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Wwp2 maintains cartilage homeostasis through
regulation of Adamts5
Sho Mokuda 1,2, Ryo Nakamichi1, Tokio Matsuzaki1, Yoshiaki Ito3,4, Tempei Sato3, Kohei Miyata1,

Masafumi Inui 5,6, Merissa Olmer1, Eiji Sugiyama2, Martin Lotz1 & Hiroshi Asahara 1,3

The WW domain-containing protein 2 (Wwp2) gene, the host gene of miR-140, codes for the

Wwp2 protein, which is an HECT-type E3 ubiquitin ligases abundantly expressed in articular

cartilage. However, its function remains unclear. Here, we show that mice lacking Wwp2 and

mice in which the Wwp2 E3 enzyme is inactivated (Wwp2-C838A) exhibit aggravated

spontaneous and surgically induced osteoarthritis (OA). Consistent with this phenotype,

WWP2 expression level is downregulated in human OA cartilage. We also identify Runx2 as

a Wwp2 substrate and Adamts5 as a target gene, as similar as miR-140. Analysis of Wwp2-

C838A mice shows that loss of Wwp2 E3 ligase activity results in upregulation of Runx2-

Adamts5 signaling in articular cartilage. Furthermore, in vitro transcribed Wwp2 mRNA

injection into mouse joints reduces the severity of experimental OA. We propose that Wwp2

has a role in protecting cartilage from OA by suppressing Runx2-induced Adamts5 via Runx2

poly-ubiquitination and degradation.
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Osteoarthritis (OA) is the most common joint disease and
leads to chronic disability in elderly patients. Destruction
of articular hyaline cartilage in the synovial joints is a key

event in OA initiation and progression1–4. Adult articular carti-
lage consists of chondrocytes and extracellular matrix (ECM),
such as collagens and proteoglycans including Aggrecan. Under
physiological conditions, chondrocytes maintain the equilibrium
of ECM and cartilage homeostasis by producing anabolic mole-
cules5. During aging and joint diseases, catabolic reactions against
ECM in cartilage dominate, leading to loss of ECM proteins and
contributing to cartilage destruction5.

ADAMTS (A disintegrin and metalloproteinase with throm-
bospondin motifs) is a family of 19 secreted extracellular protease
enzymes, which can cleave procollagens, neurocan, aggrecan,
brevican and versican6. ADAMTS4 and ADAMTS5 (Aggreca-
nase-1 and Aggrecanase-2, respectively) consist of a catalytic
metalloprotease domain and a series of other ancillary domains,
which participate in regulating their activity and substrate spe-
cificity7. These proteins are involved in the excessive matrix
degradation that characterizes cartilage damage in OA8,9.
Expression levels of ADAMTS4 in human OA cartilage are higher
than in normal cartilage10. It has been reported that Adamts5 is
an important enzyme in OA pathogenesis because gene deletion
prevented cartilage degradation in murine OA models11,12.

Wwp2, WW domain-containing protein 2, is a member of the
C2-WW-HECT family (NEDD4 family) of the E3 ubiquitin
ligases (E3)13, which act as acceptors of ubiquitin from E2
enzymes and then transfer ubiquitin to a specific lysine residue on
the substrate14. miR-140 is located in the Wwp2 locus as an
intronic microRNA15. Both Wwp2 and miR-140 are abundantly
and specifically expressed in cartilage16,17, suggesting a potential
function in this tissue. Our group and others previously reported
that miR-140 plays a critical role both in craniofacial develop-
ment and cartilage homeostasis18–20, whereas Wwp2 knockout
(KO) (Wwp21ins/1ins) mice did not show craniofacial defor-
mities21, implicating low relevance of Wwp2 during development.
Wwp2 function and its substrate in adult cartilage homeostasis
and OA remain unclear. Here we report that E3 ligase activity of
Wwp2 maintains cartilage homeostasis through regulation of
Runx2-Adamts5 signaling. We propose that Wwp2 replacement
is a novel therapeutic approach for cartilage destruction, as
similar as miR-140.

Results
Loss of Wwp2 exacerbates articular cartilage destruction. The
Wwp2 locus can generate both miR-140, an intronic microRNA,
and Wwp2 protein (Supplementary Fig. 1A). Our group has
previously reported that deletion of miR-140 in mice caused early
onset of the OA phenotype18. To examine whether Wwp2 is
related to cartilage homeostasis and OA pathogenesis, we exam-
ined aging-related changes (12 months old) in knee articular
cartilages of miR-140 and Wwp2 individual and double KO
(DKO) mice which were generated using the CRISPR/
Cas9 system:21 miR-140 KO (miR-14014del/14del), Wwp2 KO
(Wwp21ins/1ins) and miR-140/Wwp2-DKO (Wwp21del/1del; miR-
140132del/132del) (Supplementary Fig. 1A). DKO mice exhibited
more severe OA changes than Wwp2 KO or miR-140 KO mice,
which showed more severe OA changes compared to in WT mice
(Fig. 1a, b) (Supplementary Fig. 1B, C, D, E). The OA changes in
Wwp2 KO mice were observed at 12 months, although these
changes are milder rather than in miR-140/Wwp2-DKO mice. To
further analyze the phenotype of articular cartilage in Wwp2 KO
mouse, we also investigated aging-related OA at 18 months and
surgically induced OA model. In the 18-month-aging model and
the surgical destabilization of the medial meniscus (DMM) model

of OA, a more severe OA phenotype in Wwp2 KO mice was
observed compared to the WT mice (Fig. 1c–f) (Supplementary
Fig. 2A). Wwp2 protein expression levels of these Wwp2 KO
mice decreased, while miR-140 expression levels were unchanged
(Supplementary Fig. 1B, D). These mice showed no obvious
developmental abnormalities, such as craniofacial malformation,
short body length, change in growth plate dimensions, or irre-
gularity in articular bone alignment (Supplementary Fig. 3A, C, F,
H). These data suggest that Wwp2 has a protective function
against cartilage destruction.

Loss of Wwp2 during aging, injury or inflammation. Next,
WWP2 and Wwp2 expressions were examined in human and
mouse OA and normal articular cartilages. In OA human
articular cartilage, WWP2 expression levels were lower than in
normal tissue as examined by RNA-seq or reverse transcription
(RT)-quantitative polymerase chain reaction (qPCR) (Fig. 2a, b)
(Supplementary Table 2), and immunohistochemistry (IHC)
(Fig. 2c–e) (Supplementary Fig. 4A) (Supplementary Table 2). In
mouse articular cartilage, Wwp2 expression was lower in aging or
surgically induced OA (Fig 2f, g). WWP2 and Wwp2 expression
levels in human and mouse primary cultured chondrocytes,
respectively, were suppressed by interleukin (IL)-1β stimulation, a
mediator in OA pathogenesis22 (Fig. 2h).

Wwp2 regulates Adamts5 expression in articular cartilage. To
further investigate the function of Wwp2 in articular cartilage, we
performed RNA-seq analysis using mouse articular cartilages
from WT and Wwp2 KO mice (Fig. 3a). In gene ontology ana-
lysis, the expression of 33 genes classified as ECM-related factors
were dysregulated in Wwp2 KO mice. Among the upregulated
genes, we focused on Adamts5, since there is genetic evidence
linking Adamts5 and articular cartilage destruction11,12. Adamts5
were higher levels in Wwp2 KO mice than in WT mice (Fig. 3a,
b) (Supplementary Fig. 4B, C, D). Elevated Adamts5 protein
expression was confirmed by IHC in the articular cartilage of
Wwp2 KO mice compared to in WT mice (Fig. 3c, d). To further
investigate the relationship between Adamts5 and Wwp2, we
performed overexpression experiments using in vitro transcribed
(IVT) mRNA, which contained modified nucleic acids (pseu-
douridine-5′-triphosphate (ψ) and 5-methylcytidine-5′-tripho-
sphate (5mCTP)) to reduce the inflammatory response against
single-stranded RNA23,24 (Supplementary Fig. 4E). When we
transfected IVT Wwp2 mRNA (ψ, 5mCTP) into mouse chon-
drocytes, Adamts5 expression levels were downregulated (Fig. 3e)
(Supplementary Fig. 4F). In human chondrocytes, ADAMTS5
expression induced by IL-1β stimulation was also downregulated
by Wwp2 overexpression (Fig. 3e) (Supplementary Fig. 4G).
Therefore, these data indicated that Wwp2 regulates Adamts5
expression in articular cartilage.

The Wwp2 gene encodes both miR-140 and Wwp2 (Supple-
mentary Fig. 1A). As previously reported, one of targets of miR-
140 was Adamts518, similar to Wwp2. Thus, we examined
functional interaction between Wwp2 and miR-140. To test miR-
140 binding activity, Ago2-CLIP-qPCR analysis showed that the
target mRNA levels of Adamts5 in Ago2-binding mRNAs were
more concentrated in WT chondrocytes than in miR-140-/-

chondrocytes (Fig. 3f)18, suggesting that miR-140 directly binds
to the Adamts5 mRNAs. Treatment with both IVT Wwp2 mRNA
(ψ, 5mCTP) and miRNA-140 mimic showed that Adamts5
expression levels were lowest when both Wwp2 and miR-140
were administered simultaneously (Fig. 3g), implying the
functional cooperativity between Wwp2 and miR-140 in
chondrocytes.
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Wwp2 regulates Adamts5 through poly-ubiquitination of
Runx2. The molecular mechanism of how Wwp2 reduces
Adamts5 has not been determined previously. Adamts5 was
excluded as a Wwp2 substrate because Adamts5 does not have a
PY-motif13,25. In this regard, we searched the upstream signals
and trans-acting factors of Adamts5 for Wwp2 substrates. This

search identified Runt-related transcription factor 2 (Runx2).
Adamts5 expression in chondrocytes and OA pathogenesis has
been reported to be enhanced by nuclear factor-kappa B (NF-κB)
or Runx226. It has also been reported that RUNX2 can up-
regulate ADAMTS5 using real-time PCR, luciferase assay, and
chromatin immunoprecipitation (ChIP) analyses27,28. We
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Fig. 1 Loss of Wwp2 exacerbates articular cartilage destruction. a, b. Results of aging (12-month-old) OA murine model compared among wild type (WT),
miR-140 KO (miR-14014del/14del), Wwp2 KO (Wwp21ins/1ins) and miR-140/Wwp2-DKO (Wwp21del/1del; miR-140132del/132del) mice. a Representative images
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performed luciferase assays using Runx2 reporter or NF-κB
reporter and found that Wwp2 overexpression repressed Runx2
reporter activity, but not NF-κB reporter activity (Fig. 4a) (Sup-
plementary Fig. 5A). Overexpression of Wwp2 decreased Runx2
protein levels, while MG132, a proteasome inhibitor, blocked
Runx2 degradation (Fig. 4b). And, elevated Runx2 protein levels
were detected in the articular cartilage of Wwp2 KO mice com-
pared to in WT mice (Fig. 4c, d). In addition, small interfering
RNA (siRNA) against Wwp2 (siWwp2) upregulated Runx2

transcriptional activity (Supplementary Fig. 5B, C). These data
suggest that Wwp2 might induce Runx2 protein degradation
through the ubiquitin-proteasome system.

In Wwp2-C838A (Wwp2-CA), the crucial cysteine-838
residue was mutated to alanine to inactivate its E3 ligase
activity14. In a cycloheximide (CHX) blockade experiment,
Wwp2 promoted Runx2 degradation compared to the Wwp2-
CA control (Supplementary Fig. 5D). A luciferase assay using
mouse Adamts5 promoter region (from -880 to+ 67 base pairs
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(bp) relative to the transcription start site (TSS)) and RT-qPCR
for Adamts5 expression showed that Wwp2 regulated Runx2-
induced Adamts5 expression while Wwp2-CA did not (Fig. 4e, f).
The luciferase assay using siWwp2 revealed the upregulation of
Adamts5 expression (Supplementary Fig. 5C). To confirm the
binding activity of Runx2 to the responsive DNA sequences,
ChIP-qPCR was performed using an anti-Runx2 antibody in the
ATDC5 chondrogenic cell line. The results indicated that Runx2
bound to the Adamts5 promoter region (approximately −700 bp
relative to the TSS) (Fig. 4g). Furthermore, the observation that

siRNA against Runx2 (siRunx2) downregulated Adamts5
expression is supporting this relationship (Supplementary
Fig. 5C).

To test these interactions (Wwp2-Runx2-Adamts5 axis)
in vivo, we performed two experiments. First, we treated Wwp2
KO mice with siRunx2 by injection into the knee joints (Fig. 4h).
Results showed that siRunx2 reduced Adamts5 expression in
articular cartilage of the Wwp2 KO mice (Fig. 4i). Second, we
generated Wwp2-CA (Wwp2C838A/C838A) mutant mouse using
the CRISPR/Cas9 system (Fig. 5a) (Supplementary Fig. 6A, B)29.
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In agreement with our recent findings21, we did not detect
developmental abnormalities in this mouse line (Supplementary
Fig. 3B, D, G, I). These Wwp2 enzyme inactivated mice
developed more severe surgically induced OA compared to WT
mice (Fig. 5b, c) (Supplementary Fig. 2B). Adamts5 expression
levels in the knee cartilage were also higher than those in WT

mice, while their miR-140 expression levels remained unchanged
(Fig. 5d). Runx2 and Adamts5 expression levels in articular
cartilages from Wwp2-CA mice were elevated compared to WT
mice, as detected by IHC (Fig. 5e, f). These findings further
support the notion that the E3 ligase activity of Wwp2 is crucial
for repressing the Runx2-Adamts5 signaling pathway.
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Then we examined whether Runx2 is a direct substrate of
Wwp2-dependent ubiquitination and identified the physical
interaction domains between Wwp2 and Runx2. An immuno-
precipitation (IP) assay showed that overexpressed Wwp2
induced Runx2 poly-ubiquitination, which was not detectable
under Wwp2-CA overexpression and was enhanced by MG132
treatment (Fig. 6a) (Supplementary Fig. 6C, D). The result of the
in vitro ubiquitination assay supported the notion of Wwp2-
induced Runx2 poly-ubiquitination (Fig. 6b). Consistently, Wwp2
protein, but not Wwp2-CA protein, induced Runx2 poly-
ubiquitination in these in vitro assays, indicating that Runx2 is
a direct substrate of Wwp2. We also confirmed the direct binding
activity between Wwp2 and Runx2 by Co-IP and pull-down assay
(Fig. 6c, d). ATDC5 transduced with myc-Wwp2 showed that
myc-Wwp2 bound endogenous Runx2 protein (Fig. 6e). Accord-
ing to results of domain mapping, Runx2 bound to the WW
domain of Wwp2 (Fig. 6f, g) and Wwp2 bound to the PY-motif of
Runx2 protein (Fig. 6h, i).

Consequently, these data revealed that Wwp2 has an essential
function to regulate Adamts5 through poly-ubiquitination-
induced Runx2 degradation.

IVT Wwp2 mRNA prevents mouse articular cartilage
destruction. To test whether IVT Wwp2 mRNA (ψ, 5mCTP)
functions in vivo, we injected IVT mRNA into knee joints of
Wwp2 KO mice. After injections of IVT mRNA (ψ, 5mCTP)
using a method that combines atelocollagen and invivofectamine,
Wwp2 protein levels were elevated in mouse articular cartilage, as
detected by IHC staining and western blot analyses, without
adverse inflammatory responses or adverse injury events (Sup-
plementary Fig. 4E, 7A, B, 8A, B, C). IVT Wwp2 mRNA (ψ,
5mCTP) significantly suppressed Adamts5 expression levels in
Wwp2 KO mice compared to IVT control mRNA (ψ, 5mCTP)
(Fig. 7a, b), suggesting that introduced Wwp2 can regulate
Adamts5 expression.
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On the basis of these findings, we investigated whether IVT
Wwp2 mRNA (ψ, 5mCTP) has a potential therapeutic effect in
the DMM OA model in mice (Fig. 7c). After DMM surgery, we
injected the IVT mRNA/atelocollagen/invivofectamine mixture
into C57BL/6 WT mouse knees 3 times per week for 10 weeks.
Cartilage destruction in the OA model was significantly inhibited
in the IVT Wwp2 mRNA-treated group compared to the control
group (Fig. 7d, e) (Supplementary Fig. 2C), demonstrating the
potential of Wwp2 mRNA as a new OA treatment strategy.
Furthermore, the protein levels of Runx2 and Adamts5 in
articular cartilage were decreased in the IVT Wwp2 mRNA-
treated group compared to the control group (Fig. 7f, g)
(Supplementary Fig. 2D).

In summary, Wwp2 has a protective function against cartilage
destruction through regulation of Runx2-Adamts5 pathway,

maintaining cartilage homeostasis. Based on the simultaneous
Adamts5 targeting, this newly identified Wwp2-Runx2 pathway
and previously reported miR-140, products from the Wwp2 locus
have a potential to regulate Adamts5 at pre- and post-
transcriptional stages cooperatively (Fig. 7h).

Discussion
Runx2 has dual functions; an essential role in regulating genes for
intramembranous and endochondral bone development30,31 and
catabolic action in articular cartilage by inducing matrix degra-
dation enzymes such as Adamts527,28. High RUNX2 expression
levels were detected in human OA cartilage32, and cartilage
degradation in experimental OA was ameliorated in global
Runx2-haploinsufficient mouse and conditional KO mouse
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(Agc1-CreER; Runx2flox/flox mouse)33,34, supporting the notion
that Runx2 contributes to OA pathogenesis. Several E3 ligases,
such as Smad ubiquitination regulatory factor 1 (Smurf1), Car-
boxy terminus of HSP70-interacting protein (CHIP) and WW
domain-containing protein 1 (Wwp1) can catalyze poly-
ubiquitination of Runx235–37. In osteoblasts, RUNX2 is repor-
ted to be mono-ubiquitinated by WWP2, but this does not affect
protein degradation38. In this study, we observed that poly-
ubiquitination and subsequent degradation of Runx2 was induced
by Wwp2 in chondrocytes via the PY-motif of Runx213,25, which
is a key pathway for maintaining cartilage homeostasis.

In our study, we identified Runx2 as a target of Wwp2 and that
Wwp2-Runx2 regulates Adamts5. Adamts5 is an important

enzyme in OA pathogenesis. Loss of Adamts5 ameliorates carti-
lage degradation in murine OA models11,12. Importantly, it has
already been reported that there are other targets of E3 ligase of
Wwp2. These include TIR-domain-containing adapter-inducing
interferon-β (TRIF), Notch3, Phosphatase and tensin homologue
deleted on chromosome 10 (PTEN) and Src homology region 2
domain-containing phosphatase-1 (SHP-1), in addition to the
Wwp2-Runx2 axis39–42. In this regard, in order to elucidate the
molecular pathogenesis of OA triggered by Wwp2 depletion, not
only Adamts5 but also other targets involved in cartilage home-
ostasis should be identified in future studies.

In our previous and present studies, the Wwp2 KO mouse
established by the CRISPR/Cas9 system did not have
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developmental abnormalities, including craniofacial deformity, at
1- and 2-month-of-age. The craniofacial phenotype of Wwp2GT/
GT mouse reported by Zou et al43. reflects the loss of miR-140.
This is not the case in the Wwp2 KO mouse, in which miR-140
expression is normal21. Thus, Wwp2 is not related to craniofacial
deformity compared to miR-140.

Our study demonstrated that Wwp2 functions in protecting
articular cartilage by regulating Adamts5. While, Wwp2 has
a potential to regulate production of inflammatory cytokines in
macrophages and to affect TH2 cells differentiation39,42. Experi-
mental OA models using Wwp2 KO mouse and IVT Wwp2
mRNA (ψ, 5mCTP) treatment in the present study did not show
inflammatory responses with gain or loss of Wwp2 in cartilage or
synovium (Supplementary Fig. 2A, B, C) (Fig. 7b). Therefore, the
inflammatory response induced by mRNA administration or
gain/loss of Wwp2 does not appear to be a major mechanism
explaining our results.

Administration of IVT mRNA into chondrocytes in articular
cartilage in vivo should be a powerful strategy for OA treatment;
however, few studies have examined this because of two major
difficulties44,45. The efficiency of mRNA introduction in chon-
drocytes surrounded by ECM is low and inflammatory responses
occur to introduced IVT mRNA via Toll-like receptor 3 (TLR3),
Retinoic acid-inducible gene-I (RIG-I) and Melanoma
differentiation-associated gene 5 (MDA5)46. These issues can be
overcome by modifying in vivo transfection methods by com-
bining atelocollagen and invivofectamine, and by integrating
modified nucleic acids into the administrated IVT mRNA (Sup-
plementary Fig. 7A). Modified nucleotides, including pseudour-
idine-5′-triphosphate (ψ) and 5-methylcytidine-5′-triphosphate
(5mCTP), can modulate IVT mRNA to avoid the activation of
pattern recognition receptors23,24 and subsequent inflammatory
responses.

In cartilage homeostasis, but not during development21, we
showed the function of Wwp2 in articular cartilage. As Adamts5
is also recognized by miR-140 (Fig. 3f), the regulation of a
common target by the pair of Wwp2 and miR-140, coded in the
Wwp2 gene locus, might cooperatively enhance their function to
maintain cartilage homeostasis at both pre- and post- transcrip-
tional stages. This concept might be supported by miR-140/
Wwp2-DKO mouse OA model (Fig. 1a, b) and in vitro double-
overexpression experiments (Fig. 3g). Furthermore, as both miR-
140 and Wwp2 are suppressed in OA cartilage and by IL-1β in
chondrocytes, approaches which simultaneously induce expres-
sion of miR-140 and Wwp2 should be promising OA therapies.

Methods
Study approval. Human and animal studies received ethical approval by the
Scripps Human Subjects Committee at The Scripps Research Institute and the
Scripps Institutional Animal Care and Use Committee. Human tissues were
obtained with approval by the Scripps Human Subjects Committee at The Scripps
Research Institute, Protocol No: IRB-09-5162. In this study we used discarded de-
identified surgical samples from Scripps Green Hospital and unidentifiable samples
from tissue banks. Informed consent was not required. All animal studies were
performed according to protocols approved by the Scripps Institutional Animal
Care and Use Committee. All mice were freely allowed to access to food, water and
activity. Quantification of histopathological changes in the joint tissues was per-
formed by at least two independent observers blinded to the experimental condi-
tions. Sample sizes were determined based on prior studies using wild type (WT)
and mutant mice to detect similar changes in the joint tissues.

Mice. Wwp2 KO (Wwp21ins/1ins) mice, miR-140 KO (miR-14014del/14del), miR-140/
Wwp2-double KO (DKO) (Wwp21del/1del; miR-140132del/132del) and miR-140-/-

mice were generated and maintained in our lab as described18,21. Wwp2-C838A
(Wwp2-CA) (Wwp2C838A/C838A) mice were generated based on the method
described by Inui et al.29. Briefly, sgRNA, Cas9 mRNA and single strand oligo
deoxy nucleotide (ssODN) carrying the TGC to GCC mutation were microinjected
into fertilized eggs obtained from the intercross of BDF1 mice. The sgRNA used in
this study was: gRNA 5′-GGCTGCCCAGGAGCCATACGTGG-3′. The

synthesized ssODN (100 bases, PAGE purified) were purchased from Fasmac
(Kanagawa, Japan) as follows: 5′-CTGCATCGACAGAGTTGGCAAGGAAAC
CTGGCTGCCCAGGAGCCATACGGCGTGAGTTTGCCGGGAGCTGGCAG
GCTGGAGCTGTAGGCTGGTGGGGGCA-3′. Heterozygous mice were back-
crossed to C57BL/6 mice for 4 generations before analysis.

Micro CT analyses. To analyze the skulls and knee joints, samples were isolated
from 2-month-old sex-matched wild-type (WT) and knockout (KO) mice were
fixed in 99.5% ethanol and scanned using a Siemens Inveon micro-CT (Munich,
Germany) scanner with a spatial resolution of 45 and 32 μm. The data were ana-
lyzed using VivoQuant software (Invicro, Boston, MA, USA).

Surgical and aging-related mouse OA model and Wwp2 treatment. OA was
surgically induced by destabilizing the medial meniscus (DMM) in the right knee
joints47. The surgeries were performed in the right knee joints of 3-month-old male
WT mice (littermate) and Wwp2 mutant mice. The left knee joints were used for
sham surgeries. The knees were harvested at 10 weeks after surgery. Next, speci-
mens were fixed in 10% zinc-formalin for 2 days and decalcified in TBD-2 (Life
Technologies, Carlsbad, CA, USA) for 24 h, followed by paraffin embedding.
Sections (4 µm each) from the knee joints of mice were used for Safranin-O
staining and immunohistochemistry staining as described below. To observe car-
tilage degradation during aging, we compared male WT, Wwp2 KO, miR-140 KO
and miR-140/Wwp2-DKO mice at 6, 12 and 18 months.

For the Wwp2 treatment of experimental OA, injection cocktails, containing
in vitro transcribed mRNA (IVT mRNA), were prepared as described below. Male
C57BL/6 WT mice had DMM surgery at 3-month-old. After DMM surgery, the
IVT mRNA cocktails were injected into the right knee joints 3 times per week for
10 weeks. Knee joints were harvested and treated as described above.

Histological analyses. Human cartilage samples for histological analyses were
obtained at autopsy from individual ages 19–86 years within 48 h post-mortem
under approval by the Scripps Human Subjects Committee. The articular surface
from these specimens were graded macroscopically according to a modified Out-
erbridge scale (grade 0-4)48. Osteochondral blocks were harvested, fixed, dec-
alcified, embedded and stained with Safranin-O in reference to the previous
report49. To confirm the zonal distribution of human specimens, each zone
(superficial zone, mid zone and deep zone) was classified based on previously
reported characteristics50.

To grade mouse knee cartilage destruction of the medial femoral cartilage and
medial tibial plateau, we summed the scores of the femur and tibia of Safranin-O
stained samples, which were evaluated using the Osteoarthritis Research Society
International (OARSI) cartilage OA histopathology semi-quantitative scoring
system (score 0-24)51. The data are shown as maximum and average scores.
Average scores were calculated using the scores of three specimens per mouse.
Osteophyte, synovitis and subchondral bone were evaluated as described52–54.

To compare the area of the growth plate in the tibiae, the dimensions were
analyzed using ImageJ 1.51 K software (NIH, Bethesda, MD, USA).

Primary articular chondrocyte preparation and culture. Preparation of primary
human articular chondrocytes, isolation was performed in reference to the previous
report55. In brief, cartilage slices were collected from femoral condyles and washed
in DMEM. After mincing with scalpels, we transferred the samples into collagenase
IV (Worthington Biochemical, Lakewood, NJ, USA) contained DMEM at 37
degrees for 24 h. Isolated cells were seeded into dishes or flasks.

Primary mouse articular chondrocytes were prepared from the hips and knees
of 6-days-old mice as previously reported56. We isolated the cartilage from the
femoral heads, femoral condyles, and tibial plateau. We took care to remove
hypertrophic zone in the collect tissues. Then, we treated the tissues with
collagenase IV (Worthington Biochemical) in DMEM at 37 °C for 12 h. Isolated
cells were seeded into dishes or flasks.

Primary chondrocytes, SW1353 cell line and HEK293T cell line (ATCC,
Manassas, VA, USA) were incubated at 37 °C in humidified gas containing 5% CO2

with DMEM/L-glutamine/10% fetal bovine serum/penicillin-streptomycin (Life
Technologies, Carlsbad, CA, USA). ATDC5 cell line (Sigma-Aldrich, St. Louis, MO,
USA) was cultured in DMEM-F12/L-glutamine/HEPES/5% fetal bovine serum/
penicillin-streptomycin (Life Technologies). In some experiments, primary
chondrocytes and HEK293T were treated with the proteasome inhibitor MG132
(Sigma-Aldrich), poly(I:C) (InvivoGen, San Diego, CA, USA), Cycloheximide (100
ug/ml), recombinant IL-1β (R&D Systems, Minneapolis, MN, USA) (10 ng/mL)
after serum starvation. IVT mRNA and microRNA mimic were transfected with
Lipofectamine MessengerMAX (Life Technologies) into primary chondrocytes
according to the manufacturer’s instructions. The microRNA mimic (Pre-miR
miRNA Precursor of mmu-miR-140-5p and its negative control) were purchased
from Life Technologies.

Plasmid construction. Wwp2 (Wwp2: NM_025830.3) and RUNX2 (Runx2:
NM_001146038.2) plasmids were constructed by inserting full-length cDNA into
the pcDNA3, pcDNA3-flag, pcDNA3-myc, pcDNA3-A(124) vectors57 or pMXs-
Neo. The Wwp2-C838A (Wwp2-CA) plasmid was constructed based on their full-
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length vectors by inverse PCR. Fragmented Wwp2 and Runx2 plasmids were
constructed based on their full-length vectors by PCR. pcDNA3-flag-RelA (p65),
pRK5-HA-Ubiquitin-WT and pRK5-EGFP vectors were purchased from Addgene
(Cambridge, MA, USA).

For the luciferase assay, 5 reporter plasmids were constructed by PCR or using
custom gene products (Genscript, Piscataway, NJ, USA). The pGL4.16 vector and
pNL1.1 vector were purchased from Promega (Madison, WI, USA). An NF-κB
reporter plasmid was constructed by inserting the HSV-TK promoter and 4 repeats
of the NF-κB binding consensus sequence 5′-GGGAATTTCC-3′ into pGL4.16
vector. Runx2 reporter plasmids (6OSE2) was constructed according to a
previously reported sequence58. Adamts5p plasmids was constructed by inserting
the mouse Adamts5 promoter region (from -880 to+ 67 bp relative to the TSS)
into the pGL4.16 and pNL1.1 vectors.

Generation of IVT mRNA, in vivo mRNA and siRNA transfection. To generate
IVT mRNA, template plasmids based on the pcDNA3-A(124) vector were line-
arized, followed by in vitro transcription performed using T7 RNA polymerase
enzyme from the mMESSAGE mMACHINE T7 transcription Kit (Ambion, Foster
City, CA, USA). Components of the mixture except T7 polymerase, reaction buffer
and template DNA were as follows: (1) conventional IVT mRNA: 6 mM Cap
analog (Anti-Reverse Cap Analog), 7.5 mM ATP, 1.5 mM GTP, 7.5 mM CTP and
7.5 mM UTP. (2) IVT mRNA (ψ, 5mCTP): 10 mM Cap analog (Anti-Reverse
Cap Analog), 7.5 mM ATP, 2.5 mM GTP, 7.5 mM CTP, 4 mM 5-methylcytidine-
5′-triphosphate (5mCTP), 7.5 mM UTP and 4mM pseudouridine (ψ) (TriLink
BioTechnologies, San Diego, CA, USA). After in vitro transcription at 37 °C for
60 minutes, IVT mRNA was purified using the MEGAclear Kit (Ambion).

To transfect IVT mRNA into primary chondrocytes in vitro, the cells were
treated with Lipofectamine MessengerMAX (Life Technologies) and IVT mRNA
(ψ, 5mCTP) according to the manufacturer’s instructions. Additionally, we
performed in vivo IVT mRNA transfection experiments using Invivofectamine 3.0
Reagent (Life Technologies) and AteloGene Local Use Quick Gelation
(atelocollagen) (Cosmo Bio USA, Carlsbad, CA, USA). Briefly, 1 pmol IVT Wwp2
mRNA (ψ, 5mCTP), 1 pmol IVT EGFP mRNA (ψ, 5mCTP) (negative control) or
2000 ng of poly(I:C) and 3 µL Invivofectamine 3.0 Reagent were mixed, followed by
incubation at 50 °C for 30 minutes. Next, 24 µL PBS, 3 µL atelocollagen and 3 µL
dilution buffer were added. Also, for the in vivo siRNA transfection experiment,
control siRNA (siControl) and siRNA against Runx2 (siRunx2) were purchased
from Life Technologies (Ambion Silencer Select siRNA, In Vivo Ready). Briefly,
1.5 µL of 50 µM siRNA and 3 µL Invivofectamine 3.0 Reagent were mixed, followed
by incubation at 50 °C for 30 minutes. Next, 18 µL PBS, 6 µL atelocollagen, and
6 µL dilution buffer were added. Finally, the reagent mixture was injected into the
mouse knee at 30 µL per joint. For function evaluation of IVT mRNA, after 1 week
injection (every other day) into Wwp2 KO mice, mouse knee cartilages were
harvested for RT-qPCR and western blot analyses. In addition, for siRNA
treatment, mouse knee cartilages were harvested after 1 week injection (every
three days).

RT-qPCR and RNA-seq for RNA expression analysis. A mouse articular carti-
lage was collected from the femoral condyle and tibial plateau of 2- or 3-month-old
mice. Total RNA from articular cartilage and cultured cells were isolated using
Zymo Direct-zol RNA MiniPrep kit (Zymo Research, Irvine, CA, USA) according
to the instructions of the manufacturer. For reverse transcription, cDNA was
synthesized using PrimeScript RT Reagent Kit (Takara Bio USA) and TaqMan
small RNA Assays (Applied Biosystems, Foster City, CA, USA). After that, real-
time PCR (RT-qPCR) was performed using LightCycler 96 System (Roche Life
Science, Indianapolis, IN, USA) with custom primers and Taqman probes (Applied
Biosystems), as shown in Supplementary Table 1. For RT-qPCR of microRNA,
Taqman MicroRNA Assays kits (Applied Biosystems) were used, according to
manufacturer’s instructions. We used the primers and Taqman probes shown in
Supplementary Table 1. The data were normalized using housekeeping genes or
endogenous reference genes, such as Gapdh or U6snRNA.

For RNA-seq on articular cartilage, samples were processed and sequenced on a
NextSeq 500 device. To analyze the data, counts of gene expression were
normalized. For human knee cartilage specimens, RNA isolation, library
construction, RNA-sequencing and data analysis were performed as previously
reported59. We extracted the data of NEDD4 family genes from our previously
published data set to detect differences in Wwp2 and other NEDD4 family
members in normal vs OA human articular cartilage. All analyzed data are in the
Source Data file. Additionally, we also performed RNA-seq on cartilage from
2 months old WT and Wwp2 KO mice. Genes with count values ≥ 2000 and a
change ≥ 1.5-log2fold were extracted and used for analysis. A heat map showing
proteinaceous extracellular matrix related genes, which was classified by DAVID
analysis. Enrichment analysis was performed using DAVID Bioinformatics
Resources 6.8 (https://david.ncifcrf.gov/). The RNA-seq data is available in the
NCBI Sequence Read Archive (SRA) with accession number PRJNA510523.

Chromatin immunoprecipitation (ChIP)-qPCR. ATDC5 cells were cultured as
described above and incubated in 5 plates of 15-cm culture dishes. After fixation of
formaldehyde solution, sonication was performed with a Covaris S2 (Covaris,

Wobrum, MA, USA). Sonicated samples were enriched by immunoprecipitation
with anti-RUNX2 monoclonal antibody (host: rabbit, clone: D1L7F, Cell Signaling
Technology, Danvers, MA, USA) and Dynabeads Protein A (Life Technologies).
Rabbit IgG (Cell Signaling Technology) was used as a control. Input and immu-
noprecipitated (eluted) DNAs were analyzed by qPCR using LightCycler 96 System
(Roche Life Science). Primer sequences were as follows: Adamts5 promoter (-700),
FW primer 5′-ACAAAGCCAAGGACTTCCC-3′ and RV primer 5′-CCACCG
GTGCTTCCTG-3′; Adamts5 promoter (-1400), FW primer 5′-CATTCAGGCTC
TCTCGGACT-3′ and RV primer 5′-GAAGGCCAAACAACAGTTAAAGTAA-3′;
Runx2 promoter, FW primer 5′-GTCACTACCAGCCACCG-3′ and RV primer 5′-
AAAACGGAGTGAGCAAATATTTGAAG-3′; gene desert in mouse chromosome
6, FW primer 5′-ACCAAGAGCAGATCACAAAGCTA-3′ and RV primer 5′-
AAATTCTGCTGTGTTCCATCATTG-3′ (Supplementary Table 4).

Immunoprecipitation (IP) and co-IP assays. IP and co-IP experiments were
performed using HEK293T cells treated with MG132 (10 μM, 7 h) (Sigma-Aldrich)
and ATDC5 cells transduced with retrovirus vector. HEK293T was transfected with
plasmid vectors using Lipofectamine 3000 (Life Technologies) according to man-
ufacturer’s instructions. The cells were lysed in lysis buffer (25 mM Tris/HCl pH
7.4, 150 mM NaCl, 1% NP-40, 1 mM EDTA, 5% glycerol). Next, the samples
(300 µg per sample) were incubated with primary antibodies (or control IgG),
followed by incubation with Dynabeads Protein A or Protein G (Life Technologies)
according to the manufacturers’ instructions. ATDC5 cells were transduced using
pMXs-myc-Wwp2-transfected PLAT-A cell line (Cell Biolabs, Inc., San Diego, CA,
USA) according to the manufacturer’s instructions. After washing with PBS and
elution with SDS buffer, western blot analyses were performed as described below.
We used the following antibodies: anti-myc tag monoclonal antibody (host: mouse,
clone: 9B11, Cell Signaling Technology, 0.1 µg), anti-HA tag high-affinity mono-
clonal antibody (host: rat, clone 3F10, Sigma-Aldrich, 0.5 ug) and normal mouse
IgG2a (Santa Cruz Biotechnology, Dallas, TX, USA, 0.1 µg).

Ago2-crosslinking immunoprecipitation (CLIP) Analysis. CLIP was performed
as previously described with modifications60. A total of 2 × 107 chondrocytes from
WT or miR-140-/- mice were washed with ice-cold PBS and UV-irradiated twice
with 400 and 200 mJ/cm2 using UV crosslinker (CL1000) (UVP, Upland, CA,
USA). The cells were lysed with PXL buffer (1x PBS, 0.1% SDS, 0.5% deoxycholate,
and 0.5% NP-40) on ice for 10 min, and RQ1 DNase (final conc. 30 U/mL; Pro-
mega) was added and incubated at 37 degrees for 5 minutes. After centrifugation,
anti-mouse Ago2 monoclonal antibody (host: mouse, clone: 2D4, Wako Chemicals
GmbH, Osaka, Japan)- or normal mouse IgG (Santa Cruz Biotechnology)-Dyna-
beads Protein A (Life Technologies) complex were added to the supernatants and
incubated on a rotator for 2 h at 4 degrees. The Dynabeads were washed twice with
PXL buffer, high salt wash buffer (5x PBS, 0.1% SDS, 0.5% deoxycholate, and 0.5%
NP-40), and PNK buffer (50 mM Tris-HCl, 10 mM MgCl2, and 0.5% NP-40; pH
7.4), respectively, and then Proteinase K treatment, phenol-chloroform extraction,
and ethanol precipitation. The precipitated-RNAs were reverse transcribed using
random primer with ReverTra Ace (Toyobo Life Science Department, Osaka,
Japan) according to the manufacturer’s instructions. RT-qPCR was performed
using THUNDERBIRD SYBR qPCR Mix (Toyobo Life Science Department).
Primer sequences were as follows: Gapdh, FW primer 5′-CCTGGTCA
CCAGGGCTGC-3′ and RV primer 5′-CGCTCCTGGAAGATGGTGATG-3′ and
Adamts5-UTR, FW primer 5′-CACTGAAATCATCCTAAGGAGGG-3′ and RV
primer 5′-CATTCCCCTGTCAATGTAGGAATA-3′ (Supplementary Table 4).

Western blot analysis. Chondrocytes, shaved cartilage, and HEK293T cells were
minced in SDS buffer. These samples and samples for IP were transferred onto
polyvinylidene difluoride (PVDF) membrane after SDS-PAGE. To detect the tar-
geted protein, we used primary antibodies as follows: anti-WWP2 polyclonal
antibody (sc-11896, host: goat, Santa Cruz Biotechnology, 1:120), anti-RUNX2
monoclonal antibody (host: rabbit, clone: D1L7F, Cell Signaling Technology,
1:1000), anti-myc tag monoclonal antibody (host: mouse, clone: 9B11, Cell Sig-
naling Technology, 1:1000), anti-myc tag monoclonal antibody (host: rabbit, clone:
71D10, Cell Signaling Technology, 1:1000), anti-DYKDDDK tag monoclonal
antibody (host: mouse, clone: 9A3, Cell Signaling Technology, 1:1000), anti-HA tag
polyclonal antibody (ab9110, host: rabbit, Abcam, Cambridge, MA, USA, 1:2000)
and anti-GAPDH monoclonal antibody (host: rabbit, clone: 14C10, Cell Signaling
Technology, 1:1000). Secondary antibody reactions and signal detection were
performed using a LI-COR immunofluorescence detection system (LI-COR Bios-
ciences, Lincoln, NE, USA). All uncropped images are provided as a Source
Data File.

Luciferase assay. SW1353 human chondrosarcoma cells were transfected with
DNA using Lipofectamine 3000 (Life Technologies) according to the manu-
facturer’s instructions. After transfection of empty vector (mock), luciferase
reporter, Wwp2, Wwp2-CA and Runx2 plasmids, the cells were incubated for 24 h.
The cells were lysed and measured using Dual-Glo Luciferase Assay System
(Promega) in a 96-well plate. For the NF-κB reporter plasmid, recombinant IL-1β
(10 ng/mL) was added for 6 h before measurement. Cells were lysed and measured
using Dual-Glo Luciferase Assay System (Promega) in a 96-well plate.
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For knockdown experiments, siRNAs [siWwp2 (SI00223615, SI02743797),
siRunx2 (SI00187915, SI02689526), or negative control (siControl) (1022076)]
(QIAGEN, Valencia, CA, USA) were transfected into ATDC5 cells using
Lipofectamine RNAiMAX (Life Technologies). Four hours after transfection, the
cells were transfected with pNL1.1-6OSE2 or -Adamts5p using Fugene HD
(Promega) according to the manufacturer’s instructions, and were incubated for 36
h. Cells were lysed and measured using Nano-Glo Luciferase Assay System
(Promega) in 96-well plates.

Immunohistochemistry (IHC). IHC was performed as previously described with
modifications61. For IHC, sections obtained from paraffin-embedded tissues were
used. Following deparaffinization and antigen retrieval in citrate buffer (pH 6.0),
the specimens were incubated with primary antibodies, followed by incubation
with horseradish peroxidase (HRP) or alkaline phosphatase (AP)-conjugated sec-
ondary antibodies. Next, the samples were visualized using the AEC plus substrate-
chromogen (Agilent Technologies, Santa Clara, CA, USA) or VECTOR Red
Alkaline Phosphatase Substrate Kit (Vector Laboratories, Burlingame, CA, USA).
The slides were counterstained with methyl green solution. For fluorescence IHC
staining, following deparaffinization, antigen retrieval and incubation with primary
antibodies, the specimens were incubated with Alexa Fluor 488 conjugated sec-
ondary antibodies and stained by DAPI (Vector Laboratories). We used the fol-
lowing antibodies: anti-WWP2 polyclonal antibody (sc-11896, host: goat, Santa
Cruz Biotechnology, 1:50), anti-ADAMTS5 polyclonal antibody (GTX100332, host:
rabbit, Genetex, Irvine, CA, USA, 1:100), anti-RUNX2 monoclonal antibody (host:
rabbit, clone: EPR14334, Abcam, 1:100), normal rabbit IgG (Santa Cruz Bio-
technology), ImmPRESS HRP Anti-Goat IgG (Peroxidase) Polymer Detection Kit
(Vector Laboratories), ImmPRESS HRP Anti-Rabbit IgG (Peroxidase) Polymer
Detection Kit (Vector Laboratories), ImmPRESS AP Anti-Rabbit IgG (alkaline
phosphatase) Polymer Detection Kit and Alexa Fluor 488 conjugated anti-Goat IgG
Secondary Antibody (host: donkey, Life Technologies).

In vitro ubiquitination assay and in vitro pull-down assay. The tested proteins
were obtained from plasmid-transfected HEK293T cells using tagged protein
magnetic purification kit (Medical & Biological Laboratories Co., Nagoya, Japan)
following the manufacturer’s instructions. The in vitro ubiquitination assay was
performed using Ubiquitinylation kit (Enzo Life Science, Farmingdale, NY, USA)
according to the manufacturer’s protocol. Recombinant Ubiquitin-K0 (no Lys) was
purchased from R&D Systems. And, in vitro pull-down assay was performed using
Dynabeads His-Tag Isolation and Pulldown (Life Technologies) following the
manufacturer’s instructions.

Statistical methods. The significance of the difference between pairs of groups
was determined by unpaired t test (Student’s t test or Welch’s t test) after deter-
mining the variances using the F test. The differences among three or four groups
were estimated using one-way analysis of variance (ANOVA) followed by Dunnett
test or Kruskal–Wallis test, followed by the Dunn test, after determining the var-
iances using Bartlett’s test. Data processing and analyses were conducted using
GraphPad Prism 8 (GraphPad Software Inc., La Jolla, CA, USA). Data are pre-
sented as the mean ± SD. Results of F test and Bartlett’s test are shown in Sup-
plementary Table 3.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The RNA-seq data is available in the NCBI Sequence Read Archive (SRA) with accession
number PRJNA510523. A reporting summary for this Article is available as a
Supplementary Information file. The source data underlying most of Figures are
provided as a Source Data file, except for tissue images. All relevant data are available
from the authors.
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