288 261.4±13.39 408; 780 513.75±83.49

October 26 219; 345 278.69±44.47 312; 1274 667.23±305.07

November 34 218; 370 277.41±33.19 302; 1491 622.88±232.46

pooled 129 194; 370 258.67±36.35 163; 1491 517.78±237.94

https://doi.org/10.1371/journal.pone.0234905.t001
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The extracted lipids were used for fatty acid determination following the “Determination of

total fat, saturated fat, and unsaturated fat in foods—Hydrolytic extraction-gas chromatogra-

phy” [58] protocol. Fatty acid methyl esters (FAME) were analyzed separately for each sample

using an Agilent 7890B Gas Chromatograph (GC) coupled to a 5977A series Mass Spectrome-

ter Detector (MSD, Agilent Technologies, Inc. USA). The fatty acid 19:0 was used as an inter-

nal standard. The separation was carried out with helium as the carrier gas, and a thermal

gradient programmed from 125˚C to 250˚C, with an auxiliary heater at 280˚C. The total fatty

acids were determined as dry tissue weight (mg/g dry weight), and each fatty acid was

expressed as a percentage of total fatty acids in the sample [37].

Stable isotope analysis

Due to contaminants when lyophilized again, 56 lipid-extracted subsamples of the digestive

gland were not used for stable isotope analysis. Consequently, a total of 73 lipid-extracted sub-

samples were used and ground separately to a homogeneous fine powder, and a ~1.0 mg sub-

sample for each subsample was used for stable isotope analysis. Stable isotope ratios (δ13C and

δ15N) were measured separately for each sample using an IsoPrime 100 isotope ratio mass

spectrometer (IsoPrime) and vario ISOTOPE cube elemental analyzer (Elementar Analysen-

systeme). The standards for carbon and nitrogen followed Gong et al. [59]: using international

reference materials (USGS 24 [δ13C = −16.049‰], USGS 26 [δ15N = 53.7‰]) and the labora-

tory running standard (protein [δ13C = −26.98‰ and δ15N = 5.96‰]). The measurement

errors were approximately 0.05‰ and 0.06‰ for δ13C and δ15N, respectively.

Statistical analysis

Isotopic values and fatty acids were tested for significant differences between sampling

months. All data were first checked for normality using the one-sample Kolmogorov-Smirnoff

test and for homogeneity of variances using Levene’s test [60]. One-way ANOVA was then

applied to test for differences, and a Tukey’s post hoc test [60] performed to determine where

the difference occurred when significant differences were found. Data were analyzed using a

Kruskall-Wallis nonparametric one-way ANOVA test and a Games-Howell post hoc test [60]

when normality and/or homoscedasticity were rejected.

Stable Isotope Bayesian Ellipses (SIBER) [61] implemented in R [62] were used to analyze the

stable isotope data in the context of isotopic niche between sampling months. We calculated the

prey community isotopic niche widths for each sampling month, including the standard ellipse

area (SEAb), the corrected standard ellipse area (SEAc, an ellipse containing 40% of the data

regardless of sample size) and the overlap as the proportion of the sum of the non-overlapping

ellipse areas (non-overlap SEAc proportion) based on 1,000 replications [61]. The non-overlap

SEAc proportion ranges from 0 (completely distinct ellipses, indicating zero overlap in the isoto-

pic niche widths between groups), to 1 (completely coincidental ellipses, indicating a complete

overlap in the isotopic niche widths between groups) [61]. SEAb was used to test for differences

in the isotopic niche area of the prey community between months, while SEAc and the non-

overlap SEAc proportion were used to compare the niche width of the prey community over

months. These analyses allowed the trophic dynamics of the prey community to be identified.

Non-metric multidimensional scaling (nMDS) and analysis of similarities (ANOSIM) were

applied to assess the similarities of fatty acid profiles between months. These analyses could

allow for the identification of potential differences in the trophic structure of the prey commu-

nity among months, similar to the analyses of dietary data for a specific species [48]. Each fatty

acid was expressed as a percentage of total fatty acids, and a square-root transformation was

used to avoid over-emphasis of extreme values [37]. A Bray–Curtis dissimilarity measure was
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employed in the nMDS and ANOSIM [63, 64]. The analyses were performed in the package

‘vegan’ [65] in R.

Generalized additive mixed models (GAMMs) [66] with sampling month as the random

effect were used to access the potential effects of the ambient environment on the dynamics of

the prey community. This involved testing for potential relationships between isotopic values,

fatty acids, and the environmental variables. The dependent variables were δ13C, δ15N, and the

individual fatty acid that was found to differ significantly between sampling months. Key pre-

dictors were monthly mean sea surface temperature (SST, ˚C) and chlorophyll-a concentration

(Chl-a, mg m-3). SST and Chl-a were downloaded from the National Oceanic and Atmo-

spheric Administration (NOAA) ERDDAP (Version 1.82) (https://oceanwatch.pifsc.noaa.gov/

erddap/index.html), at a resolution of 0.05˚× 0.05˚. Prelimilary analysis indicated that both

SST and Chl-a were not correlated with each other (variance inflation factor = 1.54). The effect

of sampling month was taken to be random to account for temporal effects in the data and

unexplained differences among the prey community. We used the function ‘gamm’ with a

Gaussian error distribution in the package ‘gamm4’ [67] in R.

Results

The sampled O. bartramii ranged from 194 to 370 mm ML and from 163 g to 1491 g. Body

size increased significantly with sampling month (ML, F = 16.99, P<0.05; BW, F = 13.35,

P<0.05) (Table 1).

Stable isotopic and niche analyses

δ13C ranged between -22.18‰ and -19.13‰, with an average of -20.49 ± 0.70‰, and δ15N ran-

ged between 5.18‰ and 9.88‰, with an average of 8.42 ± 0.96‰ (Table 2). The highest values

of δ13C and δ15N occurred during October, but no significant differences in δ13C and δ15N

were detected among months (Kruskal-Wallis test, δ13C, χ2 = 0.84, P = 0.93; δ15N, χ2 = 4.99,

P = 0.29). The variation of δ13C between the minimum and the maximum values was similar

among months (range 2.60‰ to 3.02‰). Similar findings were obtained for δ15N, where the

variation ranged from 3.27‰ to 4.49‰ (Table 2).

The Bayesian isotopic niche analyses did not find significant differences in the standard

ellipse area (SEAb) among months (Kruskal-Wallis, χ2 = 6.26, P = 0.18) (Fig 2A). The cor-

rected standard ellipse area (SEAc) ranged from 1.36 to 1.50, and indicated considerable

Table 2. Stable isotopic values and isotopic niche width metrics. Isotopic values were determined from the digestive gland of O. bartramii. The variation between the

minimum and the maximum isotopic values is given in parenthesis under the ranges. SEAc, corrected standard ellipse area; non-overlap SEAc proportion, proportion of

the sum of the non-overlapping ellipse areas.

Sampling month N δ13C (‰) δ15N (‰) Isotopic niche width

Range mean ± SD range mean ± SD SEAc non-overlap SEAc proportion

July 12 -22.04; -19.41 (2.63) -20.57 ± 0.77 6.59; 9.88 (3.29) 8.46 ± 0.88 1.46

0.70

August 15 -22.09; -19.49 (2.60) -20.54 ± 0.67 5.18; 9.67 (4.49) 8.38 ± 1.04 1.36

0.76

September 16 -22.15; -19.37 (2.78) -20.46 ± 0.74 6.12; 9.37 (3.27) 8.47 ± 0.91 1.43

0.77

October 18 -22.15; -19.13 (3.02) -20.37 ± 0.68 5.72; 9.79 (4.07) 8.65 ± 1.05 1.41

0.72

November 12 -22.18; -19.57 (2.61) -20.53 ± 0.71 5.60; 9.37 (3.77) 8.15 ± 0.99 1.50

Pooled 73 -22.18; -19.13 (3.05) -20.49 ± 0.70 5.18; 9.88 (4.70) 8.42 ± 0.96 - -

https://doi.org/10.1371/journal.pone.0234905.t002
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overlap in the isotopic data between each consecutive sampling month, confirmed by the high

non-overlap SEAc proportions (Table 2) and the considerable overlap of the ellipses for the

different months (Fig 2B).

Fatty acids and dissimilarity analyses

No significant difference in the total fatty acids was found among months (ANOVA, F = 1.56,

P = 0.19) (Table 3). Similarly, no significant differences in the proportions of the main fatty

acid classes were detected among months, except for the saturated fatty acids (SFA) where July

was significantly higher than the remaining months (Tukey HSD, P<0.05) (Table 3). In terms

of individual fatty acid profiles, 16 fatty acids varied significantly between months (11:0, 13:0,

17:0, 18:0, and 16:1n7 higher in July; 20:1, 22:1n9 and 20:5n3 higher in September, 24:1n9 and

20:2 higher in October, and 14:1n5, 18:2n6t, 18:3n6, 20:3n6, 20:4n6 and 22:2n6 higher in

November; Table 3).

In contrast, nMDS revealed a considerable overlap in the overall fatty acid profiles (Fig 3).

These findings were confirmed by ANOSIM, in which the dissimilarity value (ANOSIM statis-

tical R value) between each two consecutive months ranged from 0.08 to 0.18, with a global

value of 0.15 for all months pooled (Table 4).

Potential relations to sea surface environments

Monthly mean sea surface temperature (SST) at the sampling stations varied significantly

among months (F = 38.19, P<0.01), with the highest temperature in August (mean±SD, 19.83

Fig 2. Estimates of isotopic niche area for each sampling month based on δ13C and δ15N. Isotopic values were determined

from the digestive gland of O. bartramii. (A) Bayesian standard ellipse area (SEAb) estimates for each sampling month. The boxes

cover the central 50% of the distributions and bars the 90% intervals, with grey solid circles and horizontal lines indicating the

means and medians; black points indicate whiskers. (B) 40% Bayesian credible intervals for the standard ellipse for each sampling

month.

https://doi.org/10.1371/journal.pone.0234905.g002
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±0.22˚C) and the lowest in November (13.44±0.74˚C) (Fig 4A). Monthly sea surface chloro-

phyll-a (Chl-a) also varied significantly among months (F = 10.92, P<0.01), being the lowest

in August (mean±SD, 0.25±0.02 mg m-3) and the highest in October (mean±SD, 0.61±0.07 mg

m-3) (Fig 4B).

There were no significant effects of sea surface temperature on either δ15N or δ13C

(GAMM, δ15N, F = 0.00, P = 0.92; δ13C, F = 0.00, P = 0.67), nor were there significant effects of

Table 3. Fatty acids in the digestive gland of O. bartramii sampled in the western subarctic gyre of northwest pacific ocean, from July to November 2016. SFA, satu-

rated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; TFA, total fatty acids. Values are mean ±SD; different superscript letters within

rows represent significant differences (P<0.05) detected using the post hoc test.

Terms July August September October November

Fatty acid (%∑TFA)
10:0 0.06±0.01 0.06±0.04 0.05±0.01 0.05±0.02 0.05±0.04

11:0 0.25±0.09b 0.16±0.05a 0.13±0.08a 0.19±0.08ab 0.18±0.06a

12:0 0.14±0.03 0.11±0.04 0.12±0.03 0.12±0.06 0.12±0.03

13:0 0.45±0.15b 0.37±0.14ab 0.25±0.16a 0.43±0.22ab 0.43±0.15b

14:0 3.58±0.57 3.14±0.53 3.29±0.65 3.18±0.69 3.15±0.83

15:0 1.16±0.17 1.04±0.27 1.09±0.16 1.04±0.36 1.05±0.25

16:0 16.07±2.31 15.51±3.28 15.73±3.63 15.98±4.57 16.03±4.14

17:0 1.48±0.53b 1.36±0.44ab 1.08±0.37a 1.46±0.45ab 1.47±0.29ab

18:0 9.58±1.39b 6.07±2.33a 8.31±2.68b 5.91±2.14a 5.02±1.29a

20:0 1.06±0.32 1.02±0.45 1.04±0.31 1.06±0.53 1.06±0.26

21:0 0.58±0.19 0.55±0.21 0.57±0.31 0.57±0.31 0.58±0.17

22:0 1.07±0.19 1.01±0.26 1.05±0.42 1.05±0.59 1.04±0.33

23:0 0.63±0.17 0.59±0.25 0.62±0.61 0.58±0.34 0.60±0.22

24:0 1.13±0.35 1.06±0.53 1.11±0.34 1.09±0.49 1.08±0.38

14:1n5 0.68±0.24ab 0.62±0.25ab 0.41±0.27a 0.72±0.40ab 0.73±0.26b

16:1n7 2.93±1.07b 2.54±1.38ab 2.62±1.06ab 1.97±0.55a 2.13±0.40ab

18:1n9t 1.00±0.29 0.92±0.31 0.67±0.35 1.06±0.51 1.06±0.35

18:1n9c 15.28±2.92 16.24±3.82 12.91±6.75 12.97±4.75 15.08±4.19

20:1 4.93±1.37a 5.98±2.25ab 7.41±2.66b 5.61±1.71ab 5.58±1.45ab

22:1n9 0.90±0.16a 1.81±1.34ab 3.47±4.70b 1.86±1.22ab 1.65±0.34ab

24:1n9 1.56±0.40a 1.77±0.30ab 1.98±0.78ab 2.11±0.57b 2.02±0.33ab

18:2n6t 1.16±0.44ab 1.42±0.74ab 0.76±0.64a 1.66±1.12b 1.74±0.72b

18:2n6c 1.27±0.14 1.46±0.35 1.31±0.35 1.43±0.5 1.57±0.61

18:3n6 0.59±0.20ab 0.89±0.50ab 0.46±0.43a 1.06±0.74b 1.12±0.47b

18:3n3 0.85±0.17 1.22±0.34 0.98±0.34 1.29±0.68 1.33±0.44

20:2 1.09±0.16a 1.28±0.28ab 1.24±0.28ab 1.64±0.44c 1.54±0.36bc

20:3n6 0.50±0.13a 0.86±0.43ab 0.52±0.36a 1.03±0.64b 1.08±0.42b

20:4n6 1.79±0.50a 2.17±1.49ab 1.71±1.39a 2.82±1.81ab 3.08±1.03b

22:2n6 0.62±0.21ab 1.03±0.61abc 0.52±0.51a 1.25±0.87bc 1.31±0.55c

20:5n3 6.32±0.93ab 5.55±1.35a 7.04±1.55b 6.24±1.82ab 5.26±0.92a

22:6n3 20.95±3.90 21.33±2.19 20.64±3.92 21.1±4.68 20.58±3.06

Main FA Classes (%∑TFA)
∑SFA 37.24±2.81b 32.05±4.20a 34.44±3.50ab 32.73±4.16a 31.86±4.48a

∑MUFA 27.29±4.13 30.61±5.01 29.76±4.28 27.53±4.20 29.33±4.09

∑PUFA 35.47±5.03 37.33±4.57 35.80±4.50 39.74±4.85 38.81±5.35

Total fatty acids (mg/g dry weight)
∑TFA 141.56±21.8 150.48±18.31 147.08±13.66 145.68±17.44 154.5±15.10

https://doi.org/10.1371/journal.pone.0234905.t003
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chlorophyll-a on these isotopic ratios (GAMM, δ15N, F = 0.06, P = 0.22; δ13C, F = 0.00,

P = 0.55) (S1 Table). For those individual fatty acids that differed significantly among months

(Table 2), only 24:1n9 and 20:4n6 were significantly related to the Chl-a (S2 Table), with their

amounts increasing with increasing Chl-a (Fig 5).

Discussion

Our work indicates that neon flying squid, O. bartramii, can provide information about the

prey community in the southwestern part of the Western Subarctic Gyre in the northwest

Pacific Ocean. Ommatrephes bartramii is an appropriate biological sampler for this region

because it feeds throughout the water column [15], the digestive gland provides information

Fig 3. Non-metric multidimensional scaling (nMDS) ordination based on the Bray–Curtis dissimilarity metric

showing overlap in the fatty acid composition from different sampling months.

https://doi.org/10.1371/journal.pone.0234905.g003

Table 4. Results of analysis of similarities (ANOSIM) for the change in fatty acid compositions between months.

The ANOSIM R value ranges from -1 to 1, where a 1 indicates complete difference between groups, and 0 indicates

high similarity.

Terms R-value P-value

July vs. August 0.18 0.024

August vs. September 0.08 0.057

September vs. October 0.10 0.040

October vs. November 0.10 0.003

pooled 0.15 0.001

https://doi.org/10.1371/journal.pone.0234905.t004
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about recent feeding [45–48], and lipids are stored with little or no modification [45, 68, 69].

To our knowledge, this is the first study that uses squid as a biological sampler, combined with

the use of stable isotopes and fatty acids to explore trophic dynamics for an oceanic ecosystem.

Fig 4. Monthly mean sea surface temperature at the sampling stations in western subarctic gyre of northwest pacific ocean from July to November 2016. (A) Sea

surface temperature (SST) and (B) Sea surface chlorophyll-a concentration (Chl-a).

https://doi.org/10.1371/journal.pone.0234905.g004

Fig 5. Smooth plots from generalized additive mixed models (GAMMs) showing the significant influence of sea surface

chlorophyll-a concentration (Chl-a) on fatty acids 24:1n9 (A) and 20:4n6 (B). Solid line is the estimate of the smooth, grey

shade represents 95% confidence intervals, and blue circles represent the raw data.

https://doi.org/10.1371/journal.pone.0234905.g005
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The similar pattern of isotopic values and the obvious overlap of the fatty acids reveal a stable

trophic structure of the prey species community during the second half of the year in this

region. Specifically, the δ13C and δ15N ratios did not change significantly during this period.

The δ13C is effective for determining foraging habitat [34, 36], and the non-significant differ-

ences could reflect that the prey species share similar habitats in the region, regardless of tempo-

ral fluctuations. On the other hand, the similar pattern of δ15N could indicate that a stable prey

community was available to O. bartramii, given that a stable nitrogen isotope ratio can be effec-

tive at identifying the trophic structure for marine organisms [34, 36]. The Western Subarctic

Gyre is characterized by highly diverse species and abundant biomass, particularly in the mar-

gin areas of the gyre [36, 52, 54], and it is one of the most important feeding grounds for many

higher trophic level species, including O. bartramii [19, 42, 70]. A stable prey community

appears to be vital to support the large populations of these species in this region [11, 42, 71].

Prey availability, to a lesser extent, is responsible for the trophic characteristics of organisms

[2]. As such, the stability of δ15N over months, along with similar niche widths would be

expected if the trophic dynamics of the prey community were stable throughout the five sam-

pling months. The variance in the isotope space is an integrated measure of niche width and

reflects the variation in the diets of consumers [34, 61, 72]. The dynamics of prey species will

tend to result in the highest variance of isotopic niche space in a given ecosystem [73], and ulti-

mately determine the isotopic niche width of the consumers [34, 61]. It is documented that the

stomach contents of O. bartramii effectively reflect the prey availability locally, and for exam-

ple, indicate the endemic speciesMaurolicus imperatorius in the transitional zone of the Cen-

tral North Pacific in July [18] and the migratory myctophids such as Engraulis japonicas and

Watasenia scintillans in the Kuroshio–Oyashio transition of the western North Pacific during

the Autumn and early Spring [71]. The δ15N values in the mantle muscle of O. bartramii from

the northern part of the Central North Pacific showed moderate variation, due to the prey

items prevalently composed by myctophid Symbolophorus evermanni and squid families Ony-

choteuthidae and Enoploteuthidae [17, 41, 43]. Therefore, it would be not unexpected that the

prey community occupies a similar niche space and does not temporally change over the sam-

pling months in the southwestern part of the gyre.

The obvious overlap of fatty acid compositions further supports the inference of the stability

of the prey community. The multivariate analyses showed that the fatty acid compositions in

different sampling months are very similar, evidenced by the clear overlap of the nMDS scat-

terplots (Fig 3) and low ANOSIM statistic R values for each two consecutive sampling month

period (Table 4). These observations suggest that the prey community is composed of either

single species or many species that consistently occur in the gyre region throughout July to

November, as the fatty acids in higher-order consumers match their diets [47, 48, 74, 75].

There is no reasonable evidence that O. bartramii would prey on a single species, because the

variation of δ15N in the digestive gland is larger than the typical enrichment of the nitrogen

isotope per trophic level (about 3‰ per trophic level [32]). Indeed, O. bartarmii is a well-

known voracious generalist that preys on many food items (e.g., Watanabe et al.[18]), and

exhibits more variation of nitrogen isotopes than a typical trophic level [19, 76].

Nearly half of the individual fatty acids varied significantly between months (Table 3). In

marine environments, many fatty acids have been identified as good tracers of distinct taxa.

For example, 16:1n7 and 20:5n3 are indicators of first-order carnivores, 16:0, 18:0 and 22:6n3

of second-order carnivores, and 20:4n6 and 22:4n6 of top predators [38]. 18:0 is also an impor-

tant tracer of herbivores, and 22:4n6 of planktivores [38]. Accordingly, the lowest values of

16:1n7 in October and 20:5n3 in November may imply that the first-order carnivores were at

lower abundance during these months. By contrast, the top predators in the prey community

could be much more abundant in November, as suggested by the high value for 20:4n6.
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Regarding the second-order carnivores, they should be relatively stable from July to November

because no significant differences among months were found for 16:0 and 22:6n3. Coupling

with the obvious overlap and similarity of the fatty acid compositions (Fig 3; Table 4), such

findings highlight that the prey community in the Western Subarctic Gyre is likely to be in

dynamic equilibrium. This is because variation among species is essential for ecosystem stabil-

ity [77]. Large populations of predators including suspension feeders to carnivores seasonally

migrate to the subarctic northwest Pacific [13], so a dynamic equilibrium of the prey commu-

nity would be expected in the southwestern part of the gyre region, and this stability may be

maintained by the high productivity of prey species at the same trophic level, along with sea-

sonal fluctuations.

Monthly sea surface temperature (SST) and chlorophyll-a (Chl-a) differed significantly

among months at the sampling stations. However, our findings indicate that the general pattern

of isotopic values was not correlated with the environmental variables, suggesting that the tro-

phic structure of the prey community is stable regardless of changes of the ambient environ-

ment. Similar results were obtained for the fatty acids that varied significantly from July to

November. There was no evidence that the variation of the individual fatty acids was a function

of SST or Chl-a, with the exception of 24:1n9 and 20:4n6 (Fig 5). These findings seem to contra-

dict the general arguments about marine species responding to oceanic environments. For

example, populations or species may differ in their life-history traits (e.g. growth rate) and sub-

sequent biomass due to changes in water temperature and/or primary productivity (indication

through Chl-a) [78]. However, it is noteworthy that life-history traits and subsequent ecology

for individual species may depend on community composition and demography [6, 79]. First,

conditions become more favorable for some species and less favorable for others [1, 80], thereby

influencing a species’ ecological relevance and ultimately altering the prey species available for

top predators [27, 28]. Second, life-history traits and the diversity expressed within species are

evolutionarily flexible, such that shifts in life-history strategies, such as staggered age structure,

may reduce the risk that an entire cohort will encounter unfavorable environmental conditions

[81]. Such flexibility may enable the community to be more resilient to environmental variation.

Finally, the physiological tolerance of a species to ambient environmental conditions might

increase with its ontogeny [2, 14, 23]. This ultimately contributes to the dynamic equilibrium of

a trophic community. Cumulatively, the stable trophic community in the southwestern part of

the gyre may have evolved to have high resilience to the regional environment, possibly through

high productivity or shifts in life-history strategies among species.

The zooplankton-based food web in the western subarctic Pacific [54, 55] may be another

reason for the stability of the trophic community. Large interzonal copepods predominate the

zooplankton assemblage [55], and many mesozooplankton including copepods, euphausiids

and salps are spatially patchy, creating local zones of high prey availability for predators [54].

However, more detailed information on population connectivity, interaction webs, and struc-

ture-forming species is necessary to specifically examine the stability of the community. Addi-

tionally, although our survey covered a relatively long time period from July to November,

information about the prey community in other seasons is lacking. Further work is needed to

address the status of the prey community in other seasons, even though the life history patterns

of some important copepods in the gyre may be independent of variable environments [55].

Conclusions

We demonstrate that stable isotopes and fatty acid composition data from the digestive gland

of Ommatrephes bartramii, an opportunistic top predator, varies little from July to November

in the southwestern part of the Western Subarctic Gyre of the northwest Pacific Ocean. These
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findings imply a stable prey community in the gyre region. The prey community may be resil-

ient to fluctuations in the environment due to high productivity within trophic levels and shifts

in life-history strategy with ontogeny. Although trophic analyses at the taxonomic level are still

necessary to evaluate the dynamics of prey communities, our work enhances understanding of

trophic dynamics in this region, and highlights the use of top predators as biological samplers

to better understand trophic dynamics. Voracious and active top predators, combined with

stable isotopes and fatty acid techniques can provide trophic information at multiple time

scales, allowing an assessment of trophic dynamics. This methodology should be generally

applicable to an oceanic system that is poorly sampled.
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7. Kéfi S, Domı́nguez-Garcı́a V, Donohue I, Fontaine C, Thébault E, Dakos V. Advancing our understand-
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