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Abstract32

Understanding complex interactions in biomedical networks is crucial for advancements in33

biomedicine, but traditional link prediction (LP) methods are limited in capturing this complexity.34

Representation-based learning techniques improve prediction accuracy by mapping nodes to low-35

dimensional embeddings, yet they often struggle with interpretability and scalability. We present36

BioPathNet, a novel graph neural network framework based on the Neural Bellman-Ford Network37
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(NBFNet), addressing these limitations through path-based reasoning for LP in biomedical knowl-38

edge graphs. Unlike node-embedding frameworks, BioPathNet learns representations between node39

pairs by considering all relations along paths, enhancing prediction accuracy and interpretabil-40

ity. This allows visualization of influential paths and facilitates biological validation. BioPathNet41

leverages a background regulatory graph (BRG) for enhanced message passing and uses stringent42

negative sampling to improve precision. In evaluations across various LP tasks, such as gene function43

annotation, drug-disease indication, synthetic lethality, and lncRNA-mRNA interaction prediction,44

BioPathNet consistently outperformed shallow node embedding methods, relational graph neural net-45

works and task-specific state-of-the-art methods, demonstrating robust performance and versatility.46

Our study predicts novel drug indications for diseases like acute lymphoblastic leukemia (ALL) and47

Alzheimer’s, validated by medical experts and clinical trials. We also identified new synthetic lethal-48

ity gene pairs and regulatory interactions involving lncRNAs and target genes, confirmed through49

literature reviews. BioPathNet’s interpretability will enable researchers to trace prediction paths50

and gain molecular insights, making it a valuable tool for drug discovery, personalized medicine and51

biology in general.52

Keywords: biomedical knowledge graph, link prediction, graph neural network53

1 Introduction

Biological entities interact in complex ways, crucial for sustaining life in living systems [1]. Understanding54

these interactions is central to systems biology, with network analysis playing a key role [2]. Biological55

networks are represented as graphs, where nodes can represent genes, proteins, diseases and more, and56

edges denote associations between them. Edges in a biological graph between genes can signify co-57

regulation or causal relationship (regulatory network) [3, 4], physical interactions (in protein-protein58

interaction networks (PPI) [5, 6]), as well as diseases-gene associations (like in disease-gene networks59

[7, 8]), among many.60

Despite increasing high-throughput experiments, our grasp of biological networks is incomplete,61

leaving many interactions undiscovered. Due to the expense and time involved in wet lab experi-62

ments, computational methods such as link prediction (LP) are very important for inferring missing63

or potential associations within these networks based on the underlying topology [9]. LP is applied64

across network biology for diverse tasks ranging from predicting protein interactions over inferring gene65

regulatory networks to exploring pathways [10]. By revealing hidden connections, LP facilitates the dis-66

covery of biomarkers, drug targets, and insights into biological interactions [11, 12]. To predict potential67

relationships between unconnected nodes, one prevalent class of methods uses similarity metrics from68

traditional graph analysis, such as Personalized PageRank, Jaccard or Katz index [13, 14]. These met-69

rics have been used for predicting disease-gene associations [15], including ncRNA-disease relationships70

and drug-disease associations [16].71

While traditional graph metrics have been successful in biological link prediction, representation-72

based learning offers greater expressiveness for capturing the nuances and complexity of nodes in a graph.73

Nodes are mapped to low-dimensional vector representations called embeddings using shallow and deep74

non-linear transformations. Optimized embeddings position nodes with similar network neighborhoods75

closely in the embedding space so that links between nodes can be predicted based on their similarity76

in this space [17]. Methods include matrix factorization-based (e.g. Mashup [18]) and random walk-77

based approaches (e.g., DeepWalk [19], node2vec [20], struc2vec [21]). Network embedding techniques78

have found success in diverse domains, including drug repurposing, adverse drug reaction prediction,79

gene function prediction, and protein-protein interaction network completion, among others [22–25]. For80

example, Ruiz et al. [26] introduced the multiscale interactome, integrating disease-associated proteins,81

drug targets, and biological functions using biased random walks for node embeddings [26]. GeneWalk82

predicts gene functions via network representation learning with random walks [27]. Hu et al. [28]83

created a multi-modal network of genes and polygenic risk scores (PRS) for diseases, using DeepWalk84

for node embeddings to uncover associations between COVID-19 genes, co-morbidities, and genetic85

predispositions [28–30].86
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As opposed to the shallow learning approaches, methods such as Graph Convolutional Networks87

(GCNs) [31], Graph Autoencoders (GAEs) [32] and GraphSAGE [33] learn node embeddings from88

graph data using deep neural networks, by aggregating node messages from neighbors and learning89

a representation which reflects the neighborhood. Biological applications include OhmNet [24], which90

uses neural architectures to learn node embeddings in a multi-layer hierarchical network representing91

molecular interactions across human tissues, and Decagon, which [25] models polypharmaceutical side92

effects using GCNs and a multi-modal graph of protein-protein, drug-protein, and drug-drug interactions,93

enabling multi-relational link prediction with an encoder-decoder approach.94

Early biological interaction models used basic networks, or uni-relational graphs, which failed to cap-95

ture various entity associations’ semantics, such as distinguishing between inhibition and activation in96

protein-protein interactions. Recent efforts use heterogeneous multi-relational networks, or knowledge97

graphs (KGs), to better represent biological complexities by modeling facts as subject-predicate-object98

(SPO) triples. KG research is increasingly applied to tasks like question answering and information99

retrieval, with a key challenge being link prediction to complete KGs by estimating missing triplet100

components. Knowledge Graph Embedding (KGE) effectively learns low-rank representations of enti-101

ties and relations, preserving graph structure and encoding relation semantics by optimizing a training102

loss that maximizes scores for positive triplets while minimizing those for corrupted triplets [34]. Repre-103

sentative KGE methods include TransE [34] for hierarchical relationships, DistMult [35] for symmetry104

patterns, ComplEx [36] for asymmetric relationships, and RotatE [37] for modeling symmetry, anti-105

symmetry, inversion, and composition through rotational embeddings. A recent, expressive model that106

encodes indirect semantics using GNNs is the Relational Graph Convolutional Network (R-GCN) for107

multi-relational KGs [38]. R-GCN learns node embeddings by aggregating transformed feature vectors of108

neighboring nodes via a normalized sum and uses the DistMult factorization model for link prediction.109

Unlike conventional GCNs, R-GCNs introduce relation-specific transformations based on edge type and110

direction, making them suitable for multi-relational data in KGs. The study from Mohamed et al. [23]111

shows that KGE methods outperform traditional graph exploration methods in predicting drug-target112

interactions, polypharmacy side effects, and tissue-specific protein functions.113

With the rapid accumulation of biomedical data, understanding disease biology and molecular fac-114

tors’ roles in phenotypic outcomes is crucial for personalized diagnostics and treatments. KGs have115

become the dominant knowledge representation also in biomedicine, leveraging databases like UniProt116

[39], Gene Ontology [40, 41], and DrugBank [42]. LP tasks in biomedical KGs, such as Zhang et al.’s117

COVID-19 drug candidate exploration [43] with RotatE and DistMult, OntoProtein’s Gene Ontology-118

based KG for protein language model pretraining [44], and Biswas et al.’s node embedding algorithms119

for multi-modal biomedical KGs, enhance drug discovery and predict disease co-morbidities [45] via120

tensor factorization with complex-valued embeddings. Further, task-specific KGs and frameworks like121

BioCypher [46] further support KG construction, aiding predictive modeling for drug adverse reactions,122

repurposing, and biological concept associations.123

While embedding-based approaches have shown significant performance in several benchmark tests,124

they are often limited to one-hop relations. In large biomedical KGs, relationships between entities are125

intricate and may involve multi-hop paths. Encoding a head entity without considering its specific tail126

entities requires embedding a vast amount of information (considering all possible tail entities). For large127

graphs, embedding all this information into a lower-dimensional vector is challenging and can lead to128

imprecise link predictions. Methods such as SEAL [47] and Grail [48] address the problem of predicting129

links between head and tail entities by embedding the subgraph structure around the link, encoding130

the two entities as a whole. However, these methods face scalability issues because they generate or131

materialize a subgraph for every link they try to predict. This process becomes a bottleneck when132

attempting to perform link prediction for all pairs.133

To overcome these challenges, researchers started developing general and flexible representation134

learning frameworks for LP based on the paths between two nodes. The first application of this concept135

is the study from [49], who introduce KG4SL, a graph neural network (GNN) model that integrates136

KG message-passing for synthetic lethality (SL) prediction, leveraging a KG with 11 entity types and137

24 relevant relationships associated with SL. Further, the Neural Bellman-Ford Network (NBFNet)138

introduces a novel framework for LP inspired by traditional path-based methods [50]. It represents node139
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pairs as the sum of path representations, each derived from edge representations, and it employs a140

graph neural network with learned operators for efficient path formulation solutions, scalable to large141

graphs with low time complexity. NBFNet works with both homogeneous and multi-relational graphs,142

supporting LP across different graph types. Combining traditional path-based methods with GNNs,143

NBFNet demonstrates superior performance compared to node embedding methods. Additionally, path144

embedding methods offer better interpretability by visualizing important paths used for prediction,145

facilitating verification of biological plausibility.146

To address link prediction in noisy biological KGs, we introduce BioPathNet. This message-passing147

neural network framework for path representation learning, inspired by NBFNet, specializes in predicting148

specific node subset relations within biomedical KG. As opposed to the node-embedding learning frame-149

works that optimize the embedding space based on one-hop relations, BioPathNet utilizes path-based150

reasoning to learn representations between source and target nodes based on relations along the path.151

BioPathNet makes use of a background regulatory graph (BRG), which may contain protein-protein152

interactions, as well as relationships between genes and other molecules with biomedical terms, being,153

therefore, more effective over prior path representation learning methods when it comes to predicting154

links on biomedical KGs. By leveraging additional graph information from the BRG for message pass-155

ing, BioPathNet enriches path representations between node heads and tails, resulting in more precise156

predictions while avoiding learning irrelevant relationships. In addition, in BioPathNet, we introduce a157

stringent node type-aware negative sampling scheme that ensures contrastive learning and improves the158

decision boundary accuracy. These two points are especially important to large biomedical KGs that159

potentially encode noise derived from errors in experiments and, at the same time, are highly structured160

in how and which biological entities can interact.161

We highlight BioPathNet’s effectiveness across four diverse LP tasks: gene function prediction task,162

drug repurposing task, i.e. disease-drug target interaction prediction in a zero-shot scenario, synthetic163

lethality prediction task, i.e. prediction of synthetic lethality gene pairs, lncRNA-gene target prediction164

task, i.e. inference of lncRNA-mRNA regulatory relationships. Despite varying KG requirements for each165

task, BioPathNet always surpasses KGE-based methods, including GNNs, in most of the tasks. For the166

drug repurposing task and synthetic lethality prediction task, it matches or outperforms task-specific167

models like TxGNN and KR4SL. BioPathNet discovers new drug-disease associations, including insights168

into Alzheimer’s disease, and scores potential lncRNA-mRNA interactions, validated against orthogonal169

datasets. Through examples, we demonstrate how BioPathNet enables the natural interpretation of170

predicted links, enhancing understanding of molecular disease mechanisms and regulatory processes.171

2 Results

A knowledge graph (KG) is a heterogeneous directed graph comprising various types of entities (nodes)172

connected by relationships (edges). For instance, a KG might include nodes representing diseases, genes,173

and potential drug targets, with relationships such as ’indication for’ or ’involved in’ and model facts174

such as ’drug A is an indication for disease B’ or ’gene C is involved in disease D.’ KGs are typically175

represented as triples consisting of a head node, a tail node, and a relationship. The task of knowledge176

graph completion involves estimating the missing components of these triples. For example, one might177

predict the tail entities corresponding to a given head entity linked by a specific relationship, such as178

predicting diseases for which a particular drug is an indication, based on existing triples (i.e., existing179

knowledge). Knowledge graph completion methods can be broadly categorized into embedding-based180

and path-based approaches (Figure 1A). Embedding-based approaches use encoding models, ranging181

from simple linear models to complex neural networks, to learn feature representations of entities in182

a knowledge graph. These methods aim to preserve the structure of the original graph in a lower-183

dimensional space by minimizing the distance between the head and tail entity embeddings and the184

relationship embeddings or by maximizing the similarity between the embeddings of head entities,185

relations, and tail entities. Our path-based approach BioPathNet, on the other hand, can be leveraged186

to capture the structural information of KGs by learning representations for pairs of nodes (instead187

of single nodes) through paths. It learns node pair representations by parameterizing them as the188

generalized sum of path representations, with each path representation as the generalized product of edge189
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Fig. 1: Link prediction (LP) in biological knowledge graphs: A) Inference of links using
node-representation (node embedding) vs. path-representation learning. B) Illustration of the NBFNet
framework, which uses the generalized Bellman-Ford algorithm to solve the shortest path problem
between a head entity and tail entities via specific relationships, and employs message-passing GNNs
to learn path representations, with a Multi-Layer Perceptron distinguishing positive and negative rela-
tionships. C) BioPathNet incorporates a background regulatory graph (BRG) to add additional gene
connections, enhancing message passing and information flow beyond supervised training edges. It also
uses an improved negative sampling scheme considering specific node types. D-E) Examples of predic-
tion paths between head nodes (blue) and tail nodes (orange) in two scenarios are illustrated: D) a
sub-graph without BRG, and E) a sub-graph that includes BRG connections used for learning. These
examples also serve as model explanations, highlighting the paths that lead to the model’s predictions.
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representations along the path. (Figure 1B). This path formulation can be efficiently solved using the190

generalized Bellman-Ford algorithm based on dynamic programming. Moreover, the efficiency is further191

enhanced by learning the operators of the generalized Bellman-Ford algorithm with a message-passing192

graph neural network (see Methods).193

BioPathNet refines the NBFNet framework for biomedical KGs by using a stricter negative sampling194

strategy, where negatives are drawn from the same node type as positives, ensuring more challenging195

samples and better decision boundary learning. BioPathNet enhances prediction accuracy by integrating196

an external Biological Regulatory Graph (BRG) to improve entity connectivity during training’s message197

passing without affecting negative sampling and loss computation. Essentially, predictions can be made198

without and with a BRG, which is used solely for message passing (Figure 1C). For example, as illustrated199

in Figure 1D, when predicting the missing link between a head node and a tail node, messages can be200

passed between type 1 and type 2 nodes, resulting in a certain prediction path (Figure 1D). Alternatively,201

as illustrated in Figure 1E, a BRG can be integrated to further inform the predictions by leveraging202

additional knowledge bases, such as relations between type 2 and type 3 nodes. Besides enhancing203

performance, as demonstrated in the following sections, the incorporation of a BRG in BioPathNet allows204

the zooming into the molecular mechanisms behind a certain prediction. In fact, one can examine the205

sub-network (interaction partners, regulators) surrounding a specific node pair to derive a mechanistic206

hypothesis. This additional layer of insight leverages the broader biological context provided by the207

BRG.208

To demonstrate BioPathNet’s versatility in performing graph completion across various tasks, we209

applied it to four link prediction challenges in biomedicine. These tasks vary in importance and difficulty,210

each involving heterogeneous KGs with distinct topological characteristics, sizes, and types of training211

data.212

Gene function prediction task

Our first goal was to evaluate the capacity, performance, and robustness of BioPathNet in biomedi-213

cal KG link prediction, comparing its path embedding strategy to node embedding techniques, with a214

focus on the use of a BRG for message passing within the framework. For this, we conducted a proof-215

of-concept study focusing on gene function prediction. This involves assigning biological information,216

like terms corresponding to cellular pathways, to genes. Our approach involved applying BioPathNet217

to two scenarios: Firstly, we utilized a KG connecting genes and KEGG pathways through the rela-218

tion ’function of’ sourced from ConsensusPathDB [51], without a BRG. Secondly, we extended this KG219

by incorporating a BRG extracted from Pathway Commons [52–54] interactions encompassing gene-220

gene, chemical-gene, and chemical-chemical relationships. The objective of this experiment was two-fold:221

firstly, to evaluate BioPathNet’s performance in link prediction compared to traditional node embed-222

ding methods, and secondly, to assess the impact of augmenting the KG with a BRG on enhancing the223

accuracy of gene function annotation tasks. Through this investigation, we aimed to validate BioPath-224

Net’s utility in leveraging complex biomedical data structures for improving predictive modeling in gene225

function annotation within KGs.226

In direct comparison with Knowledge Graph Embedding (KGE)-based methods such as TransE,227

DistMult, and RotatE, as well as Graph Convolutional Networks (R-GCN), BioPathNet demonstrated228

consistently superior performance across different metrics (Figure 2B-C). In the setting without uti-229

lizing the BRG, BioPathNet achieved a Mean Reciprocal Rank (MRR), which measures how well the230

model ranks the correct pairs, of 0.464, outperforming the KGE methods, which averaged 0.371, and231

R-GCN, which achieved 0.348. For the Hits@k metric, which indicates the percentage of ground truth232

items captured within the top k predictions, BioPathNet obtained 63.5% in the top 10 predictions,233

compared to RotatE’s 56.5% (Figure 2B). Upon leveraging the BRG for biological regulation-enhanced234

message passing, performance improvements were observed primarily for R-GCN and BioPathNet. R-235

GCN’s MRR increased marginally from 0.348 to 0.355, whereas BioPathNet’s performance rose from236

0.464 to 0.549, corresponding to an 8.5% gain. In terms of capturing ground truth positives within the237

top 10 predictions, BioPathNet excelled with 72.6%, whereas R-GCN achieved 53.1% (Figure 2C). Inter-238

estingly, KGE methods did not leverage the additional BRG information effectively; in fact, the TransE239

model’s performance dropped significantly from 0.376 to 0.272, indicating a disadvantage rather than240
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an enhancement in predictive capability. By conducting experiments for each method over 5 different241

model seeds, we observed standard deviation for each method ranging between 0.01 and 0.03, yielding242

robust predictions for all methods (Figure 2B).243

One key advantage of NBFNet is its ability to provide interpretable predictions through paths, which244

are crucial for understanding the rationale behind specific predictions. Intuitively, these interpretations245

should highlight paths that significantly influence the prediction. In BioPathNet, this follows the NBFNet246

framework (see Methods), where the top-k path interpretations for a prediction are formally defined247

as the first derivative (gradient of the prediction) with respect to each path between a head and a248

tail node. In this task, we show an example of how BioPathNet interprets its predictions and visually249

presents the most critical paths for predicting the function of the CRY1 gene, specifically its association250

with the Circadian rhythm pathway (Figure 2D). The figure illustrates the top 10 most significant251

paths ranked by gradient, where the width of each edge reflects how frequently it appears among252

these top paths. Additionally, the most crucial path, ranked highest by gradient, is highlighted in red,253

encompassing: CRY1 in complex with → PER3 interacts with → ARNTL before feeding into the254

pathway Circadian rhythm over the relation function of (Figure 2D). The retrieved path makes sense255

as it recovers the well-known mechanisms by which the essential transcription factors controlling the256

cellular circadian rhythm, ARNTL, and CLOCK, upregulate the expression of PER3 and CRY2 [55, 56].257

They, in turn, form heterodimers to repress their own expression, creating a negative feedback loop of258

regulation [57, 58].259
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Fig. 2: Benchmark of knowledge graph completion algorithms on the gene function annota-
tion task: A) Illustration of BioPathNet leveraging a BRG encompassing genes, chemicals, and cellular
pathways, to predict gene functions, i.e. associations of genes with specific cellular pathways. B-C) Per-
formance on the gene function prediction task against classical KGE-based methods, namely TransE,
DistMult, RotatE and R-GCN for link prediction. B) without the underlying BRG and C) with the
BRG. Metrics reported for comparison are mean rank (MR), mean reciprocal rank (MRR), and Hits at
1, 3, and 10. D) The visualization highlights the significant paths employed by the BioPathNet model
to predict a link between CRY1 and the Circadian rhythm. The top 10 paths are depicted, where the
width of each edge corresponds to its weight, and the path with the highest weight is highlighted in red.
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Drug repurposing task

In the second part of our study, we evaluated BioPathNet in a more challenging scenario: predicting260

new drug candidates for diseases by repurposing existing drugs indicated for other conditions. This drug261

repurposing task was conducted in a zero-shot scenario, where the target disease has minimal molecular262

characterization and no available treatments. For this experiment, we followed the data split procedure263

implemented in TxGNN [59], a state-of-the-art graph neural network model designed to predict drug-264

disease relationships in zero-shot scenarios, which builds embeddings of nodes and relations from a265

comprehensive biomedical knowledge graph, the PrimeKG knowledge graph (Supplementary Figure 1A)266

[60] (see Methods for more details).267

More in detail, TxGNN creates 5 ‘disease area’ splits to simulate zero-shot conditions, ensuring that268

diseases in the test set used for inference (1) have no approved drugs in the training data, (2) have limited269

overlap with the training diseases by excluding similar ones, and (3) lack molecular data by removing270

their biological neighbors from the training set. These splits provide challenging yet realistic evaluation271

scenarios, mimicking zero-shot drug repurposing (see Methods). These splits create challenging yet272

realistic evaluation scenarios for zero-shot drug repurposing by simulating a new disease with minimal273

knowledge, no similar diseases, and no known treatments. Connections to treatments and most biological274

neighbors are removed from the training set to prevent their use in message passing. Five distinct275

zero-shot disease areas were used: adrenal gland, anemia, cardiovascular, cell proliferation, and mental276

health.277

The BioPathNet model used approximately 5.7 million directed edges solely for message passing in278

each prediction setting (Supplementary Table 4), including non-drug-disease edges like protein-protein279

and disease-disease relations. In contrast, edges used for both message passing and supervision were280

limited to drug-disease interactions, such as ’contraindication’ and ’indication’. On average, the training281

set contained around 33,000 edges, and the validation set around 4,000. The number of testing edges282

varied significantly between disease areas, with 1,047 contraindications and 999 indications in the cell283

proliferation split, compared to 303 contraindications and 33 indications in the adrenal gland disease284

area (Supplementary Table 4).285

For each disease area split, we evaluated BioPathNet against TxGNN by assessing their performance286

in predicting ground truth drugs for the relations ’contraindication’ and ’indication’. Specifically, we287

ranked all drugs (tail node) based on their likelihood of being an indication or contraindication for a288

specific disease (head node). This involved computing the probability for each drug to be an indica-289

tion or contraindication for a disease, p(drug | disease, relation), from both BioPathNet and TxGNN290

(Figure 3A). In the comparison, BioPathNet achieved higher AUPRC than TxGNN in two out of five291

disease areas for contraindication prediction and in all disease areas for indication prediction (Supple-292

mentary Figure 1B). The difference in performance, ∆, is calculated by subtracting TxGNN’s AUPRC293

from BioPathNet’s AUPRC; thus, a positive ∆ indicates better performance by BioPathNet. For con-294

traindications, TxGNN outperformed BioPathNet in adrenal gland, cardiovascular, and mental health295

areas with ∆ values of −4.6, −0.2, and −2.0 percentage points, respectively. Conversely, BioPathNet296

outperformed TxGNN in anemia and cell proliferation with ∆ values of 4.8 and 9.0. In the indication297

prediction task, BioPathNet consistently had positive ∆ values, ranging from 5.9 to 22.6 percentage298

points (Figure 3B). To summarize the performance in a single metric, the AUPRC was averaged across299

contraindications and indications for each disease area split (Supplementary Table 7). For cell prolifer-300

ation, the difference in performance ∆ was 0.119 (0.556 − 0.437), representing a performance increase301

for BioPathNet over TxGNN of 27.3%. Similarly, the increases were 17.1%, 14.1%, 25.9%, and 16.9%302

for adrenal gland, anemia, cardiovascular, and mental health, respectively. On average, BioPathNet303

outperformed TxGNN by 20.2% across all disease area splits.304

Cell Proliferation Split

A detailed breakdown of BioPathNet and TxGNN in terms of Specificity, F1, and Recall@k for the cell305

proliferation disease area split is illustrated in Figure 3C. Both models performed well in identifying true306

negatives, with BioPathNet showing only slightly higher specificity (0.996 vs. 0.981) in the indication307
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Fig. 3: Comparison of BioPathNet and TxGNN model on the drug-disease relations predic-
tion task: A) Schematic of the PrimeKG graph used by BioPathNet and illustration of a drug-disease
indication relationship. B) Mean AUPRC differences between BioPathNet and TxGNN across five dis-
ease area splits (adrenal gland, anemia, cardiovascular, cell proliferation, mental health). A positive
delta indicates higher AUPRC for BioPathNet. C) Performance metrics for the cell proliferation split.
Recall@k reflects the proportion of ground truth edges in the top k predictions, reported for con-
traindication and indication. D) Acute Lymphoblastic Leukemia and E) Gastric Cancer within the cell
proliferation area. Left panels show predicted drug indications for ALL (D) and Gastric Cancer (E),
ranked by BioPathNet prediction probability. Known indications are orange; novel indications are light
blue. The right panels visualize the gradient importance of paths predicting Bosutinib for ALL (D) and
Acitretin for Gastric Cancer (E), showing the top 10 significant paths with edge widths representing
weights and the highest-weight path in red. 9
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setting. The F1 score, representing the balance between precision and sensitivity, was 0.415 for BioPath-308

Net vs. 0.330 for TxGNN in the contraindication setting, and 0.393 vs. 0.183 for indication. This trend,309

observed in the cell proliferation split, holds across all other disease splits. Notably, BioPathNet showed310

a greater improvement in performance for indication than contraindication, though with slightly higher311

variance compared to TxGNN. In the cell proliferation split, 178 diseases had known indications, with312

an average of 5.58 indications per disease. For 60 out of 178 diseases, all known treatments were prior-313

itized within the top 10 predictions sampled from a list of 7,000 drug candidates. Recall@k quantifies314

the proportion of ground truth items found within the top k predictions. For instance, at k = 20, the315

recall for indication across all diseases was 0.619 for BioPathNet, meaning that 61.9% of the ground316

truth drugs were found within the top 20 predictions. In contrast, Recall@20 for TxGNN was 0.539.317

Case study from Cell Proliferation: Acute Lymphoblastic Leukemia (ALL) After quan-318

titatively evaluating the performances, we further examined individual disease predictions within the319

Cell Proliferation split. Among the best-performing models was Acute Lymphoblastic Leukemia (ALL),320

which is a complex cancer involving abnormal proliferation of lymphoid cells in blood and bone mar-321

row, impairing immune function [61]. Commonly observed chromosomal aberrations include the t(9;22)322

translocation, which produces the constitutively active tyrosine kinase BCR-ABL1, associated with323

Philadelphia chromosome-positive ALL [62].324

We used BioPathNet for the prediction of the drugs associated with ALL. We were able to correctly325

predict the only known contraindication - drug Aprostadil on rank 1 with a probability score of 0.727326

, as well as all 21 known indications within the top 34 predictions (Figure 3D). Upon investigating the327

top indication predictions, we identified the highest-ranked known treatments (in orange) Clofarabine,328

Teniposide, and Methotrexate. Additionally, the top-ranked unknown treatments (in blue) were Dasa-329

tinib and Bosutinib (Figure 3D, left). We further set out to interpret our predictions by visualizing the330

most important paths for the predictions. The visualization plot summarizes the top ten most important331

paths as ranked by gradient (see Methods), with the edge width reflecting the number of times the edge332

appears among the top ten paths. The first novel indication prediction with a probability score of 0.724333

was Dasatinib (Figure 3d, left), which is not present in the ground truth database PrimeKG. However,334

Dasatinib, an inhibitor of the constitutively active tyrosine kinase BCR-ABL, is already used for treat-335

ing Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) in cases of resistance336

or intolerance to prior therapies. The next novel prediction, Bosutinib, is an unknown drug predicted to337

treat ALL with a probability score of 0.721 (Figure 3D, left). To gain confidence in this prediction, we338

visualized the most important paths leading to it, focusing on the local subgraph to explain our results.339

For Bosutinib as an indication for ALL, the similarity to other (lymphoblastic) leukemia types was340

revealed, along with significant disease genes AICDA and DUX4 [63–65]. The most crucial path passes341

through the phenotype Ph+ ALL, the disease chronic myelogenous leukemia, BCR-ABL1 positive, and342

the gene BCR, before connecting to Bosutinib via the drug protein relation (Figure 3D, right). Indeed,343

Bosutinib was originally indicated for chronic myeloid leukemia in 2012 [66, 67] and is currently being344

investigated for the treatment of ALL [68].345

Hypothesis generation for treatment of Gastric Cancer346

To demonstrate BioPathNet’s ability to generate hypotheses for lab testing and evaluation, we inves-347

tigated gastric cancer. Similar to ALL, both known contraindications and indications were ranked highly348

(all 5 contraindications in the top 6, and 5 out of 6 indications in the top 5) (Figure 3E, left). One novel349

drug predicted for gastric cancer treatment was Acitretin, an oral retinoid similar to Vitamin A, indi-350

cated for skin diseases like psoriasis by inhibiting excessive cell growth and keratinization [67]. Although351

untested for gastric cancer, Acitretin has been considered in combination with Clarithromycin for cuta-352

neous squamous cell carcinoma due to its apoptosis-inducing properties [69, 70]. Interestingly, all paths353

from gastric cancer to Acitretin in the interpretability plot pass through RBP1 (retinol-binding protein354

1), annotated with the retinoic acid biosynthesis process (Figure 3E, right). Recent studies suggest this355

pathway’s involvement in gastric cancer treatment and provide pre-clinical evidence supporting the use356

of All-Trans Retinoic-acid (ATRA) [71, 72]. By visualizing important paths between drugs and diseases,357

researchers can verify predictions’ plausibility and generate hypotheses for further laboratory validation.358
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Predicting drug indications for Alzheimer

For the final experiment in the drug repurposing task, we aimed to investigate a disease not analyzed359

by TxGNN to evaluate how well BioPathNet generalizes to a novel case study. Hereby, we examined the360

indication predictions for Alzheimer’s disease (AD) together with medical experts. AD is a neurodegen-361

erative disorder characterized by extracellular amyloid beta and intracellular tau protein accumulation362

in the brain. These neuropathological changes occur decades before clinical symptoms, ultimately lead-363

ing to synapse loss, brain atrophy, and dementia symptoms like memory loss and behavioral changes.364

While amyloid and tau are central to AD, the exact mechanisms remain unclear. Emerging evidence365

suggests additional pathways, such as immunoinflammation and bioenergetic dysregulation, may offer366

promising therapeutic targets [73–75]. Presently, FDA-approved treatments include only two disease-367

modifying and five symptomatic treatments, none of which provide a cure for AD. To explore the368

potential of BioPathNet for such complex and heterogeneous diseases, we trained BioPathNet on a data369

split tailored for zero-shot prediction on a custom-defined Alzheimer’s disease area split. Here, we fol-370

lowed the disease evaluation code as provided by TxGNN to exclude all treatments for Alzheimer’s, as371

well as closely related diseases (e.g. dementia)(Supplementary Table 5). We then evaluated the top 20372

predictions for indications and contraindications for Alzheimer’s disease.373

Among the top 14 predictions, seven out of eight drugs classified as known treatments according374

to PrimeKG, and four out of seven FDA-approved treatments for Alzheimer’s disease (AD), were suc-375

cessfully retrieved (Figure 4A). Additionally, the model identified Epicriptine, a nootropic drug with an376

unknown mode of action, and Acetylcarnitine, which is functionally involved in β-oxidation of fatty acids377

[76]. Known AD drugs, which obtained a low probability from BioPathNet were Pramiracetam (ranked378

344), used for cognitive impairment in aging and dementia [77], and FDA-approved treatments such379

as Memantine (ranked 412), an N -methyl-D-aspartate receptor antagonist [78], the recently approved380

monoclonal antibodies Lecanemab (ranked 2250), and retracted Aducanumab (ranked 2216) [79, 80].381

Interestingly, two drugs currently undergoing clinical trials were among the top 20 predicted novel382

indications: Nicotine, a nicotinic acetylcholine receptor agonist which is being tested in a Phase II383

clinical trial (NCT02720445) to improve cognition, and Bupropion, an N -methyl-D-aspartate receptor384

antagonist that is being tested as a component of the drug AXS-05 in two Phase III (NCT05557409,385

NCT04947553) clinical trails [81] to help with agitation associated with AD. Examination of the inter-386

pretability graphs shows that both predictions are associated with the brain-derived neurotrophic factor387

(BDNF), a gene crucial for synaptic maintenance and plasticity in the brain [82] (Figure 4C). Synaptic388

plasticity plays a pivotal role in AD [83], with research indicating lower levels of BDNF in both blood389

[84] and brain [85] in AD patients and linking higher levels of brain BDNF with slower cognitive decline390

[86] in elderly individuals. Both predicted drugs, Bupropion and Nicotine, have demonstrated an abil-391

ity to elevate BDNF levels in serum [87, 88], providing a functional hypothesis for the mechanism of392

these drugs in the context of AD. Another promising candidate predicted with high probability was393

Everolimus, an analog of Rapamycin and a selective inhibitor of the mammalian target of Rapamycin394

(mTOR) kinase signaling pathway. This pathway has been implicated in both normal aging and patho-395

logical aging processes, making it a promising target for intervention, particularly in the early stages396

of disease onset [89]. Currently, Rapamycin is being evaluated as a potential disease-modifying therapy397

in Phase II (NCT04629495) and Phase I (NCT04200911) clinical trials involving older adults with mild398

cognitive impairment or early AD [81]. Furthermore, Rapamycin has shown beneficial effects on amyloid399

and tau burden in mouse models of AD [90]. Everolimus, although structurally similar to Rapamycin,400

has favorable clinical pharmacokinetics that influence, for example, bio-availability and tissue distribu-401

tion [91]. Therefore, Everolimus may present an additional candidate for targeting the hyperactivated402

mTOR pathway in AD.403

Synthetic lethality prediction task

SL occurs when the simultaneous mutation of two genes leads to cell death, while the mutation of404

either gene alone is non-lethal [92]. We next examined the prediction of missing SL gene pairs with405

BioPathNet, which is of high interest in anti-cancer drug treatment. In fact, when the first partner of a406

gene pair is inhibited by mutations in cancer cells, targeting the second partner can induce selective cell407
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Fig. 4: Predictions of BioPathNet on custom data split of Alzheimer’s disease: A) Top 20
predictions of contraindication and indication for custom Alzheimer’s disease, ranked by BioPathNet
prediction probability. Known treatments, included in the ground truth of PrimeKG, are highlighted
in orange, while novel indications are in light blue. Visualization of gradients on path importance for
the prediction of B) Tacrine (a known treatment for Alzheimer) and C) Nicotine for Alzheimer’s (a
newly predicted indication). The visualization shows the top 10 significant paths used by BioPathNet
for prediction, with edge widths representing weights and the highest-weight path highlighted in red.

death in cancer cells without harming normal cells. This approach is crucial when direct targeting of408

cancer driver genes is impractical, but their SL partners offer viable treatment alternatives. Given the409

great potential to design personalized treatments through SL-based therapy, computational methods to410

predict novel gene interaction partners are of great importance. In our study, we leverage BioPathNet411

for this task and compare it against the state-of-the-art method, named KR4SL [49], which is a path-412

representation learning GNN-based method to predict and explain synthetic lethality gene pairs (see413

Methods and Extended Methods section in the Supplementary File).414

For training and inference of BioPathNet, we used the SynLethDB-v2.0 [93] data pre-processed by415

the authors of KR4SL (Supplementary Table 8). SynLethDB is a database that compiles SL pairs from416

biochemical assays, related databases, computational predictions, and text mining. Each SL relation in417

the database is assigned an integrative confidence score, prioritizing experimental evidence and giving418

higher scores to pairs supported by multiple sources.419

To enhance model training with reliable SL pairs, we focused on those primarily from experiments and420

partially from computational predictions and text mining (Supplementary Figure 3A). We excluded pairs421
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Fig. 5: Comparison of BioPathNet with state-of-the-art SL gene pair prediction algorithm
KR4SL: A) Illustration of SynLeth KG for the prediction of SL gene pairs, consisting of genes and their
SL interactions, cellular component (CC), molecular function (MF), biological process (BP) and pathway.
B) Mean difference in performances between BioPathNet and KR4SL given as NDCG, Precision, and
Recall for both unthresholded and thresholded data. C) Visualization of gradients on paths important
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prediction of the POLB - BRCA1 pair. E) Top predicted SL gene partners for EYA4. F) Top predicted
SL gene partners for POLB.

with confidence scores below 0.3, removing over 25% of computational and text-mined pairs. Specifically,422

3,138 of 9,327 computationally predicted pairs and 905 of 5,614 text-mined pairs were discarded. This423

resulted in a training set of 8,770 SL pairs, a validation set of 3,172, a test set of 6,254, and a known SL424

set in BRG of 13,161 pairs (Supplementary Table 9). The filtered set is referred to as ’thresholded data,’425
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while the original is ’unthresholded data.’ Setting thresholds below 0.3 was impractical: a threshold of 0.1426

removed no SL pairs, while 0.2 removed less than 10% of non-experimental pairs. We tested thresholds427

from 0 to 0.8 in 0.1 increments to evaluate their impact on the performance of BioPathNet and KR4SL428

(Supplementary Figure 3B).429

For each seed and threshold, KR4SL and BioPathNet were evaluated on NDCG@k, Precision@k,430

and Recall@k for k ∈ 10, 20, 50 (Supplementary Figure 3B). BioPathNet significantly outperformed431

KR4SL in unthresholded data (p-value < 0.01, one-sided t-test, Figure 5B) and in thresholded data432

(p-value < 0.1, one-sided t-test) for Recall@10 and Precision@10, as well as for other metrics (p-value433

< 0.01, one-sided t-test, Figure 5B). For threshold 0.2, BioPathNet also signifcantly outperformed434

KR4SL for Precision@10 (p-value < 0.05, one-sided t-test), as well as for other metrics (p-value < 0.01,435

one-sided t-test, Supplementary Figure 3C). With a threshold of 0.3, BioPathNet achieved the best436

overall performance for all metrics (Supplementary Figure 3B). Although higher thresholds (0.4, 0.5,437

0.6) showed improved performance, we chose a threshold of 0.3 for BioPathNet to balance training data438

quality and variance for more reliable predictions.439

A detailed breakdown of the performance of both methods in terms of MRR, NDCG@k, Precision@k,440

and Recall@k for k ∈ {10, 20, 50} is reported for each model run in Supplementary Tables 12 and 13 for441

unthresholded and thresholded data, respectively.442

After evaluating model performance, we assessed BioPathNet’s ability to identify novel SL gene pairs443

using thresholded data, focusing on new, consistently predicted SL partners across model runs, pre-444

dicted with an average MRR above 0.75. We analyzed the novel gene pair EYA4 and MUS81, where445

EYA4, involved in transcription, eye development, and DNA repair, is linked to hearing loss and car-446

diomyopathy, while MUS81 is essential for DNA repair. BioPathNet ranks MUS81 as the 7th synthetic447

lethality partner for EYA4 (Figure 5E). Figure 5C shows the explanation subgraph with multiple paths448

from EYA4 to MUS81 through shared processes like DNA repair, supporting their SL relationship.449

Another example involved POLB and BRCA1. POLB, a repair polymerase essential for base-excision450

repair and linked to Werner syndrome and esophageal cancer, is consistently predicted across seeds as451

SL partner for POLB among the top 20 candidates (Figure 5F). The explanation subgraph in Figure 5D452

shows the top 10 paths from POLB to BRCA1, highlighting shared biological processes such as DNA453

repair, DNA replication, cellular homeostasis, and apoptotic signaling. Notably, POLB and MSH2 share454

nodes related to DNA repair, while POLB and SUPT16H (an SL partner of BRCA1) are involved in455

DNA replication. Additionally, POLB and ASXL1 (another known SL partner of BRCA1) share cellular456

homeostasis, supporting the evidence for the SL relationship between POLB and BRCA1.457

LncRNA-target prediction task

Long non-coding RNAs (lncRNAs) are a heterogeneous group of transcripts that lack protein-coding458

potential, usually longer than 200 nt. They encompass a substantial portion of the genomes of complex459

organisms. The extensive transcription of these non-coding transcripts unveils a significant shift in460

our understanding of the pivotal role of RNAs in gene regulation [94]. LncRNAs play crucial roles461

in imprinting control, immune response, epigenetic regulation, and gene regulatory networks. Their462

mutations and dysregulation are linked to numerous diseases, making them valuable biomarkers for463

diagnosis, treatment, and prognosis. Data from consortia like ENCODE [95] and FANTOM5 [96], along464

with resources such as RNAcentral [97] and NONCODE [98], estimate over 200,000 potential lncRNA465

transcripts, highlighting their diverse functional roles and mechanisms. Long non-coding RNAs regulate466

gene expression both locally (cis) and distantly (trans) by interacting with RNA Binding Proteins467

(RBPs) and other nucleic acids. They can function as signals, scaffolds, guides, and enhancer-like RNAs,468

modulating gene expression through chromatin looping, recruiting repressive complexes, like in the469

case of XIST and HOTAIR or competing endogenous RNAs (ceRNAs) in the cytoplasm, where they470

can act as microRNA sponges or decoys. Despite recent advances, most lncRNAs remain functionally471

uncharacterized, and their roles in disease biogenesis and progression are still unknown.472

The imperative task of elucidating the functions and mechanisms of numerous lncRNAs underscores473

the urgency of identifying their targets using both experimental and computational approaches, which is474

a crucial initial step in functional analysis. Identifying the targets of lncRNAs, whether proteins, RNA475

sequences, or chromatin, is crucial in lncRNA research. Experimental methods like RNA pull-down,476
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ChIRP, RIP, and CLIP systematically screen and identify lncRNA targets, enabling the construction of477

regulatory networks.478

Table 1: Performance comparison of embedding-based and path-based knowledge graph completion
methods in terms of MR, MRR, and Hits@k for k = 1, 3, and 10.

Model MR MRR Hits@1 Hits@3 Hits@10

Embedding-based
Methods

TransE 1329.90 0.0045 - 0.0049 0.0074
DistMult 1364.95 0.0041 0.0016 0.0016 0.0033

Path-based Methods
NBFNet 168.30 0.138 0.059 0.144 0.306

BioPathNet 86.84 0.1855 0.087 0.203 0.397

Table 2: Top 5 novel predicted regulations of PVT1 with highest conditioned probabilities.

Head h Relation r Tail t Tail gene type p(t|h, r)

PVT1 epigenetic regulation MIR429 miRNA 0.881
PVT1 epigenetic regulation MIR200A miRNA 0.871
PVT1 interact with protein SUZ12 protein coding 0.839
PVT1 epigenetic regulation CDH1 protein coding 0.836
PVT1 epigenetic regulation KLF2 transcription factor 0.816

On the KG derived from the lncRNA regulatory graph in LncTarD 2.0 (Figure 6A), BioPathNet sig-479

nificantly outperformed both node embedding-based methods and the basic NBFNet algorithm across480

all metrics (Table 1). The lower performance of embedding-based methods highlights the importance of481

considering node and gene types in gene regulatory knowledge graph completion, an aspect neglected482

by the basic versions of TransE and DistMult used in this study. Additionally, our experiments demon-483

strate the effectiveness of BioPathNet’s negative sampling strategy and the successful integration of the484

external BRG (Table 1). To demonstrate BioPathNet’s ability to uncover novel lncRNA regulations, we485

focused on the lncRNA PVT1, a Myc regulator frequently over-expressed in cancers, crucial for tumor486

initiation, proliferation, invasion, and apoptosis, and linked to poor prognosis and therapy resistance.487

Using a trained model, we performed link prediction with PVT1 as the viewpoint, i.e. we set PVT1 as the488

head node and computed all conditional probabilities p(t|PVT1, r) for all nodes across all relationship489

types. The top 5 novel predictions with the highest probabilities are reported in Figure 6B and Table 2,490

where ”novel” indicates the absence of a direct connection between these genes in the knowledge graph.491

Additionally, the top 10 most crucial paths for these predictions, ranked by gradient, are illustrated in492

Figure 6 and Supplementary Figure 3. For all five predictions involving PVT1, the model identified sig-493

nificant edges that do not form a direct path from PVT1 to the target gene. Instead, the predictions494

are inferred through bipartite graphs, where PVT1 and other lncRNAs are on one side, and the PVT1495

target gene, along with other co-regulated genes, are on the other. This aligns with the biological under-496

standing that genes in the same cluster are often regulated by the same factors. For example, Figures497

6C and 6D show that PVT1 and GIHCG interact with the EZH2 protein, while GIHCG epigenetically498

regulates MIR200A, MIR200B, and MIR429. Thus, the model infers that MIR200A and MIR429 are499

also regulated by PVT1. This prediction is meaningful because it is known that the MIR200 family,500

which includes MIR200A, MIR200B, MIR429, MIR141, and MIR200C, is crucial in cancer initiation and501

metastasis. Evidence in the literature also indicates that PVT1 promotes cervical cancer progression by502

silencing MIR200B through EZH2 interaction, leading to histone H3K27 trimethylation and MIR200B503

inhibition [99]. PVT1 may also influence melanoma by regulating MIR200C via EZH2 [100]. Notably,504

PVT1-EZH2 regulation appears in all five novel predictions (Figure 6 and Supplementary Figure 4),505

underscoring EZH2’s role in PVT1 regulation. This aligns with experimental evidence of PVT1-EZH2506

interactions in various cancers, including gastric, thyroid, glioma, and hepatocellular carcinoma. Fur-507

thermore, BioPathNet predicts an interaction between PVT1 and SUZ12 (Supplementary Figure 4), a508

member of the Polycomb Repressive Complex 2 (PRC2), along with EZH2. The model identifies a path509
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through the physical interaction of the oncogenic lncRNA APTR, which represses the CDKN1A/p21510

gene promoter via PRC2, involving both EZH2 and SUZ12.511

In the past year, novel datasets of potential lncRNA-target interactions have been generated, shed-512

ding light on the regulatory mechanisms of lncRNAs. In the absence of a gold standard, in order to513

evaluate the predictive power and generalization capacity of BioPathNet and its underlying KG on the514

lncRNA-target prediction task, we assessed the method’s recall on two datasets, treating them as inde-515

pendent test sets. The first dataset comprises lncRNA target genes showing significant perturbation in516

a study by Liu et al. [101], which involved the interference of thousands of lncRNA loci using CRISPRi.517

In this study, the authors reported target gene-lncRNA regulation pairs. The second smaller dataset518

encompasses a set of enhancer-like lncRNAs and their potential cis targets determined via chromatin519

interactions, as defined in Ntini et al. [102]. We evaluated the method by determining how many novel520

interactions from these datasets (i.e., those not included in the KG) could be identified at different prob-521

ability thresholds, thereby constructing a recall curve for each dataset. By comparing these results to522

a random scenario, where the conditional probabilities of the potential novel pairs were randomly sam-523

pled from a background distribution (see Methods), we observed that the recall of true lncRNA-target524

gene pairs in both datasets exceeded that of the recall curve derived from random pairs. This indicates525

that BioPathNet, trained on the lncRNA-target gene prediction task, can score new datasets containing526

potential new regulatory interactions significantly better than random.527
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Fig. 6: Prediction of novel lncRNA-target regulatory interactions A) Depiction of the lncRNA-
mediated regulation knowledge graph (KG) constructed from the LncTarD 2.0 KG, augmented by
incorporating a protein-protein interaction (PPI) network as a BRG for message passing. The graph
features six types of node entities: lncRNAs, microRNAs, mRNAs, pseudogenes, transcription factors,
proteins, and protein PPI, the latter representing genes from the external PPI network not originally
included in LncTarD 2.0. Various types of regulatory relationships are indicated by directed edges of dif-
ferent colors, while protein-protein interactions from the BRG are shown with black undirected edges. B)
BioPathNet predicted targets for the cancer lncRNA PVT1, ranked by prediction probability. Annotated
targets are depicted in orange, while novel interacting partners are depicted in light blue. C-D) Expla-
nations for the top two predicted PVT1’s novel targets, MIR429 and MIR200A. The top 10 most crucial
paths for prediction, ranked by gradient, are shown for both examples. The edge width represents the
frequency of appearance in paths; therefore, that connection is important for the prediction. Edge col-
ors indicate the different regulatory mechanisms, following the color code of Figure 6A. E) Independent
evaluation of predictions based on external datasets from CRISPR and enhancer-based experiments.
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3 Discussion

Biomedical KGs structure information by representing entities (genes, proteins, diseases, drugs) as nodes528

and their relationships (interactions, associations, regulations) as edges. They integrate diverse data529

types and enable complex network analysis. Despite high-throughput experiments, many relationships530

in these graphs remain undiscovered. Link prediction (LP) methods are crucial for inferring missing or531

potential associations by analyzing network topology.532

In this work, we introduce BioPathNet, a message-passing neural network designed to leverage the533

power of path representation learning for link prediction on biomedical KGs. It is based on the NBFNet534

algorithm, which efficiently enumerates optimal paths between nodes with the Bellman-Ford algorithm535

and propagates subpath representations via message passing. BioPathNet introduces several advance-536

ments, including the use of a background regulatory graph (BRG) for improved message passing and a537

node-aware negative sampling strategy to improve learning precision and address graph heterogeneity,538

design choices that were crucial to improving the performance of specific tasks.539

As a proof of concept for biological applications, we evaluated BioPathNet’s ability to reconstruct540

KEGG-gene annotations for gene function prediction. BioPathNet outperformed node embedding meth-541

ods, including graph neural networks, achieving over 20% improvement compared to KGE models542

(TransE, DistMult, RotatE) and over 30% compared to R-GCN without BRG, with a 50% improve-543

ment using BRG. This demonstrates BioPathNet’s superior ability to leverage biological regulation544

information for accurate pathway and gene prediction. We believe BioPathNet outperformed embed-545

ding methods by exploiting path-based reasoning to learn representations between nodes based on path546

relations rather than optimizing one-hop relations. BioPathNet prioritizes relational paths between key547

entity groups, essential for biological applications and noisy KGs. The BRG in BioPathNet enhanced548

gene functional annotation by leveraging rich regulatory relationships, enabling comprehensive (gene,549

pathway) pair representations.550

For a more challenging task of predicting drugs for disease treatment, we applied BioPathNet to the551

zero-shot prediction scenario defined by the state-of-the-art method TxGNN. BioPathNet outperformed552

TxGNN across all five zero-shot disease splits (adrenal gland, anemia, cardiovascular, cell proliferation,553

and mental health), with an average AUPRC increase of 20.2%, demonstrating the effectiveness of path-554

based reasoning in predicting indications. Additionally, BioPathNet achieved higher Recall@k values,555

prioritizing known treatments better in the top predictions. Specifically, BioPathNet recovered 61.9%556

of known treatments at k=20, compared to 53.9% with TxGNN. This is especially valuable in biology,557

as BioPathNet’s enhanced prioritization reduces the number of predictions requiring verification for558

biological plausibility during hypothesis generation or experimental validation.559

In predicting drug contraindications, BioPathNet showed comparable results to TxGNN but with560

slightly higher performance variance. This variability likely arises because TxGNN relies on stable aux-561

iliary node embeddings for disease similarity, while BioPathNet does not. Instead, BioPathNet makes562

predictions based on paths connecting disease entities and target drugs so that each disease split might563

present a different set of edges after removing 95% of connections in zero-shot learning, thus introduc-564

ing more variability during inference. When comparing BioPathNet and node embedding methods like565

TxGNN, other advantages and limitations become apparent. TxGNN requires a pre-training phase, using566

all edges to learn node embeddings equally, followed by fine-tuning with specific relations (indication,567

contraindications) focusing on drug and disease nodes. It also enhances disease nodes with lim-568

ited molecular characterization using a gated auxiliary embedding based on node degree. In contrast,569

BioPathNet uses non-drug-disease triplets for message passing within a BRG but does not require sep-570

arate pre-training and fine-tuning phases. This simplifies and accelerates training and adds flexibility571

to our method, allowing the use of different background regulatory graphs without the need for pre-572

training from scratch. However, the higher variance of BioPathNet compared to TxGNN may be due to573

the lack of pre-training, as pre-training helps reduce variance by providing a general understanding of574

relevant features, leading to more stable predictions.575

Path embedding methods like BioPathNet enhance representations with multi-hop relationships and576

offer greater interpretability than node embeddings by tracing and visualizing paths, as well as influent577
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nodes, which aids in verifying predictions and hypothesis generation. Incorporating a Biological Regula-578

tory Graph (BRG) further improves path expressiveness and interpretability, revealing crucial paths and579

validating predictions. For instance, BioPathNet’s path gradients clarify drug-disease associations, such580

as Bosutinib for ALL and Acitretin for gastric cancer, and highlight key paths and genes like SMC1A581

and POLA1 in Clofarabine’s mechanism. Node embedding methods lack intrinsic interpretability and582

insights into paths or relationships, requiring a post-hoc interpretability framework as seen in TxGNN,583

yet they are straightforward to comprehend. Node embedding creates high-dimensional vector represen-584

tations that are applicable in downstream tasks, with nodes closer in embedding space, reflecting their585

similarities via methods like t-SNE or UMAP. In contrast, path embedding, despite capturing a richer586

context, is more abstract and less straightforward for downstream applications.587

While evaluating BioPathNet against TxGNN in zero-shot scenarios for disease-drug predictions,588

we observed that TxGNN’s data splits resembled near zero-shot scenarios. Some connections between589

drugs and diseases similar to the target disease were retained in the training graph, possibly leading to590

information leakage during inference. Despite both methods being evaluated on the same data splits, we591

wanted to determine if BioPathNet could still predict meaningful disease-drug indications when these592

informative edges were intentionally excluded from the inference graph. As an example, consider the case593

of Clofarabine, a known indication for ALL, also annotated in the PrimeKG database (Supplementary594

Figure 2). If the connection between ’leukemia, lymphocytic, susceptibility to’ and Clofarabine is not595

removed during training and inference, the model can reconstruct the link between leukemia (disease)596

and Clofarabine through this path, exploiting the similarity between ’leukemia, lymphocytic, suscepti-597

bility to’ and ’leukemia (disease)’. To improve the interpretability, we removed the link during inference:598

the model this time reveals important nodes such as genes SMC1A, involved in chromosome cohesion599

during cell division and DNA repair, and POLA1, part of the DNA polymerase alpha subunit. Given600

that Clofarabine is a purine nucleoside metabolized intracellularly to inhibit DNA synthesis [67, 103],601

the model identifies key components of the drug’s mode of action through alternative paths. A similar602

example is shown for gastric cancer (Supplementary Figure 2): to reconstruct the link between gastric603

cancer and its known indication Capecitabine, BioPathNet initially uses the path containing the retained604

connection between a similar disease, ’gastric linitis plastica,’ and Capecitabine. When we remove this605

link during inference, BioPathNet cannot rely on disease similarities and must find another path to606

obtain the same prediction. In summary, using a custom or modified graph during inference, with the607

removal of diseases similar to the disease of interest, highlights the flexibility of path-based methods in608

adapting to graph structure changes, unlike embedding-based approaches reliant on direct node connec-609

tions. This experiment suggests the potential of using different inference graphs and towards inductive610

reasoning settings, particularly beneficial in scenarios with new nodes emerging during inference. Future611

research will delve deeper into fully inductive reasoning tasks.612

We demonstrate the versatility of BioPathNet in addressing diverse problems across various KGs. For613

instance, we show that BioPathNet can be confidently used in path-based reasoning and explainable pre-614

dictions of SL gene pairs and can identify novel SL pairs crucial for improving cancer treatment efficacy.615

By leveraging heterogeneous graph information and node-type-specific negative sampling, BioPathNet616

achieves precise SL predictions, often surpassing state-of-the-art methods like KR4SL.617

The task of inferring novel lncRNA-mRNA regulatory relationship is the hardest in this context, as618

few and noisy data are available for training, and the KG is very sparse compared to other settings.619

Here we attempt this for the first time this task making use of a lncRNA-gene-specific KG coupled620

with a background regulatory graph (BRG) for enhanced message passing, similar to the other tasks.621

Despite an MRR of 0.19 - lower than tasks like drug repurposing or synthetic lethality — indicating622

that BioPathNet could probably benefit from more training data, BioPathNet still strongly learns the623

structure of the lncRNA-mRNAs regulatory graph, and it is much more effective than node-embedding624

methods in reconstructing true lncRNA-mRNA relationships, by leveraging multiple paths in the sparse625

graph, and by that compensating for the lack of direct connections.626

As a final remark, under the open-world assumption, evaluating model performance on incomplete627

KGs may not fully reflect their capabilities. Metrics, like MRR, can degrade in scenarios with high628

incompleteness, where missing links correlate with specific entities, as discussed by Yang et al. [104].629

Biomedical KGs exhibit uneven gaps in knowledge distribution, influenced by factors like prevalence630
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and complexity, potentially underestimating BioPathNet’s performance, particularly in tasks such as631

lncRNA-mRNA prediction.632

Limitations of BioPathNet include potential biases in the training data. For example, while633

BioPathNet successfully retrieved almost all known treatments for Alzheimer’s disease (AD) in its634

top predictions, it missed FDA-approved drugs such as Pramiracetam, Memantine, and Lecanemab,635

which were not listed in the PrimeKG database and lacked disease indications. As a result, the model636

couldn’t learn their connections and did not identify them as potential treatments. Predictions for637

known symptom-treating drugs focused on neuropsychiatric-related diseases, but emphasizing molecu-638

lar interactions could uncover more disease-modifying treatments. Future improvements might involve639

excluding message passing over dominant relations like indications and prioritizing molecular interactions640

to elucidate mechanisms underlying less understood diseases like Alzheimer’s.641

4 Conclusion

In conclusion, BioPathNet is a novel method for link prediction on biological KGs using path embed-642

ding. It excels in gene function prediction, zero-shot drug indication, synthetic lethality pair, and643

mRNA-lncRNA interaction tasks, consistently outperforming state-of-the-art methods. Its interpretabil-644

ity framework retrieves and visualizes key prediction paths, enhancing understanding, uncovering biases,645

and evaluating biological plausibility. Future work could focus on evaluating BioPathNet in inductive646

settings, refining the KG with more informative sources, and fine-grained relations. Utilizing condition-647

specific KGs enriched with detailed tissue, patient, pathway, and disease knowledge from platforms like648

BioCypher [105] could enhance reasoning capabilities. Additionally, integrating node features in path649

representations, such as experimental sequencing data, could further improve predictions. We believe650

that in the future BioPathNet could pave the way for foundational models in link prediction within651

biomedical KGs, significantly advancing the pace of hypothesis generation across various biological and652

biomedical domains.653

5 Methods

5.1 Knowledge Graph Completion

A knowledge graph KG = {(u, r, v)}u,v∈E,r∈R is a heterogeneous directed graph with entities E as654

nodes, relations R, and a list of triplets (u, r, v) that represent the edges in the graph. Here, u (head) and655

v (tail) are entities, and r (relation) is an edge or link. The graph is considered heterogeneous because656

different entities may have different types, e.g. a node representing a gene versus a node representing a657

disease. The graph is directed because (u, r, v) being in the KG does not imply (v, r, u) is contained as658

well. Knowledge graph completion involves predicting missing the missing links, i.e. triplets, categorized659

into three tasks: 1) Tail prediction (u, r, ?) - predicting the tail entity given the head entity and the660

relationship; 2) Head prediction (?, r, v) - predicting the head entity given the relationship and the tail661

entity; 3) Relation prediction (u, ?, v) - predicting the relationship given the head and tail entities [106].662

5.2 Neural Bellman-Ford Network (NBFNet)

Our newly developed BioPathNet is a path-representation learning-based method for graph completion663

built upon the NBFNet framework [50]. Unlike node embedding methods or node GNN encoders that664

infer links between entities in a KG by learning node representations in an embedding space, NBFNet665

is a general graph neural network framework that performs link prediction by learning representations666

for each path from the query entity u to potential tail entities v. More specifically, in NBFNet, the path667

formulation is represented by a generalized sum of path representations between u and v (see Extended668

Methods, Supplementary File).669

Two key factors contribute to NBFNet’s scalability for large graphs and its effectiveness in learning670

tasks: the use of the generalized Bellman-Ford dynamic programming framework for path representation671

and the abstraction of this process into a neural formulation.672
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Generalized Bellmann-Ford path representation To achieve a scalable path formulation,673

NBFNet utilizes a generalized version of the Bellman-Ford dynamic programming algorithm [107]. This674

generalization transforms the original Bellman-Ford algorithm for shortest path calculation into a ver-675

satile framework that simultaneously computes pair representations hq(u, v) for a given entity u, query676

relation q, and all vertices v in a graph. This approach reduces the computational cost to polynomial677

time relative to the number of nodes and edges in the graph.678

h(0)
q (u, v)← 1q(u = v) (1)

h(t)
q (u, v)← (

⊕
(x,v)∈E

h(t−1)
q (u, x)⊗ wq(x, r, v))⊕ h(0)

q (u, v) (2)

In this formulation, the first equation initializes the boundary condition on the source node (equation679

1), representing the shortest path between u and v at the start. If the head and tail nodes coincide680

(u = v), the boundary condition is set to the generalized 1, which corresponds to 0 in the shortest681

path context (i.e., the shortest distance between a node and itself is zero) and to ∞ in the case u ̸= v.682

Equation 2 describes the Bellman-Ford iteration, updating the shortest path distance between u and v.683

In each iteration, the representation from the previous layer (t− 1) is multiplied by the transition edge684

representation wq to obtain the new representation hq(u, v). The algorithm propagates the boundary685

condition from the source node to its neighbors. It is important to note that there is a distinction686

between query relation q and the relation r in the graph. The query relation q is used to initialize the687

source node (boundary condition), while then the transition edge representations wq(x, r, v) are obtained688

by the multiplication of relation r in the graph. Both embeddings are learned. Using the distributive689

properties of multiplication, all prefixes are computed simultaneously. This iterative process continues,690

assessing potential target nodes, until all paths from the source to the tail node are covered after t691

iterations, where t is the path length. For a more detailed description, refer to the Extended Methods692

in the Supplementary File.693

Neural formulation By abstracting the boundary condition in equation 1 to an indicator function,694

the multiplication operator in equation 2 to a message passing formulation, and the summation operator695

to a general aggregation function, NBFNet extends the generalized path formulation of the Bellman-Ford696

algorithm into a graph neural network framework.697

h(0)
v ← INDICATOR(u, v, q) (3)

h(t)
v ← AGGREGATE({MESSAGE(h(t−1)

x , wq(x, r, v))|(x, r, v) ∈ E(v)} ∪ {h(0)
v }) (4)

For the indicator function, NBFNet learns the query relation embedding q and assigns q to node698

v if v equals the source node u. For message passing, it uses relational operators from KG embed-699

dings: TransE (translation), DistMult (multiplication), and RotatE (rotation). Aggregation functions are700

permutation-invariant functions from GNN literature, including sum, mean, max, and principal neigh-701

borhood aggregation (PNA). Instead of traditional edge representations like transition probabilities or702

lengths, NBFNet parameterizes edge representations as a linear function of the query relation [50].703

NBFNet can be interpreted as a novel GNN framework for learning pair representations. Unlike704

typical GNNs, which compute pair representations as independent node embeddings h(u) and h(v),705

NBFNet conditions each node’s representation hq(u) and hq(v) on the source node and query relation706

q. The resulting pair representation hq(u, v) is then used for link prediction, predicting the tail entity v707

given the head entity u and relation q. This is formulated as the conditional likelihood of the tail entity708

v as:709

p(v|u, q) = σ(f(hq(u, v))) (5)

where σ( ) is the sigmoid function and f( ) is a feed-forward neural network.710
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5.3 BioPathNet - Biomedical Knowledge Graph Completion

Considering the unique characteristics of biological KGs, we introduce BioPathNet, a graph neural711

network framework based on NBFNet [50]. BioPathNet is designed to predict missing links in biomedical712

KGs and is applied to four biological tasks:713

1. Gene Function Prediction: Identifying potential novel functions for genes via gene-pathway associa-714

tions.715

2. Drug Repurposing : Discovering new indications for existing drugs by analyzing drug-disease associa-716

tions for established drugs.717

3. Synthetic Lethality Prediction: Identifying novel synthetic lethality gene pairs.718

4. lncRNA-Gene Target Prediction: prediction of regulatory relationships between lncRNAs and their719

putative target genes.720

Path representation in BioPathNet As path-based reasoning method, path representations721

hq(u, v) in BioPathNet are learned starting at a source node u to all potential target nodes v based722

on the relations r along the path, following the NBFNet parametrization (equations 3 and 4) but with723

important enhancements which make BioPathNet more suited for biological KGs. Firstly, we make use724

of entity type information, which is not used in NBFNet originally. Secondly, we pool additional data725

sources beyond the target KG to augment the knowledge available during reasoning for the target link726

prediction task. Specifically, given a KG G1 for which we wish to predict the missing links, we add an727

additional graphG2, as a Biological Regulatory Graph (BRG), into the path representation computation.728

These augmentation to the original NBFNet method constitute our BioPathNet.729

The incorporation of an external BRG, e.g. protein-protein interaction or gene regulatory network,730

provides additional edges (knowledge) that are used solely for message passing, enhancing the prediction731

of links of interest (Figure 1C). For example, in predicting the missing link (u, r, v), where (u, r, v) always732

comes from the target KG G1, messages can be passed only along paths in G1 yielding a prediction733

path such as in Figure 1D. Alternatively, a BRG G2 can be supplied to further information about the734

predictions, leveraging other knowledge bases (e.g., including relations between type 2 and 3 nodes), as735

illustrated in Figure 1E.736

Consequently, in BioPathNet, equation 4 is modified to always take (u, r, ?) from G1 but do aggregate737

and send messages across all edges G1 ∪G2. In equation 4 the edges (x, r, z) ∈ E(v) come from G1 ∪G2738

rather than just G1.739

After performing link prediction with the modified message passing scheme, BioPathNet ranks all740

candidate tail entities according to their likelihood p(v|u, q) to form a true triplet with a given head entity741

and relation q as the query. During the training of the model in a supervised setting, the negative log-742

likelihood is minimized between positive samples ⟨u, r, v⟩ (i.e., known triplets composed of a head node743

and tail node and the relationship between them) and negative samples ⟨u, r, v′⟩, which are generated744

by corrupting v (i.e., substituting the true v with another node v’).745

LKG = −logp(u, q, v)−
n∑

i=1

1

n
log(1− p(u, q, v′i)) (6)

where n is the number of negative samples per positive sample and (u, q, v′i) is the i-th negative sample746

for KGs. The same approach is used for the prediction of v given u and r−1 for the reverse relation of r.747

Unlike the original NBFNet, BioPathNet implements an entity-type aware negative sampling scheme.748

This means that when sampling negative v’ for training, we consider the node type and sample v’ only749

from the same type as v. This approach dramatically reduces the sample space and allows the model to750

learn better decision boundaries by focusing on sufficiently difficult negative samples. Importantly, the751

additional edges from the BRG are not used for sampling positive and negative triplets, ensuring that752

the computation of the loss in equation 6 remains unchanged.753
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5.4 Interpretation of prediction - Visualization of most important paths

Leveraging the NBFNet framework, BioPathNet predictions can be directly interpreted through paths.754

This feature is crucial for biomedical tasks, where understanding the mechanisms behind each prediction755

is essential. These interpretations highlight the paths that most significantly contribute to the prediction756

p(v|u, q). Using local interpretation methods, we approximate the local landscape of BioPathNet with757

a linear model over the set of all paths, and the importance is then defined by its weight in the linear758

model, which can be computed as the partial derivative of the prediction with respect to the path [50].759

Formally, the top-k path interpretations for p(u, q, v) are defined as:760

P1, P2, ..., Pk = top− kP∈Puv

∂p(u, q, v)

∂P
(7)

While directly computing the importance of all paths is intractable, NBFNet approximates them with761

edge importance. Specifically, the importance of each path is approximated by the sum of the importance762

of edges in that path, and therefore intuitively, the top-k path interpretations are equivalent to the top-k763

longest paths on the edge importance graph.764

For the visualization plot, we consider the top 10 most important paths ranked by gradient, with the765

edge width reflecting the number of times an edge appears in paths. Furthermore, the most important766

path is highlighted in red. In summary, our interpretability allows predictions to be assessed by their767

biological plausibility for hypothesis generation or validation in the laboratory.768

5.5 KG construction, Data pre-processing, and BioPathNet training

Gene function prediction task

For this task, we used the knowledge graph (KG) from the KEGG database (G1), extracted from Con-769

sensuPathDB, to train the model on gene (G) - pathway (P) interactions. Additionally, we utilized a770

BRG containing regulatory relationships between gene-gene (G-G), gene-chemical (G-C), and chemical-771

chemical (C-C) obtained from Pathway Commons (G2)[52, 53]. These interactions were represented as772

triplets in the format (node1, relationType, node2), such as (BABAM1, interacts-with, PSMD14).773

Details of the data, graph, relation types, and train, validation, and test sets are provided in Supple-774

mentary Tables 1 and 2. During data pre-processing, we removed KEGG pathways with fewer than 10775

annotations to genes. Next, we loaded both the BRG and KEGG graph (of pathways and genes [P-G])776

as a multi-graph in the network, maintaining only the biggest connected component, thereby remov-777

ing 11 nodes present in components of only 2–3 nodes. We trained BioPathNet using 70% of the P-G778

triplets, which were randomly split, with and without incorporating the underlying BRG as a message-779

passing graph. We used 10% of the P-G triplets for validation, and the remaining 20% were reserved for780

testing. When the BRG was not utilized, we took an additional step to exclude triplets containing genes781

that appeared in the validation or test sets but were absent from the training set. Hyperparameters782

were optimized based on the validation MRR, resulting in an optimal set of parameters for downstream783

analysis (Supplementary Table 3).784

Drug repurposing task

For this task, we used the PrimeKG database, an extensive multi-modal knowledge graph designed785

to integrate and unify diverse types of resources and biomedical and clinical data, such as gene-gene786

interactions, gene-disease associations, and drug-disease information [60] (Supplementary Figure 1). A787

summary of the node and edge relations can be found in [59], and details of the number of graph’s nodes788

and edges used for message passing, training, validation, and test are provided in Supplementary Table789

4.790

For training and evaluating BioPathNet we used the same data and data splits, as defined by TxGNN,791

a geometric deep learning model for zero-shot drug repurposing predictions also based on PrimeKG. Five792

distinct zero-shot disease areas were used: adrenal gland disorders, anemia, cardiovascular diseases, cell793

proliferation issues, and mental health conditions (Supplementary Table 4). A disease area encompasses794

a specific group of related diseases. For instance, the ”cell proliferation” area includes various cancer795
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types. We utilized TxGNN’s data split to create training, validation, and testing datasets reflecting796

a zero-shot prediction scenario in a proportion of 0.83:0.12:0.05. By using the TxGNN code (https:797

//github.com/mims-harvard/TxGNN from Apr 13, 2023, commit ”1000aac”), the different splits were798

created by removing all triplets with the relation types indication and contraindications for a799

disease area from the training dataset, along with 95% of connections to biomedical entities such as800

proteins and phenotypes [59]. This split simulates minimal molecular characterization of a disease area801

combined with no knowledge of therapeutic opportunities. While TxGNN constructs reverse edges, we802

removed those beforehand, since BioPathNet inherently adds reverse triplets (and the reverse relations)803

during reasoning.804

Only edges between drugs and diseases, such as indication and contraindication, were used to805

train BioPathNet in a supervised manner (G1 graph). The remainder of the PrimeKG graph served as the806

BRG for message passing (G2 graph). After removing reverse relations, the BioPathNet model used 5.7807

million directed edges for message passing per prediction setting (Supplementary Table 4). These edges,808

unlike supervised training triplets, were protein-protein or disease-disease relations. The training and809

validation sets averaged 33,000 and 4,000 edges, respectively, across five disease areas (Supplementary810

Table 4).811

We further created our custom data split with TxGNN’s ”disease eval” code to evaluate the per-812

formance in predicting drugs for the neurodegenerative disorder Alzheimer’s disease (AD). Drugs that813

were associated with various AD diseases were moved to the test set (Supplementary Table 5). All mod-814

els were trained for 10 epochs, employing an early stopping mechanism that retained the best model815

based on validation set performance (MRR, see below). The final hyperparameters for all five disease816

area splits are reported in Supplementary Table 6. All experiments were repeated for five different data-817

split seeds, using the exact seeds employed by TxGNN to ensure a fair comparison. Each data split seed818

resulted in slightly different training and validation sets for each disease area due to the random removal819

of edges to simulate the zero-shot scenario for the disease under study every time. Performance metrics820

were reported on the test set as the mean ± standard deviation across the five seeds (Supplementary821

Table 7).822

Synthetic lethality (SL) prediction task

For training and inference of BioPathNet, we used the SynLethDB-v2.0 [93] data as a KG, an updated823

database compiling SL relationships derived from screening experiments, as well as computational pre-824

dictions, providing a comprehensive resource for exploring gene interactions in cancer. BioPathNet was825

trained on preprocessed data, i.e. the SL gene pairs extracted from SynLethDB-v2.0, as provided by826

KR4SL, a KG-based model designed to predict SL interactions in cancer [49], and downloaded from827

their GitHub repository (https://github.com/JieZheng-ShanghaiTech/KR4SL from Dec 8, 2023 - com-828

mit ”61b5c84”). In detail, the SL gene pairs from SynLethDB-v2.0 for humans were randomly split into829

train, validation, and test triples in a ratio of 7:1:2, following the data split of KR4SL (Supplementary830

Tables 8 and 9). The pre-processed data was modified to fit the BioPathNet format by removing the831

reverse edges introduced by KR4SL for SL gene pairs (following the same pre-processing scheme in the832

drug repurposing task), as reverse edges are implicitly added by BioPathNet by default.833

On top of the SL pairs, SynLethDB-v2.0 constructs a KG including relations between gene entities,834

pathways, and three types of Gene Ontology (GO) terms: biological processes (BP), molecular functions835

(MF), and cellular components (CC) augmented using OntoProtein [44]. While SL pairs were used for836

supervised training (G1), the rest of the KG (G2) was used as BRG for message passing only, following837

the same scheme from previous tasks (Supplementary Tables 8–10). Hyperparameters were optimized838

based on the validation MRR, resulting in an optimal set of parameters for downstream analysis (Sup-839

plementary Table 11). We trained and evaluated BioPathNet at different confidence thresholds on the840

SL pairs, ranging from 0.1 to 0.8, as SL pairs in the database have varying confidence levels. This841

”thresholded data” approach contrasts with ”unthresholded data,” which includes all SL pairs from842

SynLethDB-v2.0 without filtering by confidence score. For a fair comparison, we ran BioPathNet for the843

same number of epochs using identical seeds and tuned hyperparameters on unthresholded data, which844

were then applied to thresholded data.845
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Since SL relationships are symmetric between genes, the final score for a gene v to be an SL partner846

of gene u is computed by considering both the feed-forward neural network transformed representation847

of tail node v given head node u and the SL relation, f(hq(u, v)), as well as the transformed symmetric848

representation, f(hq−1(u, v)) Thus, the final SL score for a gene v to be an SL partner of gene u from849

BioPathNet is reported as:850

p(v|u) = σ

(
f(hq(u, v)) + f(hq−1(u, v))

2

)
(8)

LncRNA-gene target prediction task

For this task, we used the LncTarD 2.0 database [108], a manually curated database of 8360 experimen-851

tally supported functional lncRNA-target regulatory interactions in human diseases, categorized into852

seven mechanisms of lncRNA-target regulation: ceRNA or sponge, chromatin looping, epigenetic regu-853

lation, expression association, interact with mRNA, interact with protein and transcriptional regulation.854

First, incomplete gene information, such as missing Ensembl IDs or gene names, was resolved via Gen-855

code and HGNC mapping. Second, as only 12 pairs of regulations belonged to the chromatin looping856

category, we re-labeled them as transcriptional regulation after manually inspecting every regulatory857

interaction in the scientific literature. This condensed the interaction relationships into six distinct types.858

A KG was constructed from LncTarD 2.0 (G1), where entities are the genes involved, and relations859

are the regulatory mechanisms. For a triplet (u, r, v), the head u corresponds to the regulator (e.g.860

lncRNA), the relation r to the regulation mechanisms, and the tail v to the target gene. On top of the861

LncTarD 2.0 KG, we added the BRG derived from PathwayCommons (G2), the same used for the gene862

function prediction task. As there is no direct link between small molecules and lncRNA, we only used863

PPI, discarding other types of relations. This enriches the original KG with additional connectivity.864

In the end, BioPathNet was trained on the lncRNA interactions from LncTarD 2.0 KG. The specific865

numbers of nodes and edges for the LncTarD-derived KG, the number of edges and nodes corresponding866

to the different relation types, as well as those used for train, validation, and testing of BioPathNet are867

detailed in Supplementary Tables 14 and 15. To enable node type-aware negative sampling, node entities868

were labeled with six different categories: lncRNA, mRNA, microRNA, transcription factor, protein and869

protein ppi (this last one to specifically identify nodes from ppi interactions from the BRG, whose edges870

are only used for message passing and not supervised training). The optimal parameters of BioPathNet871

in this setting, determined through the MRR on the validation set, are reported in Supplementary Table872

16.873

Further, we ranked the interaction partners of 42 lncRNAs, including PVT1, sourced from the studies874

of [102] and [101]. We considered a regulatory relationship between the lncRNA of interest and its target875

genes when there existed any relation r for which the conditional probability exceeded a threshold t,876

p(v|u, q) ≥ t. Conversely, if no such relation exists, it is considered that there is no regulatory relationship.877

The threshold we used here is the average probability of the triples that overlap with the training set878

outputted by BioPathNet. These probabilities approximated an exponential, normal distribution and879

were also used for random sampling, constituting a random baseline.880

5.6 Comparison with baselines

We compared BioPathNet against several baselines. Among the KG Embedding methods, we bench-881

marked TransE, DistMult and RotatE, belonging to shallow models learning embeddings with an encoder882

for each relation and node. The latent embedding space is restricted by the semantic relationship r883

between u and v nodes. RotatE models relations as rotations in the complex plane to capture symmet-884

ric and antisymmetric patterns [37], TransE represents relations as translations between entities [71],885

and DistMult uses diagonal matrices to capture symmetric relationships through element-wise multi-886

plication of entity and relation embeddings [38]. We also benchmarked BioPathNet against the Graph887

neural network-based R-GCN, a method that performs both node classification and link prediction888

tasks, extending traditional GCNs to handle multi-relational data by introducing relation-specific weight889

matrices [109]. It updates node representations by aggregating information from neighbors, considering890
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the type of edge connecting them, which allows it to capture the distinct characteristics of different891

semantics of each relation within a graph.892

For the Drug repurposing prediction task, we compared BioPathNet to TxGNN, a state-of-the-art893

model for predicting drug-disease relationships in zero-shot scenarios, where minimal prior information894

or treatment history is available [60]. Leveraging PrimeKG [60], a comprehensive biomedical knowledge895

graph, TxGNN uses R-GCNs to learn embeddings of drugs and diseases, capturing complex interactions896

by mapping them into a shared latent space.897

For the Synthetic lethality pair prediction task, BioPathNet was benchmarked against Knowledge898

Representation for Synthetic Lethality (KR4SL), a path-representation learning GNN-based method899

designed specifically for the explainable prediction of SL gene pairs in cancer [49].900

All baseline methods were re-trained with optimal parameters to ensure a fair comparison. Detailed901

descriptions of each baseline and the specifics of the final model parameters are provided in the Extended902

Methods section of the Supplementary File.903

5.7 Model evaluation

Various metrics were used to evaluate BioPathNet across different tasks and compare its performance904

with baseline methods. For all tasks, methods were evaluated based on: Mean Rank (MR), the average905

rank of the true positive among all predicted candidates; Mean Reciprocal Rank (MRR), the average906

of the reciprocal ranks of the first relevant item. Hits@k, the proportion of true positives ranked within907

the top k predictions. Values for these metrics range in [0, 1], and the larger the value, the better the908

model (for an extensive explanation of these metrics, refer to the Extended Methods section of the909

Supplementary File).910

While KGC models the conditional probability of predicting the tail entity v given the head entity911

u and relation r, evaluating the joint probability of u, v, and r may be more comprehensive. To ensure912

consistency with TxGNN in drug prediction, we also used AUPRC to summarize precision and recall913

across thresholds, along with specificity and F1 score at a 0.5 threshold, using TxGNN’s evaluation914

code. This approach assesses the performance of each disease node. For details on computing AUPRC915

in the comparison between BioPathNet and TxGNN, refer to the Extended Methods section in the916

Supplementary File.917

For the SL prediction task, we compared the seed-wise performance of our model with the per-918

formance of KR4SL using metrics inherent to the KR4SL framework’s code, specifically NDCG@k,919

Recall@k, and Precision@k (see Extended Methods, Supplementary File). Moreover, we computed MRR920

for both BioPathNet and KR4SL by first calculating MRR for each query gene and then averaging921

gene-wise MRRs overall query genes.922

6 Data Availability

Data for the gene function prediction task can be downloaded from the public platforms of Path-923

wayCommons and ConsensusDB. We refer to the methods for more instructions. In the drug-disease924

prediction task, PrimeKG’s data can be automatically downloaded and data splits generated by TxGNN.925

SynLethDB data was processed by KR4SL, which we obtained through their GitHub repository. Data926

for lncRNA target prediction was obtained over LncTarD 2.0. Further preprocessing was done to fit927

BioPathNet’s data format, all scripts can be found in https://github.com/emyyue/BioPathNet.928

7 Code Availability

The BioPathNet model and all the code necessary for reproducing our results is publicly available929

via GitHub at https://github.com/emyyue/BioPathNet. An archived version will be deposited in the930

Zenodo database upon acceptance.931
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