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Abstract: Inspired by spiders that can generate and sense vibrations to obtain information regarding
a substrate, we propose an intelligent system that can recognize the type of surface being touched by
knocking the surface and listening to the vibrations. Hence, we developed a system that is equipped
with an electromagnetic hammer for hitting the ground and an accelerometer for measuring the
mechanical responses induced by the impact. We investigate the feasibility of sensing 10 different daily
surfaces through various machine-learning techniques including recent deep-learning approaches.
Although some test surfaces are similar, experimental results show that our system can recognize
10 different surfaces remarkably well (test accuracy of 98.66%). In addition, our results without
directly hitting the surface (internal impact) exhibited considerably high test accuracy (97.51%).
Finally, we conclude this paper with the limitations and future directions of the study.
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1. Introduction

In nature, several insects, such as treehoppers, sawflies, and butterflies, are capable of
communicating using vibrations to obtain information regarding their surroundings [1,2]. For example,
sawfly larvae can assess the presence of nearby individuals by tapping on a part of the colony, and
treehopper nymphs can locate a new feeding site by listening to the vibrations generated by other
individuals [2]. Similarly, spiders can recognize preys and even deformities in their web through
self-generated vibrations [3,4]. Meanwhile, humans often estimate material properties based on the
tactual feeling of tapping on a wall, floor, etc. For example, we tend to knock on a wall to identify
its characteristics. In another case, we knock on a watermelon to assess whether the fruit is ripe.
Undoubtedly, these tactual approaches help us to obtain additional information that is statistically
difficult to understand. The goal of this study is to explore the feasibility of knocking and sensing in
daily smart commodities, such as AI (artificial intelligence) speakers. For example, if such devices can
inform itself where it is located (e.g., bedroom, kitchen, living room, etc.), it can provide users with a
service that is more contextual. If it is located in a kitchen, it can actively provide services related to
food cooking, for instance. Although the same purpose can be achieved using camera, privacy issues
exist. In fact, a number of studies have been conducted to understand inertial and vibrational signals
incoming to a device, as such signals can describe a variety of contextual information. For example,
mechano-sensing units embedded in electronic devices, which respond to incoming mechanical stimuli,
can differentiate among types of touches [5], gestures on a surface [6], amount of force [7], etc. Touch &
Active [8] utilized mechanical vibrations propagated through rigid surfaces to understand the rich
context of user touches on daily objects or the configuration of the objects. Although the approaches
recognize object characteristics successfully, their application is restricted to objects that generate
vibrations or are instrumented with sensing systems.
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As humans can identify the characteristics of a surface by knocking on it, we herein propose
extending mechano-sensing applications by incorporating knocking strategies such that new smart
devices can be developed. Similar to knocking, our system attempts to understand surfaces by
creating a mechanical impact on a surface using a push–pull solenoid structure, which comprises an
armature (a metal slug) with a coil of wire wrapped around it. The captured signals, i.e., mechanical
impulse response, are then analyzed using various machine-learning techniques including recent
deep-learning approaches. Ideally, the impulse response contains the system’s response to every
frequency component; therefore, it helps the system to better understand the intrinsic characteristics of
an object. We believe that the proposed method can extend the dimension of information regarding
the surroundings.

In summary, we propose a novel and compact system that, when placed on a surface, can identify
it by sensing inertial signals caused by knocking the surface. Furthermore, we demonstrate the
feasibility of the approach by conducting a series of experiments. Results suggest that the proposed
method can enable context-based interaction based on the location.

2. Related Work

2.1. Surface Identification

Various methods have been investigated to identify the properties of surfaces, e.g., type, thickness,
flaw or defection, and quality. To identify the quality or defection of surfaces, visual inspection based
on surface textures and patterns has been widely performed [9–13]. Based on optical reflection, several
researchers have detected the surface type by measuring reflected light, which depends on the surface
type, from the test surface [14–16]. Despite the capability to successfully identify various surfaces,
these methods have several limitations. In particular, the performance of visual approaches highly
depends on the lighting conditions and angle. Furthermore, in the case of optical reflection-based
approaches, the color of the test surface affects the measurements significantly. Tamas et al. [17,18]
successfully classified surface properties based on the measurement of thermal response to laser
excitation. However, this method may require relatively expensive equipment for application in smart
devices. Although a similar purpose can be achieved by measuring the magnetic property of the
surface [19], this method is only valid for ferrous materials. Tarapata et al. [20] identified the types of
surfaces using ultrasonic waves. They used multiple piezoelectric transducers—one to generate and
others to receive ultrasonic signals. Depending on the type of surface, different measurements for the
absorption, diffusion, and reflection characteristics of ultrasonic waves could be achieved. However,
this method could mostly identify only two types of surfaces—solid and soft. In this study, using a
low-cost system, we aim to perform not only the classification between solid and soft surfaces but also
the fine-grained classification within solid/soft surfaces.

2.2. Vibration-Based Approaches

Many studies have been performed to understand inertial and vibrational signals incoming to a
device, as such signals contain a variety of information. For example, mechano-sensing units embedded
in electronic devices, which respond to incoming mechanical stimuli, can differentiate among types of
touches [5], gestures on a surface [6], amount of force [7], etc. Touch & Active [8] utilized mechanical
vibrations propagated through rigid surfaces to understand the rich context of user touches on daily
objects or the configuration of the objects. A recent study demonstrated state-of-the-art performances
in probabilistic earthquake detection and location based on a convolutional neural network (CNN)
using ground waveform data [21]. Early pioneering studies regarding the utilization of generating and
sensing strategies focused on electrical signals for recognizing daily objects and interaction types [22].
Although the approach recognizes object characteristics successfully, it is not applicable when the
object is not electrically conductive. Furthermore, as the above methods require every object of interest
to be equipped with sensors and electrical circuits, their application in everyday objects is limited.
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Several research groups have attempted to identify objects or surfaces using various methods
without per-object instrumentation [23–28]. For example, ViBand [26] uses a smartwatch to understand
the bio-acoustic signals generated by the objects in contact and transmitted through the hand. While
ViBand is highly accurate, its application is restricted to objects that generate vibrations, such as an
acoustic guitar, a coffee grinder, and a table fan. A device equipped with a vibration motor and inertial
sensors, such as a smartphone, can recognize the type of objects in contact by generating vibrations
with a certain frequency and analyzing the corresponding readings of the accelerometer [24,25].
Although such devices demonstrate considerable test accuracy, of about 85%, the responses to every
frequency elements, such as impulse response, should be observed for better performance. This is
because ideally, a system, especially a linear time invariant system, can be completely characterized
by its impulse response. Several approaches have also been investigated based on impact made or
knock by the user. BeatIt [27] uses a microphone-enabled smartwatch to categorize objects based on
the sound generated from the user’s knock. Similarly, Knocker [28] can successfully identify various
everyday objects using sound, acceleration, and angular velocity signals. However, these methods
require inevitable efforts to detect a valid knock and can hardly be applied to other smart objects, such
as AI speakers, because such devices are unable to perform knock actions on their own. Contrary to
existing methods, our system is self-aware of the surface on which the device is placed and is highly
accurate as it is based on impulse responses.

3. Proposed System

In this section, we describe the developed hardware prototype to collect a time-series dataset, and
experiments that classify the type of surfaces on which the prototype was placed. We built a surface
type-sensing pipeline to evaluate the proposed system. The pipeline primarily comprised of data
collection, preprocessing, and machine learning.

3.1. Hardware

First, we built a prototype comprising a solenoid actuator (JF-0826B, Yueqing gangbei Electric,
Wenzhou, China), three-axis accelerometer (ADXL343, Analog devices, Norwood, MA, USA), and
three-dimensional (3D) printed housing parts, as shown in Figure 1. The solenoid actuator included
a large coil of copper wire with an armature (a metal slug) in the middle. When an electric current
was applied to the coil, the slug was pulled to the center of the coil (i.e., loading motion) compressing
an elastic spring. When the electric current was removed, the slug was moved down (i.e., hitting the
ground) due to the elastic restoring force (see Supplementary video for more detail). The solenoid
actuator used in this study measured 27 mm × 25 mm × 23 mm (the body), and 7.5 mm × 54 mm
(the metal slug). We attached an accelerometer onto the housing of the prototype to measure the
acceleration signals caused by the loading and hitting motions of the solenoid actuator. The sensor had
three axes of measurements (X, Y, and Z), and a range of ± 16 g was set for each axis. Figure 2 shows
the block diagram of the constructed hardware setup to collect a dataset. The setup comprised the
aforementioned prototype, ATmega2560 microprocessor (Arduino Mega), motor driver (TB6612FNG,
Toshiba, Tokyo, Japan), and laptop. When the solenoid actuator was driven by a signal amplified by
the motor driver from the microprocessor, the captured acceleration signals were transmitted to the
laptop via a serial communication and then saved.
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Figure 1. Prototype for knocking the surface and listening to the vibrations. We placed the
solenoid actuator inside a 3D-printed housing and mounted an accelerometer on top of the housing.
The coordinate system shown in the figure indicates the orientation of the accelerations.
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Figure 2. Block diagram of the entire system for data acquisition. We used inter-integrated circuit (I2C)
communication to transmit the signals captured by the accelerometer to the microprocessor.

3.2. Dataset

We considered a 10-class classification problem. Ten types of daily surfaces (substrates) were
prepared to collect time-series data, as shown in Figure 3. To reduce the dependency on a specific
hardware, we collected 2000 data samples for three configurations each, translating into a total of
6000 data samples per class, as shown in Figure 4. To avoid overfitting to any specific mechanical
structure of each test surface, the data samples were collected from various, randomly selected locations
on the test surfaces. Furthermore, objects placed around the prototype were randomly changed during
the data collection to reduce the effect of the surroundings. In total, 60,000 data samples (6000 samples
per class) were collected. Each sample comprised 600 time steps and were captured at 250 Hz
(approximately 2.4 s). Figure 5 shows an example of the collected data sample plotted in the time
domain. The horizontal and vertical axes represent time and normalized acceleration, respectively.
After 0.5 s from the start of data collection, the slug of the solenoid actuator was pulled up (loading).
Subsequently, after 1.0 s, the slug was released to hit the surface (unloading).
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Figure 3. Ten different daily surfaces explored in this study. (A): Softwood table, (B): Synthetic wood
table, (C): Plywood table, (D): Polyurethane chair, (E): Cutting mat, (F): Granite tile, (G): Porcelain tile,
(H): Metal plate, (I): ABS (acrylonitrile butadiene styrene) plastic table, (J): Laminate table.
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Figure 4. Three different hardware configurations used to collect the data samples. (a) The configuration
described in Figure 1. We attached an ethylene vinyl acetate (EVA) substrate to (b) the bottom of the
slug and (c) to the top and bottom of the slug, to diversify the characteristics of the loading motion,
unloading motion, and resulting responses.
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Figure 5. Examples of sample data. Signals highlighted in red (left) were captured while pulling
the slug (loading); signals highlighted in blue (right) were captured while the slug crashed onto the
desktop surface (unloading or hitting).
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During loading/unloading motion, the prototype was swayed in both the vertical (z axis) and
horizontal (x and y axes) directions. Although the measured signals in each axis were different for
every trial, the overall behavior appeared to be similar for each surface. We focused on the following
three windows; (i) loading: 100 time steps near loading motion of the solenoid actuator (t1 to t2), (ii)
unloading: 100 time steps near unloading motion (t3 to t4), and (iii) loading & unloading: 360 time
steps including both loading and unloading motions (t1 to t4).

The datasets were split into two independent sets: A training set and a test set. Seventy percent
of the total dataset were randomly chosen and used for training (4200 samples per class), and the
remainder of the dataset was used for testing (1800 samples per class). All the captured acceleration
signals were normalized prior to conversion into the input representations for machine learning models.
These normalized accelerations were directly used as input representations for one-dimensional
convolutional neural network (1D-CNN), long short-term memory (LSTM), and gated recurrent units
(GRU) classifiers.

3.3. Machine Learning

3.3.1. Baseline Classifier

As a baseline, we adopted a typically used classification method, i.e., the random forest (RF)
classifier, which does not consider the sequential characteristics of a given signal [29,30]. For feature
engineering, we calculated the following 11 features based on each of three sequential measurements
(i.e., normalized three-axis accelerations) and total acceleration: Mean, median, min, max, max/min,
std, skew, abs_min, abs_max, abs_mean, abs_std (See Table 1 for detail). Hence, 44 (four measurements
× 11 features) features were used for the RF classifier.

Table 1. Features explored for random forest classifier. Eleven features were calculated based on each
of the three-axis acceleration measurements.

Feature Descriptions

mean arithmetic mean (average)
median median
min minimum
max maximum
max/min ratio of max and min
std standard deviation
skew sample skewness
abs_min minimum of absolute value
abs_max maximum of absolute value
abs_mean arithmetic mean of absolute value
abs_std standard deviation of absolute value

3.3.2. One-Dimensional CNN (1D-CNN) Model

CNNs are widely used in many modern time-series applications owing to their capability in
learning both local and global features from sequential data [21,31–33]. In this study, to create a
1D-CNN model, we employed a sequential model implemented in Keras. The model structure used in
this study is shown in Figure 6. We stacked three consecutive convolutional layers with three pooling
layers. A dense layer with a 25% dropout rate was positioned at the end of the network followed by a
softmax layer.
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Figure 6. One-dimensional convolutional neural network (1D-CNN) models used in this study (for
input data of 360 time steps, loading & unloading window). We used the same architecture for the
input data of 100 time steps (loading and unloading windows); however, the input and output shapes
were slightly different. Rectified linear function (ReLU) was used as activation function except for the
output node that uses a softmax function.

3.3.3. Gated RNNs—LSTM and GRU

With advancements in recurrent neural networks (RNNs), studies on sequence classification have
been actively conducted. Traditional RNNs, which use simple recurrent neurons, have caused problems
such as exploding or vanishing gradients [34,35]. Therefore, RNNs were difficult to train through
backpropagation. In recent approaches, existing simple neuronal structures have been modified using
memory cells and gate units to more efficiently learn dependencies over longer intervals [35–38]. In
this study, we evaluate the performance of the proposed floor type classification using two such neural
networks, namely long short-term memory (LSTM) and gated recurrent units (GRUs). The RNN-based
architecture used in this study is shown in Figure 7. A dense layer with 50% dropout rate was
positioned at the end of the network followed by the a softmax layer.

RNN RNN...

...

...

RNN

RNN RNN RNN

x x t

y t

x t-1t-k+1

Figure 7. Recurrent neural network (RNN)-based architecture used for the proposed surface type
classification. In this study, we employed long short-term memory (LSTM) and gated recurrent units
(GRU) cells.

4. Evaluation

In this section, we report the classification performance, in terms of test accuracy and f-measure,
using four methods described in previous sections (i.e., RF, 1D-CNN, LSTM, and GRU). The test
accuracy was calculated as the ratio of the total correct predictions to the total number of input samples
(test data of 18,000 instances) without weight, because the dataset was completely balanced. All
the classifiers were trained and validated for 21 different cases (seven cases of input signals × three
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windows) individually. Here, the input signal denotes the axes of the acceleration signals (or channels)
used as the input representation to the classifier. Table 2 summarizes the experimental results. The RF
classifier performed significantly worse than other classifiers (i.e., 1D-CNN, LSTM, and GRU) because
it did not consider the sequential nature of the given dataset. Additionally, we observed that the
higher the dimension of the input signals, the better is the performance of the classifier. Notably,
10 different classes were reliably classified even when only one (95.28%, GRU, acc Z with loading &
unloading window) or two input signals (98.56%, 1D-CNN, acc YZ with loading & unloading window)
were used. On the one hand, a better performance was achieved when the input signals included
both the loading and unloading motion of the solenoid actuator (loading & unloading windows)
than otherwise (loading or unloading windows). On the other hand, it is noteworthy that the results
exhibited reasonable performance (97.51%) even when the input signals only included loading motion
(e.g., LSTM, acc XYZ with loading window). We further investigated the test accuracy according to
the amount of training data per surface, as shown in Figure 8. As expected, the test accuracy increased
with the increase in the amount of training data. In particular, 420 data samples per surface achieved
an accuracy of approximately 90%. With 840 samples per surface, the proposed approach reached
95% accuracy.

Table 2. Experimental results—test accuracy in percentage. The values in parentheses denote the
f-measure score. Ten classes were reliably classified even when only one or two input signals were
used. Notably, the results exhibited reasonable performance even when using only the loading motion
(loading window).

Input Signals Window RF 1D-CNN LSTM GRU

Acc. X loading 42.90 (0.430) 93.10 (0.832) 81.28 (0.813) 79.77 (0.798)
Acc. Y loading 36.88 (0.368) 81.39 (0.814) 79.74 (0.798) 76.63 (0.769)
Acc. Z loading 43.19 (0.427) 86.00 (0.859) 87.75 (0.877) 85.41 (0.854)
Acc. X, Y loading 66.63 (0.666) 92.09 (0.921) 89.96 (0.900) 86.86 (0.869)
Acc. X, Z loading 67.15 (0.671) 94.52 (0.945) 94.89 (0.949) 93.22 (0.932)
Acc. Y, Z loading 60.32 (0.602) 93.68 (0.937) 95.57 (0.956) 93.97 (0.940)
Acc. X, Y, Z loading 75.79 (0.758) 96.38 (0.964) 97.51 (0.975) 96.37 (0.964)

Acc. X unloading 40.07 (0.399) 77.58 (0.777) 78.04 (0.781) 77.90 (0.778)
Acc. Y unloading 34.71 (0.348) 75.13 (0.751) 76.38 (0.764) 73.59 (0.738)
Acc. Z unloading 51.82 (0.516) 87.29 (0.873) 88.18 (0.882) 87.83 (0.879)
Acc. X, Y unloading 63.99 (0.638) 90.33 (0.904) 90.59 (0.906) 88.74 (0.887)
Acc. X, Z unloading 72.61 (0.725) 95.26 (0.953) 95.22 (0.952) 94.64 (0.946)
Acc. Y, Z unloading 69.06 (0.689) 94.62 (0.946) 94.57 (0.946) 93.28 (0.933)
Acc. X, Y, Z unloading 78.34 (0.782) 96.91 (0.969) 97.57 (0.976) 96.82 (0.968)

Acc. X both 46.33 (0.462) 87.82 (0.878) 78.36 (0.785) 86.81 (0.868)
Acc. Y both 37.77 (0.381) 88.25 (0.882) 78.21 (0.781) 83.17 (0.833)
Acc. Z both 48.78 (0.482) 95.19 (0.952) 93.78 (0.938) 95.28 (0.953)
Acc. X, Y both 73.04 (0.730) 96.11 (0.961) 93.67 (0.937) 94.04 (0.943)
Acc. X, Z both 79.09 (0.729) 98.39 (0.984) 97.19 (0.972) 98.21 (0.982)
Acc. Y, Z both 68.92 (0.689) 98.56 (0.986) 97.28 (0.973) 98.07 (0.981)
Acc. X, Y, Z both 84.21 (0.842) 98.66 (0.987) 98.23 (0.982) 98.39 (0.984)

Figure 9 shows the confusion matrices across all 10 class categories for the experiments using
three input signals (X, Y, and Z) with loading & unloading window. More misclassifications occurred
between the classes in the similar material group than between different groups (especially, between
class C (plywood wood table) and J (laminate table)). Nevertheless, the resulting test accuracy validated
by the LSTM was greater than 96% for all classes. Figure 10 shows an embedding of the network
output projected into 2D space for visualization using the t-distributed stochastic neighbor embedding
(t-SNE) algorithm [39]. Because features learned in a high-dimensional space are separable as Figure 10
shows, we can conclude that the proposed approach is feasible.
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Figure 9. Confusion matrices of the classification results across all 10 class categories for the
experiments using three input signals (X, Y, and Z) with loading & unloading window. The majority of
misclassifications were between classes C (plywood wood table) and J (laminate table).
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Figure 10. An example of 2-D embedding of the network output of the test dataset used in this study
using t-distributed stochastic neighbor embedding (t-SNE) [39] when GRU-based architecture was
employed for test.

5. Discussion

5.1. General Discussion

Our system could sense the surface type even when only a few inertial measurements (e.g., one
or two axes of accelerations) were used as the input signal. This would reduce multiply-accumulates
of the system for high-speed/low-power inference operation. Meanwhile, remarkably, the proposed
system could classify surface types using only signals captured by the loading motion (i.e., without
directly hitting the surface). In fact, it is not desired to directly hit (or tap) a surface, especially
one that is fragile or prone to wounds. Therefore, that the properties of a surface can be identified
only by internal impact (i.e., loading motion) without directly hitting the surface is an important
finding. This will allow the proposed system to be expanded to various application fields. In this
study, we focused on identifying the feasibility of the proposed system rather than on maximizing the
performance of each classifier. As shown in the previous sections, we devoted only a little effort on the
preprocessing of the dataset and employed relatively simple network architectures. In our opinion, the
performance of the proposed system can be further enhanced by data augmentation and fine-tuning of
the network structure.

Overall, the proposed system successfully identified various surface types, even for surfaces of
similar materials. Furthermore, the results of using fewer input signals (one- or two-axes) or using only
the loading motion exhibited considerable test accuracy. As such, we have identified the feasibility
of predicting the surface type by simply knocking on the surface. We expect these results to provide
insight into the investigation of the surrounding environment.

5.2. Scalability

The hardware setup is of a simple configuration, and the components used in this study are
relatively inexpensive. Therefore, the setup can be easily replicated. In particular, it can be implemented
with low-cost computing systems (or embedded systems) because it does not require a high sampling
rate and can achieve a reasonable performance with only a few input signals and simple network
structure. Furthermore, because surface properties can be determined without directly hitting the
surface (i.e., by simply lifting a slug that touched the surface), they are applicable to most surfaces
used daily as well as fragile or impact-prone surfaces. In summary, because the proposed system is
inexpensive and has a simple configuration, it can be easily replicated or embedded into a wide range
of smart commodities such as AI speakers, mobile robots, and vacuum cleaning robots. Meanwhile, for
practical applications, data collection process might be onerous. As shown in Figure 8, the test accuracy
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reached 90% with 420 data samples per surface. In the proposed system, it takes approximately 17 min
to collect 420 samples. We believe that this is not a huge burden to extending our approach to new
surfaces of interest.

5.3. Context Understanding Based on Location

Owing to the controversy around breach of privacy with regard to camera-based smart devices,
they are not widely used in home appliances, despite the advantage that cameras can obtain
considerable contextual information around the device. As a result, most AI speakers sold in the market
are not accompanied by a camera. Although voice recognition-based AI speakers can interact with
users in a variety of scenarios, the lack of contextual information limits their applications. An example
of contextual information that could be provided by a smart device is its location, which could be the
bedroom, kitchen, living room, etc.. To elaborate further, if an AI speaker can sense that it is placed on
the table of a kitchen, it could talk to the user in the context of food, such as ordering cooking supplies
to prepare dinner. Additionally, if the AI speaker is placed near a user reading a book at a desk, it
might recommend proper lighting conditions. Figure 11 shows examples of such interaction scenarios.

Figure 11. Applications of the proposed knocking and sensing strategy in various interaction scenarios:
AI speaker interacting with a user on the desk (a), on the kitchen table (b), in the bed room (c), and on
the palm of the hand (d).

5.4. Limitations and Future Work

In this study, we attempted to prevent trained models from being overfitted to specific hardware
by using three prototypes of different configurations to collect data. In addition, to reduce the structural
effect of the surface, we collected data from various locations on each test surface. As a result, we
determined the feasibility of classifying different types of surfaces by using the proposed system.
However, if the proposed system is embedded into a large device, such as an AI speaker, it may not
be able to use the currently trained model as it is. The system may require additional data collected
from the target device configuration. Note that this study focused on verifying the feasibility of the
proposed system at the prototype level. In a future study, we will collect additional data with more
diverse hardware configurations and extend the proposed system to a variety of smart devices.

To reduce the structural effect (or geometric property) of the surfaces, we collected the dataset
from various locations on each test surface with random objects placed around the prototype. However,
some geometric properties might be learned by the machine learning model. Thus, at the current
stage, it is difficult to say that the proposed method is a universal approach for characterizing surface
materials. However, we observed the possibility that the proposed method can identify generic
material properties. For example, our system could discern classes F and G (granite-tiled floor and
porcelain-tiled floor). As they have almost the same geometry and boundary conditions, we believe
that our approach can be extended to classify generic surface characteristics. To construct a robust and
generalized model, we plan to conduct additional experiments in various surfaces made of the same
material but different shapes and boundary conditions.

In our current design, the most significant drawback is the inevitable physical impact.
As mentioned in the discussion section, the proposed system demonstrated reasonable performance
even when only the loading motion was used as the input to the classifier. However, to produce a
loading motion, an unloading motion must be proceeded, and it was difficult to control the system to
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hit the surface weakly owing to the intrinsic operating principle of the solenoid actuator. Furthermore,
the solenoid actuator used in this study measured 27 × 25 × 23 mm (the body), and 7.5 × 54 mm (the
metal slug), which might not be suitable for embedment into small electronic devices (or robots). These
aspects would hinder the potential applications of the proposed system. In the future, we plan to 1)
further improve the performance using only the loading motion, 2) adopt weak loading and unloading
motions that do not damage the surface or produce no audible noise, 3) modify the mechanism to be
compact instead of using a bulky actuator.

6. Conclusions

In this paper, we proposed an intelligent system to predict surface type by analyzing multivariate
time-series sensor signals captured by mechanically knocking a surface. First, the hardware setup
(prototype) was constructed, and the dataset (60,000 samples in total) was collected from 10 different
test surfaces using the prototype. Subsequently, we designed a series of classifiers such as RF, CNN,
and gated RNNs (LSTM and GRU). The performance was evaluated in terms of test accuracy and
f-measure. Overall, the proposed system successfully classified 10 different surface types (accuracy
of 98.73% with GRU). Notably, a test accuracy of 96.53% was achieved even when using only signals
captured when the slug of the solenoid actuator was lifted off the surface (i.e., without hitting the
surface directly). We expect our approach to be expandable to various applications including AI
speakers and mobile robots, as the proposed system is compact and does not require expensive
components; thus, it can be easily replicated or embedded into other devices for contextual interaction.
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