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Abstract

Purpose

To investigate the change in axial length (AxL) and choroidal thickness (ChT) in response to

continuous and alternating episodes of monocular myopic and hyperopic defocus.

Methods

The right eye of sixteen young adults was exposed to 60 minute episodes of either continu-

ous or alternating myopic and hyperopic defocus (+3 DS & -3 DS) over six separate days,

with the left eye optimally corrected for distance. During alternating defocus conditions, the

eye was exposed to either 30 or 15 minute cycles of myopic and hyperopic defocus, with the

order of defocus reversed in separate sessions. The AxL and ChT of the right eye were

measured before, during and after each defocus condition.

Results

Significant changes in AxL were observed over time, dependent upon the defocus condition

(p < 0.0001). In general, AxL exhibited a greater magnitude of change during continuous

than alternating defocus conditions. The maximum AxL elongation was +7 ± 7 μm (p =

0.010) in response to continuous hyperopic defocus and the maximum AxL reduction was

-8 ± 10 μm of (p = 0.046) in response to continuous myopic defocus. During both 30 and 15

minute cycles of alternating myopic and hyperopic defocus of equal duration, the effect of

opposing blur sessions cancelled each other and the AxL was near baseline levels following

the final defocus session (mean change from baseline across all alternating defocus condi-

tions was +2 ± 10 μm, p > 0.05). Similar, but smaller magnitude, changes were observed for

ChT.
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Conclusions

The human eye appears capable of temporal averaging of visual cues from alternating myo-

pic and hyperopic defocus. In the short term, this integration appears to be a cancellation of

the effects of the preceding defocus condition of opposite sign.

Introduction

Optical defocus can lead to predictable changes in choroidal thickness and eye growth in vari-

ous animal species [1–5]. Rapid choroidal thickening in response to imposed myopic defocus

[6, 7] precedes a slowing of longer-term eye growth [8–11], while rapid choroidal thinning in

response to imposed hyperopic defocus [6, 7] precedes accelerated eye growth [8–11]. These

compensatory changes result in the retinal photoreceptors moving closer to the defocused

image plane. In humans, the quality of visual experience can also influence ocular growth. In

eyes experiencing chronic deprivation of form vision through ocular conditions such as ptosis

[12, 13], congenital cataract [14], corneal opacity [15], and vitreous haemorrhage [16], abnor-

mal ocular growth is often observed. Similarly, manipulation of retinal image focus through

optical treatment strategies such as bifocal or multifocal spectacles [17, 18], soft multifocal con-

tact lenses [19, 20], or orthokeratology [21–24] have been linked with reduced progression of

axial myopia in children. Investigations in human eyes have also shown a bi-directional

response to short-term imposed continuous myopic and hyperopic defocus in children [25]

and adults [26–31], with a small magnitude axial length reduction associated with rapid cho-

roidal thickening in response to myopic defocus and axial elongation associated with rapid

choroidal thinning in response to hyperopic defocus.

In the absence of ocular pathology leading to a disruption in form vision, the visual control

of eye growth could be associated with the dynamics of visual experience and the type and

magnitude of defocus to which the eyes are exposed on a daily basis. Natural visual scenes typi-

cally comprise objects at varying distances that produce myopic and hyperopic defocus, and

well-focused retinal images, depending on where the eyes are fixating and focused within the

environment [32–34]. The temporal integration of these defocus signals may provide input to

the regulation of eye growth [6, 32, 33, 35]. Studies using various animal models have shown

that over a period of days or weeks, the eyes use a complex method for integrating defocus sig-

nals over time rather than a simple linear summation of the blur that it experiences [6, 35–44].

These studies suggest that the temporal integration of defocus signals is dependent upon the

sign and power of the defocus experienced [6, 36–43], and the frequency and duration of indi-

vidual episodes of blur [37, 44].

In humans, while studies have shown that the eye is responsive to short-term continuous

myopic and hyperopic defocus by changing its axial length and choroidal thickness [25–31], it

is not known how the eye responds to more complex temporally varying patterns of defocus,

as might be encountered in real-world visual scenes. In this study, we tested the hypothesis

that the short-term response of axial length and choroidal thickness to alternating episodes of

myopic and hyperopic defocus in the human eye will reflect a simple temporal summation of

the blur signals.

Materials and methods

Sixteen young adults (11 females, 5 males) aged between 19 and 34 years (mean ± SD,

24.8 ± 4.1 years) were recruited for the study. This sample size provided 80% power to detect
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an intrasession axial length change of 10 μm at the 5% level, assuming a standard deviation of

10 μm [26]. All subjects were free from any systemic or ocular diseases and had no prior his-

tory of eye injury or surgery. Before the study, each subject underwent an initial screening to

ensure good ocular health and normal binocular vision, and to determine their refractive sta-

tus. The spherical equivalent refraction across subjects ranged between +0.50 DS and -2.75 DS

with a mean ± SD of -0.57 ± 1.12 DS. All subjects had anisometropia of less than 0.50 DS, astig-

matism of� -0.75 DC and exhibited visual acuity of at least 0.00 logMAR (20/20 Snellen acu-

ity) in both eyes. No contact lens wearers were included in the study. Ethics approval was

obtained from the Queensland University of Technology human research ethics committee

prior to commencement of the study. Written informed consent was obtained from all sub-

jects, who were treated in accordance with the Declaration of Helsinki.

This study involved the measurement of axial length before, during and after six different

defocus conditions. Subfoveal choroidal thickness was also measured before and after exposure

to defocus. Each defocus condition was conducted on a separate day in order to allow any

potential effects to dissipate from the prior defocus session (a minimum 24-hour washout

period between the defocus conditions). The order of the defocus conditions was randomized

between subjects to ensure no order-related bias in the data. To minimize the potential for a

confounding interaction between the diurnal variations in axial length and subfoveal choroidal

thickness [45, 46] and the eye’s response to defocus [47], all measurement sessions were con-

ducted at a similar time of day (between 8:00 am and 2:00 pm with an average daily time differ-

ence of 62 ± 23 minutes between sessions within each subject), and at least two hours after the

subjects’ reported time of waking. None of the subjects enrolled in this study were taking any

medications which could influence their ocular biometry measurements. Since smoking may

affect the measurement of choroidal thickness, smokers were also not included in this study

[48]. Due to the influence of caffeine intake and dynamic exercise on ocular biometry, all par-

ticipants were asked to abstain from consumption of caffeine or performing vigorous exercise

for at least 1 hour prior to the start of each measurement session [49, 50]. Since prior visual

tasks (e.g. intense near-work) could potentially affect measurements of axial length and cho-

roidal thickness, each subject completed a 20 minute “washout period” during which they

watched a movie of their choosing at a 6 m distance with their optimal distance refractive cor-

rection before each measurement session. Following completion of the “washout period”,

baseline measurements of axial length and subfoveal choroidal thickness were obtained from

the right eye, and then, a 60 minute monocular “defocus period” was conducted.

During the “defocus period”, each subjects’ right eye was exposed to six different defocus

conditions (monocular defocus over the right eye’s optimal distance refraction), while watch-

ing movies on a TV at 6 m, with the left eye optimally corrected for distance viewing to main-

tain relaxed accommodation. This experimental paradigm has been used previously and

allows control of the accommodation response with the non-tested (left) eye, while simulta-

neously producing defocus conditions in the tested (right) eye [25–30]. Over six separate ses-

sions, the right eye was exposed to 60 minute episodes of either continuous or alternating

myopic and hyperopic defocus (+3 DS and -3 DS). During the alternating defocus conditions,

the eye was exposed to either 30 minutes or 15 minutes of alternating cycles of myopic and

hyperopic defocus, with the defocus order reversed in separate sessions (Fig 1).

Five repeated measures of axial length (measured from the anterior corneal surface to the

retinal pigment epithelium [RPE]) were obtained at baseline, and then every 15 minutes dur-

ing both continuous and alternating defocus conditions, using the Lenstar optical biometer

(LS 900, Haag Streit AG, Koeniz, Switzerland). This is a non-contact biometry device that

works on the principle of optical low-coherence reflectometry (OLCR), using a broad-band

light source (range of 20–30 nm), with a central wavelength of 820 nm. The Lenstar optical
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biometer has a display resolution of 10 μm. To improve the accuracy of the measurements of

axial length, only five consecutive measurements with a cumulative standard deviation (as dis-

played on the Lenstar) of� 7 μm were included. If any of the five consecutive measurements

yielded a cumulative SD of> 7 μm, that measurement was deleted and then immediately

repeated with a new measurement. To control for accommodation and to provide continuous

exposure to defocus during biometry, a binocular beam splitter periscope system was used to

allow fixation of an external target (a high contrast Maltese cross) at a 6 m distance during

measurement acquisition. In order to provide the periscopic view of the Maltese cross, the sys-

tem was adjusted and once the centre of the Maltese cross was aligned with the internal fixa-

tion target of the biometer (the red fixation target of the Lenstar), the subject was asked to

fixate the centre of the target at a 6 m distance. When using the periscope system, the subject’s

sphero-cylinder distance refraction was mounted in a trial frame in front of each eye and the

additional defocus lens was positioned in front of the right eye. A schematic diagram of this

experimental set-up is shown in Fig 2.

Fig 1. Illustration of the type of defocus imposed on the right eye for each measurement day. On six separate

measurement days, the right eye was exposed to one of the following conditions (in a randomized order): (A)

continuous hyperopic (-3 D) defocus (1 x 60 minutes), (B) continuous myopic (+3 D) defocus (1 x 60 minutes), (C)

alternating low frequency cycles of hyperopic then myopic defocus (2 x 30 minutes), (D) alternating low frequency

cycles of myopic then hyperopic defocus (2 x 30 minutes), (E) alternating high frequency cycles of hyperopic then

myopic defocus (4 x 15 minutes), and (F) alternating high frequency cycles of myopic then hyperopic defocus (4 x 15

minutes).

https://doi.org/10.1371/journal.pone.0243076.g001

Fig 2. Schematic representation of the experimental set-up for axial length measures. A binocular periscope system

was used to allow fixation of the distant target (Maltese cross) while the Lenstar biometer measured axial length.

https://doi.org/10.1371/journal.pone.0243076.g002
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To assess the intrasession repeatability of axial length measurements, the within-session

standard deviation (SD) and within-session range of five consecutive measurements of axial

length across all subjects and all defocus conditions were calculated [51]. The intraclass correla-

tion coefficient (ICC) was also calculated. The within-session SD was 5 μm, with a within-ses-

sion range of 11 μm, and ICC of 0.999, indicating highly precise measurements of axial length.

The subfoveal choroidal thickness of the right eye (defocused eye) was also measured using

spectral domain optical coherence tomography (SD-OCT) (Copernicus SOCT-HR; Optopol

Technology SA, Zawiercie, Poland). This device provides high resolution, cross-sectional

images of the posterior eye, using a peak wavelength of 850 nm and has axial and transverse

resolutions of 3 μm, and 5 μm (in tissue), respectively. The measurements of choroidal thick-

ness were obtained at baseline, and then following removal of the defocus lens at the end of the

60 minute defocus period (immediately following the final measurement of axial length). The

OCT images were obtained with a 5 mm horizontal foveal line scan, consisting of 40 B-scans,

each with 1500 A-scans, with an acquisition time of 1.52 seconds.

Following data collection, the five repeated measures of axial length at each measurement

time point were averaged for each defocus condition, and across subjects. For the measure-

ments of subfoveal choroidal thickness, the raw OCT images were extracted from the instru-

ment and then analysed using custom written software [52]. For each OCT image, the

software aligned and averaged the 40 individual B-scans, to generate a high-quality average B-

scan image with reduced speckle noise and increased visibility of the posterior segment struc-

tures. The resolution of the final OCT images was 2.26 microns per pixel. Each averaged OCT

image for each subject at each measurement time point was then manually segmented by an

experienced observer who was masked to the time of the measurement and type of defocus

condition, for all of the scans.

To provide an assessment of the repeatability and reliability of the subfoveal choroidal thick-

ness segmentation, the masked observer manually segmented the baseline subfoveal choroidal

thickness of all subjects for two randomly selected defocus conditions, twice. The coefficient of

repeatability and 95% confidence interval of the coefficient of repeatability (derived from both

defocus conditions) [51], were 6 μm and 3–9 μm, respectively. A paired sample t-test revealed

no significant difference between the two measurements (p> 0.05). Bland-Altman analysis

[53] revealed excellent agreement between the two measures of the subfoveal choroidal thick-

ness, with a negligible mean difference of -0.5 μm and 95% limits of agreement of -9 to +7 μm.

The intraobserver reliability was assessed using the ICC (two-way mixed model, absolute agree-

ment) and was excellent at 0.999, with a 95% confidence interval of 0.998–1.00.

The Shapiro-Wilk test of normality revealed that the axial length and subfoveal choroidal

thickness data did not significantly depart from a normal distribution (p> 0.05). In order to

assess the effects of defocus condition for each variable, the data were analysed using a repeated

measures ANOVA with two within-subjects factors (time and type of defocus). Following the

repeated measures ANOVA, for any variables with significant main effects and interactions

(p< 0.05), pairwise comparisons with Bonferroni corrections were conducted. To assess the

effects of defocus order and defocus frequency on each variable, a multifactorial linear mixed

model analysis was used.

Results

Axial length

Repeated measures ANOVA revealed a highly significant interaction between the type of

defocus and time of measurement for axial length measures across the six defocus conditions

(F (20,300) = 4.60, p< 0.0001).
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Continuous defocus. Pairwise comparisons with Bonferroni corrections revealed that 15

minutes after the introduction of hyperopic defocus (Condition A), there was a significant

axial elongation of +5 ± 6 μm from baseline (p = 0.038). Following this initial response, the

axial length remained relatively stable until the end of the defocus period and was significantly

different from baseline at all subsequent measurement times (all p< 0.05). The maximum

axial elongation occurred at 45 minutes with the eye being +7 ± 7 μm longer than the baseline

measurement (p = 0.010). The axial length at the end of 60 minutes was +7 ± 7 μm longer than

the baseline measurement (p = 0.027) (Table 1) (Fig 3). The introduction of myopic defocus

(Condition B) produced a significant axial length reduction of -4 ± 5 μm from baseline after 15

minutes (p = 0.040). The axial length then continued to shorten gradually over the next 45

minutes, reaching a significant maximum axial length reduction of -8 ± 10 μm at the end of

the 60 minutes (p = 0.046) (Table 1) (Fig 3).

Alternating defocus (30 minute cycles). When the right eye was exposed to 30 minute

alternating cycles of hyperopic then myopic defocus (Condition C), after the first 30 minutes

of hyperopic defocus, the axial length was significantly longer than baseline by +7 ± 9 μm

(p = 0.045). The introduction of myopic defocus then gradually cancelled the previous axial

elongation effects of hyperopic defocus and over the next 30 minutes the eye approached the

baseline axial length level (mean difference of 0 ± 11 μm from baseline at the end of the 60

minutes, p> 0.05) (Table 1) (Fig 4). A similar cancellation effect of opposing blur was

Table 1. Mean change in axial length from baseline across different measurement times for continuous and alternating defocus conditions in all subjects.

15-minute 30-minute 45-minute 60-minute

Defocus condition Mean change ± SD (μm) P value Mean change ± SD (μm) P value Mean change ± SD (μm) P value Mean change ± SD (μm) P value

Condition A +5 ± 6 0.038� +6 ± 4 0.0001� +7 ± 7 0.010� +7 ± 7 0.027�

Condition B -4 ± 5 0.040� -6 ± 7 0.043� -7 ± 7 0.025� -8 ± 10 0.046�

Condition C +5 ± 8 0.219 +7 ± 9 0.045� +1 ± 12 1.000 0 ± 11 1.000

Condition D -4 ± 7 0.345 -6 ± 9 0.115 0 ± 11 1.000 -2 ± 12 1.000

Condition E +5 ± 8 0.330 -1 ± 9 1.000 -2 ± 9 1.000 -4 ± 7 0.251

Condition F -3 ± 6 0.307 -2 ± 7 1.000 -4 ± 6 0.265 -3 ± 8 1.000

Asterisk � indicates a significant change (p < 0.05) in axial length from the baseline measurement.

https://doi.org/10.1371/journal.pone.0243076.t001

Fig 3. The mean change in axial length from baseline (0 minute time point), during 60 minutes of continuous

hyperopic defocus (Condition A) and continuous myopic defocus (Condition B) for all subjects. Vertical error bars

represent the standard error of the mean difference in axial length, and horizontal error bars represent the standard

error in measurement time. Asterisks indicate a significant mean difference from baseline axial length (p< 0.05).

https://doi.org/10.1371/journal.pone.0243076.g003
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observed when the right eye was exposed to 30 minute alternating cycles of myopic then

hyperopic defocus (Condition D). After the first 30 minutes of myopic defocus, the axial length

was shorter than the baseline by -6 ± 9 μm (p> 0.05). This reduction in axial length then grad-

ually cancelled during the next 30 minutes of hyperopic defocus of equal power, and by the

end of 60 minutes, the eye was almost at the baseline level (mean difference of -2 ± 12 μm,

p> 0.05) (Table 1) (Fig 4).

Alternating defocus (15 minute cycles). When the eye was exposed to 15 minute alter-

nating cycles of hyperopic and myopic defocus, a cancellation effect of opposing blur sessions

did not occur as the axial length was observed to shorten slowly over time. During 60 minute

alternating cycles of hyperopic then myopic defocus (Condition E), after the first 15 minutes

of uninterrupted hyperopic defocus, axial length changed by +5 ± 8 μm from baseline

(p> 0.05). This increase in axial length was then cancelled during the next 15 minutes of unin-

terrupted myopic defocus, as the eye returned to below baseline level at 30 minutes. From 30

to 60 minutes, axial length continued to shorten slowly and reached a -4 ± 7 μm reduction

from baseline following the final defocus session (p> 0.05) (Table 1) (Fig 5). A similar pattern

of response was also observed for axial length during 15 minute alternating cycles of myopic

then hyperopic defocus (Condition F), as it shortened gradually over time. Following comple-

tion of the two cycles of myopic then hyperopic defocus, the axial length was -3 ± 8 μm less

than the baseline measurement at 60 minutes (p> 0.05) (Table 1) (Fig 5).

Effects of defocus order and defocus frequency. Assessment of the effect of defocus

order revealed that regardless of the frequency of the cycles, there was no significant difference

in the final axial length response to defocus observed when the eye was exposed to myopic

then hyperopic defocus, or hyperopic then myopic defocus (p> 0.05). Similarly, there was no

significant difference in the final axial length response between the 15 minute and 30 minute

cycling frequencies for each order of defocus, indicating no significant effects of defocus fre-

quency (p > 0.05).

Axial length changes: Continuous vs alternating defocus

After the first 30 minutes of uninterrupted hyperopic defocus, baseline axial length increased

by a similar magnitude during both the continuous hyperopic defocus (Condition A) and the

Fig 4. The mean change in axial length from baseline (0 minute time point) during 30 minute alternating cycles of

hyperopic then myopic defocus (Condition C), and myopic then hyperopic defocus (Condition D) for all subjects.

Vertical error bars represent the standard error of the mean difference in axial length, and horizontal error bars

represent the standard error in measurement time. Asterisks indicate a significant mean difference from the baseline

axial length (p < 0.05).

https://doi.org/10.1371/journal.pone.0243076.g004
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alternating hyperopic then myopic defocus (Condition C) conditions (+6 ± 4 μm vs

+7 ± 9 μm, p> 0.05, Figs 3 and 4 respectively). From 30 minutes to 60 minutes, axial length

remained stable during continuous hyperopic defocus (+1 ± 6 μm increase, p> 0.05, Fig 3),

while it reduced significantly by -7 ± 10 μm during alternating hyperopic then myopic defocus

(p = 0.022, Fig 4). The magnitude of change in axial length from 30 minutes to 60 minutes

between the continuous hyperopic defocus and the alternating hyperopic then myopic defocus

conditions was significantly different (p = 0.033).

After the first 30 minutes of uninterrupted myopic defocus, axial length decreased by

-6 ± 7 μm during continuous myopic defocus (Condition B) and by -6 ± 9 μm during the alter-

nating myopic then hyperopic defocus condition (Condition D) (p> 0.05, Figs 3 and 4). From

30 minutes to 60 minutes, axial length changed by -2 ± 6 μm during continuous myopic defo-

cus (p> 0.05, Fig 3) and by +4 ± 12 μm during the alternating myopic then hyperopic defocus

condition (p> 0.05, Fig 4). There was a significant difference in the magnitude of change in

axial length from 30 minutes to 60 minutes between the continuous myopic defocus and the

alternating myopic then hyperopic defocus conditions (p = 0.044).

After the first 15 minutes of uninterrupted hyperopic defocus, baseline axial length

increased significantly and by a similar magnitude during both the continuous hyperopic defo-

cus (Condition A) and the alternating hyperopic then myopic defocus (Condition E) condi-

tions (+5 ± 6 μm vs +5 ± 8 μm, p> 0.05, Figs 3 and 5 respectively). From 15 minutes to 60

minutes, axial length remained relatively stable during continuous hyperopic defocus (mean

change of +2 ± 7 μm p> 0.05, Fig 3) while it shortened significantly by -9 ± 8 μm (p< 0.0001,

Fig 5) during the alternating hyperopic then myopic defocus condition.

After the first 15 minutes of uninterrupted myopic defocus, axial length changed by

-4 ± 5 μm during continuous myopic defocus (Condition B) and by -3 ± 6 μm during alternat-

ing myopic then hyperopic defocus condition (Condition F) (p> 0.05, Figs 3 and 5). From 15

minutes to 60 minutes, axial length changed by -4 ± 8 μm during continuous myopic defocus

(p = 0.05, Fig 3) while it remained stable during alternating myopic then hyperopic defocus

condition (+1 ± 9 μm, p> 0.05, Fig 5).

Fig 5. The mean change in axial length from baseline (0 minute time point) during 15 minute alternating cycles of

hyperopic then myopic defocus (Condition E), and myopic then hyperopic defocus (Condition F) for all subjects.

Vertical error bars represent the standard error of the mean difference in axial length, and horizontal error bars

represent the standard error in measurement time. Asterisks indicate a significant mean difference from the baseline

axial length (p < 0.05).

https://doi.org/10.1371/journal.pone.0243076.g005
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Subfoveal choroidal thickness

Imposing defocus resulted in some significant changes in subfoveal choroid thickness over

time. At 60 minutes, the subfoveal choroid was -4 ± 11 μm thinner than baseline after continu-

ous hyperopic defocus (Condition A) (p> 0.05), while it was significantly thicker by

+8 ± 11 μm following continuous myopic defocus (Condition B) (p = 0.030) (Table 2).

When exposed to 30 minute or 15 minute alternating cycles of defocus, subfoveal choroidal

thickness did not differ significantly from baseline after hyperopic then myopic defocus (Con-

dition C & Condition E), or after myopic then hyperopic defocus (Condition D & Condition

F) (p> 0.05) (Table 2). There were no significant effects of defocus order and defocus fre-

quency for any of the analyses of the subfoveal choroidal thickness measures (all p> 0.05).

Discussion

This study has shown for the first time that the human eye is capable of temporal averaging of

visual cues from alternating myopic and hyperopic defocus. Whilst exposure to continuous

defocus led to significant bi-directional changes in axial length, the change in axial length was

minimal when the eye was exposed to alternating periods of myopic and hyperopic defocus.

During a 30 minute cycling frequency, alternating episodes of defocus of opposite power

largely cancelled each other, and the eye remained at near baseline levels after 60 minutes.

During a 15 minute cycling frequency, the eye’s response to myopic defocus appeared to be

greater than the response to hyperopic defocus, as the eye was slightly shorter than the baseline

measurement at 60 minutes, however this change was not statistically significant. Similar but

smaller magnitude changes were also observed for subfoveal choroidal thickness.

The findings from the continuous defocus conditions are consistent with those from previ-

ous studies of human [26, 29–31] and other animal eyes [6, 7, 36] where small but significant

changes in axial length and choroidal thickness have been reported after short term exposure

to continuous myopic and hyperopic defocus. A recent investigation in human eyes has shown

a significant change in axial length, approximately 2 minutes after exposure to imposed defo-

cus [26]. Similarly, significant bi-directional changes in subfoveal choroidal thickness after 10

to 35 minutes have been reported [30]. An investigation in school children found no signifi-

cant change in axial length after 60 minutes exposure to defocus [25], however, as the measure-

ments were taken following the instillation of 1% cyclopentolate (an antimuscarinic agent that

is known to affect the thickness of the choroid and axial length) [54, 55], these findings may

have been influenced by the effects of the drug. Further, in a recent investigation, a 30 minute

exposure to myopic defocus with full field and multifocal contact lenses yielded no significant

change in choroidal thickness [56]. This difference in outcomes may be due to the shorter

duration of exposure to defocus or to the influence of the contact lens correction. It is evident

from our findings during the continuous defocus conditions that the human eye is able to

respond to the sign of blur rapidly (within 15 minutes) and make distinct bi-directional

changes in its axial length. Although the underlying mechanisms of this response are not fully

understood; a variety of potential mechanisms such as the role of contrast cues from contrast

Table 2. Mean change in subfoveal choroidal thickness from baseline across different defocus conditions in all subjects.

Condition A Condition B Condition C Condition D Condition E Condition F

Mean change ± SD (μm) -4 ± 11 +8 ± 11 +7 ± 14 +2 ± 15 +5 ± 17 +5 ± 17

P value 0.208 0.028� 0.087 0.685 0.278 0.273

Asterisk � indicates a significant change (p < 0.05) in baseline subfoveal choroidal thickness after 60 minutes of defocus exposure.

https://doi.org/10.1371/journal.pone.0243076.t002
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adaptation (changes in contrast sensitivity at different spatial frequencies) [57–60], colour cues

from chromatic aberration [61–64], or optical vergence cues from image defocus [65] have all

been suggested as potential ways in which the human eye decodes the sign of blur.

The maximum mean axial length change observed during continuous hyperopic defocus

was +7 ± 7 μm of elongation and during continuous myopic defocus was a -8 ± 10 μm reduc-

tion. These findings correspond closely with published data in human eyes where changes of

similar magnitude in axial length following continuous short term exposure to myopic and

hyperopic defocus have been reported [26, 29]. However, when the pattern of defocus was

alternated at a 30 minute frequency, the eye underwent a significantly different temporal pat-

tern of change than it did during continuous defocus. The axial length response to each type of

defocus after 30 minutes was almost cancelled during the succeeding 30 minute exposure to

defocus of opposite power, and the axial length was near baseline levels after 60 minutes. This

finding occurred irrespective of the order of defocus, indicating that the cancelling effects of

myopic and hyperopic defocus for this particular duration and alternating frequency were of

similar strength.

When the frequency of alternating defocus cycles was 15 minutes, the myopic and hyper-

opic defocus did not appear to completely cancel the preceding effects of each other; rather, a

slight non-significant trend towards a more dominant response to myopic defocus was

observed, and axial length was observed to reduce slightly. In animal models of blur integra-

tion, a greater potency of myopic defocus in arresting the ocular elongation effect of hyperopic

defocus has been reported. For instance, when myopic and hyperopic defocus were presented

sequentially or simultaneously in chicks [6, 36–39], tree shrews [40, 41], monkeys [42], and

marmosets [43], the eye responded preferentially to myopic defocus and developed less myo-

pia/more hyperopia. Even when episodes of myopic and hyperopic defocus had equal duration

when imposed alternatively over the chick eye, the axial growth still reduced, suggesting that

myopic defocus provides a stronger growth signal [37]. Since the slight bias towards the domi-

nating effects of myopic defocus observed in our study was not statistically significant, we can-

not conclude if such properties also exist in the human eye. Future investigations involving

longer durations of exposure to defocus or utilizing different magnitudes of defocus may pro-

vide additional insights into the relative influence of myopic versus hyperopic blur.

Defocus-mediated changes in axial length are expected to occur through modulations in

the thickness of the choroid posterior to the retina, and thus affects the measurements of the

axial length to the overlying RPE [26–30]. We found the bi-directional changes in the thickness

of the subfoveal choroid to be consistent with the direction of the observed changes in axial

length at the end of each defocus condition. In general, subfoveal choroidal thickening

occurred along with axial length reduction, and subfoveal choroidal thinning occurred along

with axial elongation. However, for the continuous defocus conditions, subfoveal choroidal

thickening accounted for 87% of the observed mean axial length reduction during myopic

defocus, and only accounted for 57% of the observed mean axial elongation during hyperopic

defocus. A similar pattern of response was also observed for axial length and subfoveal choroi-

dal thickness during alternating defocus. The discrepancies in the magnitude of axial length

and choroidal thickness changes could have arisen in two possible ways. First, the final mea-

surement of the subfoveal choroidal thickness was obtained approximately one minute after

the removal of the defocus lens, therefore, during this brief period of clear viewing during the

OCT imaging process, some decay in the effects of defocus could have occurred. Alternately,

other factors such as expansion or contraction of the sclera might have also contributed to the

observed axial length elongation and reduction with defocus. Since current imaging technol-

ogy does not allow visualization of the thickness of the posterior sclera in most eyes, future
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studies to understand the potential role of the sclera in mediating the human eye’s response to

short-term defocus seem warranted.

The changes in choroidal thickness with defocus (thickening or thinning) were found to

range between 4 to 8 μm across the different defocus conditions investigated in this study.

Whilst this amount of change is above the axial resolution of the OCT device (3 μm in tissue),

it is within the range of the coefficient of repeatability and its 95% confidence interval for the

measurements of choroidal thickness in this study (6 μm and 3–9 μm, respectively). Therefore,

this limitation should be noted when considering the choroidal thickness changes observed in

this study.

Previous studies suggest two potential models in which defocus signals could be integrated

over time; a simple linear model, and a more complex non-linear model [6, 35, 37, 66, 67].

Based on a simple linear model, the effects of equal powers of defocus of opposite sign would

be added linearly so that the resulting compensation would be relative to the average exposure

of defocus that the retina experienced, summed over a period of time (e.g. +3 D for 30 minutes

followed by -3 D for 30 minutes = 0 change). However, based on a non-linear model, more

complex outcomes of blur integration are expected where the final compensation could be

multifactorial, depending on the sign and power of the defocus experienced (myopic or hyper-

opic blur), and the frequency and duration of individual episodes of blur. Whilst our findings

from the alternating defocus conditions suggest a simple summation of the effects of defocus

of opposing sign over time, the findings from our continuous defocus conditions do not reflect

a simple linear model. We observed that the rate of axial elongation and axial length reduction

resulting from exposure to equal amounts of hyperopic and myopic defocus was not linearly

proportional to the time exposed to blur. During continuous defocus exposure, almost 70% of

the final axial elongation observed in response to hyperopic defocus (+7 ± 7 μm) occurred

after 15 minutes of exposure to defocus, and 50% of the final axial length reduction

(-8 ± 10 μm) in response to myopic defocus occurred after 15 minutes of exposure to defocus,

indicating that the time course of the eye’s response to blur may be non-linear and may vary

depending on the sign of defocus. Whilst experiments with animals have shown characteristics

which strongly suggest a complex, non-linear model of temporal blur integration [6, 36–44]

the mixed findings from our investigations do not allow us to confidently propose the model

of temporal blur integration in human eyes. Further studies in this field seem warranted.

It has been proposed that the transient exposure to hyperopic defocus associated with near

activities (e.g. due to lag of accommodation) [68–71], ocular aberrations [72, 73] or peripheral

defocus [74] might predispose the eye to myopia. We found that exposure to myopic defocus

is able to quickly counterbalance the axial elongation and subfoveal choroidal thinning effects

of hyperopic defocus. If short-term ocular changes in response to defocus are associated with

longer term refractive error development in the human eye, then optical methods of introduc-

ing myopic blur for at least a similar duration to that of exposure to hyperopic blur, may coun-

teract the myopigenic stimulus. However, it must be noted that only one level of myopic and

hyperopic defocus and limited alternating defocus frequencies were tested in this study.

The inter-subject variability in the axial length and choroidal thickness response to blur

observed in this study could have been due to individual differences in retinal sensitivity to

blur (e.g. an equal level of defocus degrades visual acuity by varying amounts between individ-

uals). Also, while we attempted to control many of the known factors that influence choroidal

thickness and axial length (diurnal rhythms, near work, medications, smoking, caffeine intake,

and dynamic exercise) there are many other systemic factors that could potentially vary from

day to day and affect the highly vascularized and sympathetically innervated choroid.

In conclusion we have shown for the first time that the human eye is capable of temporal

integration of myopic and hyperopic defocus signals. Over 60 minutes of blur exposure, this
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integration was effectively a simple summation (cancellation) of the effects of the preceding

opposite sign blur condition.

Supporting information

S1 Dataset. Ocular biometry data for each of the defocus conditions for all subjects
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