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Angiogenesis, a process highly regulated by pro-angiogenic and anti-angiogenic

factors, is disrupted and dysregulated in cancer. Despite the increased clinical use of

angiogenesis inhibitors in cancer therapy, most molecularly targeted drugs have been

less effective than expected. Therefore, an in-depth exploration of the angiogenesis

pathway is warranted. In this study, the expression of angiogenesis-related genes in

various cancers was explored using The Cancer Genome Atlas datasets, whereupon it

was found that most of them were protective genes in the patients with kidney renal clear

cell carcinoma (KIRC). We divided the samples from the KIRC dataset into three clusters

according to the mRNA expression levels of these genes, with the enrichment scores

being in the order of Cluster 2 (upregulated expression) > Cluster 3 (normal expression)

> Cluster 1 (downregulated expression). The survival curves plotted for the three clusters

revealed that the patients in Cluster 2 had the highest overall survival rates. Via a sensitivity

analysis of the drugs listed on the Genomics of Drug Sensitivity in Cancer database, we

generated IC50 estimates for 12 commonly used molecularly targeted drugs for KIRC in

the three clusters, which can provide a more personalized treatment plan for the patients

according to angiogenesis-related gene expression. Subsequently, we investigated the

correlation between the angiogenesis pathway and classical cancer-related genes as

well as that between the angiogenesis score and immune cell infiltration. Finally, we used

the least absolute shrinkage and selection operator (LASSO)–Cox regression analysis to

construct a risk score model for predicting the survival of patients with KIRC. According

to the areas under the receiver operating characteristic (ROC) curves, this new survival

model based on the angiogenesis-related genes had high prognostic prediction value.

Our results should provide new avenues for the clinical diagnosis and treatment of

patients with KIRC.
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INTRODUCTION

Renal cell carcinoma (RCC) ranks as the eighth most diagnosed
malignant disease in humans in the United States (1). Kidney
renal clear cell carcinoma (KIRC), a highly vascularized tumor
that derives from proximal tubular epithelial cells of the
nephrons, is to date the most common pathological type of
RCC (2, 3). Although the cause of RCC is currently unknown,
its incidence may be related to smoking, obesity, occupational
exposure to carcinogens (e.g., leather, and asbestos), and genetic
factors (e.g., missing tumor suppressor genes) (4). As ∼70%
of the kidney cancers are localized or locally advanced when
first diagnosed, they can be treated via surgical resection;
therefore, radical nephrectomy is the most common treatment
(5). However, approximately one-third of the patients who have
undergone renal tumor resection still develop distant metastasis
eventually (6). Unfortunately, metastatic RCC is highly resistant
to the traditional radio- and chemotherapies. Over the last
decade, molecularly targeted drug therapy and immunotherapy
have been used clinically to treat the advanced kidney cancer.
However, many patients develop drug resistance and eventually
experience cancer progression. Such setbacks force us to rethink
the current treatments for RCC.

A tumor metastasis is a gradual, multistep process that
involves angiogenesis, cell invasion, migration, and adhesion,
and extravasation into target organs, where angiogenesis and
the other processes are repeated indefinitely (7, 8). The
decreased oxygen concentration in the solid tumors leads to
the accumulation of hypoxia-inducible factor and increases
the expression of pro-angiogenic factors, such as vascular
endothelial growth factor (VEGF) and platelet-derived growth
factor (PDGF) (9). The studies have shown that the angiogenesis
signaling pathway plays an important role in the pathogenesis
of many solid tumors, such as RCC (10). As a strategy to
deprive tumors of their nutrition and thereby inhibit their
growth, the anti-angiogenesis drugs have become the main
treatment for human cancers. Tyrosine kinase inhibitors, such
as sorafenib and sunitinib, have been used as a first-line
treatment for metastatic KIRC (11, 12). However, most of the
molecularly targeted therapies have been less effective than
expected, as assessed through their associated progression-free
survival, objective response rate (ORR), and overall survival
(OS) outcomes (13). Moreover, the patients with the same
disease stage and similar treatment regimens have shown
considerable variations in the clinical outcomes. The recent
studies have shown that molecular heterogeneity is involved in
the carcinogenesis and development of KIRC tumors, which leads
to variation in their cell proliferation, metabolic activity, and
tumor microenvironment (14, 15).

The rapid development of bioinformatics and public databases

has accelerated the study of many types of cancers by the research

community (16). In this study, we used gene data and clinical
information from The Cancer Genome Atlas (TCGA) database
to analyze the copy number variations (CNVs), single nucleotide
variations (SNVs), and expression level changes in the genes
related to the angiogenesis signaling pathway in 32 tumors and
the relationship between the gene expression in each tumor

and patient prognosis. We found that the most angiogenesis-
related genes had protective effects in the patients with KIRC.
To further explain this phenomenon, we systematically evaluated
the angiogenesis pathway genes and prognosis in KIRC using
the bioinformatics methods. To this end, we divided the dataset
of patients with KIRC into three clusters according to their
final angiogenesis score and angiogenesis-related gene expression
levels and explored the relationships between these three clusters
and patient prognosis as well as those between the clusters and
drug sensitivity. Because it has been increasingly demonstrated
that the immune cells play a central role in tumors (17, 18),
we explored the correlation between the angiogenesis score and
immune cell infiltration. Finally, we established a risk score
model composed of 15 angiogenesis pathway genes to predict
the clinical outcome of patients with KIRC. Our research results
can provide new avenues for the clinical diagnosis and treatment
of patients.

MATERIALS AND METHODS

Acquisition of Angiogenesis-Related Gene
Data and Clinical Data
The 24 angiogenesis-related genes investigated in this study
were obtained from the Gene Set Enrichment Analysis (GSEA)
package on the WikiPathways website (https://www.gsea-
msigdb.org/gsea/index.jsp). The TCGA datasets (https://portal.
gdc.cancer.gov) were downloaded to obtain the CNVs, SNVs,
and expression level changes in these genes in 32 different types
of cancer. The data were analyzed with the Perl language and
R Studio, and the results were visualized using Toolbox for
Biologists (TBtools) (19). Additionally, RNA-Seq transcriptome
data and associated clinical data on the patients with KIRC were
obtained from TCGA, which contains 539 tumor samples and
72 normal samples. “Corrgram” in RStudio (MA, USA) was used
to plot the co-expression relationships among the angiogenesis-
related genes, with Pearson’s correlation coefficient applied in the
statistical analysis of the results.

Cluster Analysis Based on Angiogenesis
Scores
Due to the large variations in gene expression profiles observed in
the previously obtained datasets, we constructed an angiogenesis
score model based on mRNA expression to show the differential
expression levels between the samples. In brief, a single-sample
gene set enrichment analysis (ssGSEA) was first used to evaluate
the enrichment scores of genes in the angiogenesis pathway. The
“Gplots” package in RStudio was used to perform the differential
analysis, and the “pheatmap” package was used to draw the heat
map of the cluster analysis results. Through comparisons with
the mRNA expression levels of the genes in normal tissues, the
mRNA expression statuses in the tumor tissues were classified
into three categories: angiogenesis inactive (cluster 1 or C1),
angiogenesis active (cluster 2 or C2), and normal angiogenesis
(cluster 3 or C3). To further illustrate the relationships between
the gene expression levels of these three clusters, we used the
violin plot drawn with the “ggpubr” package to depict the

Frontiers in Medicine | www.frontiersin.org 2 October 2021 | Volume 8 | Article 731214

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Che et al. Angiogenesis Pathway in KIRC

enrichment score levels of the clusters. Finally, “pheatmap” in
RStudio was used to draw a heat map of the relationship between
two of the clusters and the clinicopathological characteristics of
the patients with KIRC. The differences with a p < 0.05 were
considered statistically significant.

Drug Sensitivity Analysis Based on the
Genomics of Drug Sensitivity in Cancer
(GDSC) Database
Of the 266 drugs listed in the 2019 edition of the Genomics
of Drug Sensitivity in Cancer (GDSC) database (https://
www.cancerrxgene.org/), which is the largest of its type on
pharmacogenomics, we selected 12 classical and novel targeted
drugs used for the KIRC treatment for study. On the basis of
the cell expression profiles indicated on the GDSC database, we
used the “pRRopheticl” package to construct a ridge regression
model to estimate the half-maximal inhibitory concentration
(IC50) of the drugs in the three clusters (20). We also used 10-fold
cross-validation based on the GDSC training set to evaluate the
prediction accuracy. Except for “combat” and “allSoldTumours”
tissue types, all the parameters were set to default values, and the
duplicate gene expression levels were summarized as the mean
value. Finally, the “ggplot2” and “cowplot” packages were used to
draw the boxplot. The results with a p < 0.05 were considered
statistically significant.

Classical Cancer-Related Genes and
Histone Modification
To explore the potential regulatory mechanism of the
angiogenesis pathway in KIRC, we examined the expression
levels of various oncogenes and tumor suppressor genes in the
three clusters in the form of a heat map, using the “string,”
“pheatmap,” “gplots,” and “gird” packages in RStudio. One-way
ANOVA was used to compare the expression levels of various
oncogenes and tumor suppressor genes in KIRC in the different
clusters. The differences with a p < 0.05 were considered
statistically significant. Similarly, we used the same approach
to demonstrate the differences among the three angiogenesis
clusters in terms of the expression of sirtuins (SIRTs) and histone
deacetylases (HDACs), which aside from being involved in
histone modification also play an important role in regulating
the angiogenesis pathway.

Correlation Between the Angiogenesis
Score and Immune Cell Infiltration
A ssGSEA was used to quantify the 29 immune-associated
gene sets obtained from TCGA and there are a total of
707 genes, representing different immune cell types, functions,
and pathways (21–23). The “ggplot2” and “dplyr” packages
in R Studio were then used to draw a heat map of the
correlation between the angiogenesis-related genes and immune
cell infiltration, with Spearman’s correlation coefficient being
applied for the statistical analysis. A ssGSEA can be applied
to gene signals expressed by the immune cell populations
in a single sample. Therefore, on the basis of the ssGSEA
results, we used the “ggstatsplot,” “data.table,” “dplyr,” “tidyr,” and

“ggplot2” packages in RStudio to analyze and plot the correlation
between the angiogenesis score and immune substances. In the
plotted figure, the area of each sphere represents the degree
of correlation and the color represents the p-value. Finally, we
used the “ggscatterstats” package to generate a scatter plot for
representing the correlations between the four classical immune
cell populations (viz., T follicular helper (Tfh) cells, mast cells,
neutrophils, and type II interferon (IFN) response cells) and
the angiogenesis score. A p < 0.05 was considered to be
statistically significant.

Construction of a Risk Model Using the
Least Absolute Shrinkage and Selection
Operator (LASSO)–Cox Regression
Analysis
We used the “corrplot” package to show the co-expression
relationship between any two of the angiogenesis pathway
genes. The “glmnet” package in RStudio was used to perform
a least absolute shrinkage and selection operator (LASSO)–Cox
regression analysis to further identify the most useful prognostic
genes and to establish a risk model. Next, we computed the risk
score (RS) of each sample on the basis of the gene expression and
coefficient values, using the following formula:

RS =

n∑

i=1

coefi× xi

where coefi represents the coefficient and xi represents the
expression value of each selected gene. We used the “survminer”
package to obtain the best cut-off value for dividing the samples
into a high-risk group and a low-risk group as well as the
“survival” package in R to compute the survival curves of these
two groups. A receiver operating characteristic (ROC) curve was
generated using the “survival-ROC” package in R to obtain the
area under the ROC curve. To highlight the superiority and
accuracy of our model, we carefully compared our prognostic
model with another three prognostic signatures (an autophagy-
related long non-coding RNA signature constructed by Yu et al.,
an m6A-related lncRNA signature constructed by Yu et al., and a
seven-MDEG signature constructed by Hu et al.) (24–26). All the
genes used for the construction of prognostic signatures of Yu
and HU were obtained. The “timeROC” R package was further
applied to compute the area under the curve (AUC) values
of each model. Finally, based on this model, we analyzed the
correlation of the RS with the clinicopathological characteristics
of patients with KIRC and used a heat map to depict it. There
were no N-stage data because of the large amount of Nx data
for these patients in the dataset of TCGA. A p < 0.05 was
statistically significant.

Construction of a Nomogram for
Predicting the Outcome of Patients KIRC
The univariate and multivariate Cox regression analyses were
used to determine the correlations of the patient age, tumor stage,
tumor grade, tumor size (T), and tumor metastasis (M) with the
RS in the model. Finally, the “rms” package in RStudio was used
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FIGURE 1 | The flowchart of this study.

to draw a nomogram from the Cox analysis results and clinical
characteristics for evaluating the survival probability of patients
with KIRC.

Renal Cancer Cell Line, Plasmid
Transfection, and Cell Counting Kit-8
(CCK-8) Assay
The renal cancer cell line 786-O was purchased from the Institute
of Cell Research, Chinese Academy of Sciences (China). The
cells were routinely cultured in Roswell Park Memorial Institute
(RPMI) 1640 medium, containing 10% fetal bovine serum and
penicillin-streptomycin, at 37◦C under a 5% CO2 atmosphere.
Once the culture had reached the logarithmic growth phase, 2
× 105 cells were seeded into each well of 6-well plates. On the
following day, 100 µl of a mixture containing Lipofectamine
3000 (Invitrogen, Carlsbad, CA, USA) and plasmid fragments
carrying the tissue inhibitor of metalloproteinase 3 (TIMP3) gene
diluted in serum-free medium was added to each well. After
6 h of incubation at 37◦C, the medium was changed to serum-
containing medium and the plates were further incubated for
24 h. Finally, the cells were digested with trypsin and collected
for cell proliferation analysis using the CCK-8 assay (Dojindo,
Japan). In brief, 1 × 103 cells were seeded into each well of 96-
well culture plates (four replicate wells per group). Subsequently,
10 µl of the CCK-8 reagent was added to each well according
to the instructions from the manufacturer, and the plates were
incubated in a 37◦C incubator for 2 h. Finally, the absorbance

of each well was measured at 450 nm using a microplate reader
(EL340; BioTek Instruments, Hopkinton, MA, USA).

RESULTS

Widespread Genetic Mutations of
Angiogenesis Pathway Genes in 32 Types
of Cancer
First, we draw a corresponding flowchart (Figure 1) to show
the process of this whole research more clearly. In total, 24
angiogenesis-related genes were obtained from the GSEAwebsite
and referenced to TCGA datasets to obtain their CNVs and SNVs
in 32 different types of cancer (Supplementary Figures 1A–C,
Supplementary Tables 1–3). Although there were CNVs and
SNVs in the angiogenesis pathway genes of most of the cancer
types, there were almost no CNV gains or losses in these genes in
thyroid cancer (THCA), thymoma, pancreatic adenocarcinoma,
KIRC, and prostate adenocarcinoma. There was a high frequency
of SNVs in uterine corpus endometrial carcinoma (UCEC),
skin cutaneous melanoma, and colon adenocarcinoma. By
contrast, the frequency of SNVs was low in kidney chromophobe
(KICH), pheochromocytoma and paraganglioma, THCA, and
uveal melanoma. Next, we used the expansion package in the
R-language program to draw an image showing co-expression
between the genes, whereupon we observed that there was
a highly positive correlation among the genes FLT1, PDGFB,
VEGFA, KDR, and TEK, whereas there was a negative correlation
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FIGURE 2 | The corrgram showed that there was a co-expression correlation between the angiogenesis pathway genes in pan-cancer. We used the “pair” function in

the graphics R package to draw this picture. The gene expression data were normalized by log(1+x). The scatter plot and regression line are drawn in the lower-left

panel. The corresponding genes are displayed on the diagonal, and the Pearson’s correlation coefficient and the corresponding p-values are displayed in the upper

right panel. The Pearson’s correlation coefficient is projected to five colors, negative values are displayed in blue, and positive values are displayed in red.

between SRC and FLT1. There was also a negative correlation
between SRC and KDR and between SRC and TEK (Figure 2).

Roles of Angiogenesis Pathway Genes in
Cancer
To analyze the expression changes in the angiogenesis-related
genes in different cancer types, we used log2(fold change)
to represent the ratio of the gene expression levels in the
cancer tissues to those in the corresponding normal tissues.
We found that most of the gene expression levels in the
cancer tissues were different from those in the normal tissues
(Figure 3A, Supplementary Table 4). Next, we constructed a

survival landscape of these genes according to the correlation
between the patient survival rate and gene expression in TCGA
(Figure 3B, Supplementary Table 5). The gene is regarded as
a protective gene when the hazard ratio (HR) is <1 and as
a risk gene when the value is >1. Since the angiogenesis
pathway itself is a cancer-related pathway, the angiogenesis-
related genes were present as risk genes in most cancer types.
Usually, the protective genes are downregulated and the risk
genes are upregulated in tumors. Interestingly, we found five
genes that were all risk factors in UCEC but were downregulated,
which seemed contradictory. The following could be possible
reasons: (1) tumors are heterogeneous, and the same genes are
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FIGURE 3 | The roles of angiogenesis pathway genes in cancer. (A) The changes in the expression of 24 angiogenesis pathway genes among 32 tumor types. The

color code bar on the right side shows the corresponding value of log2(FC). And negative changes are displayed in blue, and positive changes are displayed in red.

The P > 0.05 indicates no statistical significance and is displayed in gray. (B) Heatmap showed the survival landscape of angiogenesis pathway genes. Blue

represents the protective genes and red represents risky genes. The gray bar represents no statistical significance. (C) The survival curve of angiogenesis pathway

genes in kidney renal clear cell carcinoma (KIRC). We divided the genes into the high-expression and low-expression groups based on the best cut-off values using

the “survminer” package and then plotted the survival curve. The orange line represents the high-expression groups; the green line represents the low-expression

groups. The abscissa represents the number of days, and the ordinate represents the survival probability.

expressed differently in different tumors. (2) These risk genes
are not the drivers of tumors and cannot directly lead to their
occurrence and onset, and their expression may be regulated
by other genes. (3) What we analyzed above was the mRNA
expression of related genes; however, these genes ultimately
play roles through their encoded proteins. Sometimes, the post-
translational modifications, epigenetics, negative feedback, and
other factors may lead to the mRNA and protein expression
levels being inconsistent. We also observed from the pan-cancer
analysis that most angiogenesis-related genes were protective
genes in the patients with KIRC, an interesting phenomenon that
was not evident in many other cancers, such as UCEC and KICH.
Considering that an abundant blood supply, vigorous lipid
metabolism, and insensitivity to radiotherapy and chemotherapy

are all characteristics of KIRC, we focused on the relationship
between the angiogenesis pathway genes and this disease
in the following study. Using the “survminer” package, we
divided the genes into the high-expression and low-expression
groups based on the best cut-off values. Subsequently, we
plotted Kaplan–Meier curves for identifying the statistically
significant angiogenesis pathway genes in the patients with KIRC
(Figure 3C). The results were consistent with the constructed
survival landscape (Figure 3B).

Cluster Analysis Based on the
Angiogenesis Scores
To further explore the expression of angiogenesis-related genes
in KIRC, we plotted their related heat maps (Figure 4A). We

Frontiers in Medicine | www.frontiersin.org 6 October 2021 | Volume 8 | Article 731214

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Che et al. Angiogenesis Pathway in KIRC

FIGURE 4 | Cluster analysis based on the angiogenesis scores. (A) The heat map showed the expression levels of most of these genes were significantly different

between the tumor tissues and normal tissues. In the color bar on the right side, blue represents gene up-regulation and yellow represents gene down-regulation. N

(green) represents the normal sample, T (red) represents the tumor sample (*p < 0.05, **p < 0.01, ***p < 0.001). (B) Clustering of gene data from the TCGA database

shows three clusters by the heat map: angiogenesis inactive (cluster 1 or C1), angiogenesis active (cluster 2 or C2), and normal angiogenesis (cluster 3 or C3). The

percentage of patients whose genes are upregulated is given on the right side of the figure. In the color bar on the right side, blue represents mRNA upregulation,

yellow represents mRNA downregulation, and gray represents mRNA no-regulation. The angiogenesis score is projected to four colors, negative values are displayed

in blue, and positive values are displayed in red. (C) The violin plot drawn by the “ggpubr” package shows that the enrichment scores of the three clusters from high to

low are cluster 2, cluster 3, and cluster 1. The statistical method used here is the “kruskal.test” and the p-values are displayed above the clusters. (D) The survival

curve of the three clusters. The survival rate of cluster 2 is higher than cluster 1 and cluster 3. The red line represents cluster 1; the green line represents cluster 2; and

the black line represents cluster 3. The abscissa represents the number of years and the ordinate represents the survival probability. (E) The heat map shows the

correlation between the two clusters and the clinicopathological features. In the color bar on the right side, blue represents gene upregulation, and yellow represents

gene downregulation (*p < 0.05, **p < 0.01, and ***p < 0.001).

observed that the expression levels of most of these genes
were significantly different between the tumor tissues and
normal tissues. Next, a univariate Cox regression analysis of

these genes in KIRC was carried out (Supplementary Figure 2,
Supplementary Tables 9, 11), with the forest plot showing
the HRs with 95% CIs and p-values. It was found that
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FIGURE 5 | The relationship between drug sensitivity and the angiogenesis clusters. The box plots of the estimated IC50 for 12 types of common chemotherapeutic

agents are shown in (A–L) for cluster 1 (yellow), cluster 2 (blue), and cluster 3 (red). The 12 types of chemotherapeutic agents are pazopanib, sorafenib, sunitinib,

nilotinib, vorinostat, axitinib, gefitinib, temsirolimus, lapatinib, metformin, bosutinib, and tipifarnib. The P-values are displayed above the clusters and the P < 0.05 were

considered statistically significant. The box plots showed drug sensitivities among the angiogenesis clusters were different.

a high expression level of TEK, MAKP1, PDGFB, PIK3CA,
CREBBP, ANGPY1, FLT1, PTK2, NOS3, TIMP3, KDR, and
ARNT correlated with better survival rates in the patients
with KIRC. By contrast, the high expression of FGF2, SRC,
and PDGFRA correlated with the worse survival rates. Next,

we clustered the angiogenesis-related genes obtained from the
dataset of TCGA and divided the patients into three clusters
based on the final angiogenesis score and gene expression level.
C1 comprised the angiogenesis-inactive tumor tissues, C2 the
angiogenesis-active tumor tissues, and C3 the tumor tissues
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with normal angiogenesis (Figure 4B, Supplementary Tables 6,
7). The violin plot clearly showed that the enrichment scores
for the three clusters were in the order of C2 > C3 > C1
(Figure 4C). Next, we plotted the survival curves for the three
clusters to determine whether the clustering was reasonable.
The patients in C2 had significantly higher overall survival rates
than the patients in C1 and C3 (Figure 4D), indicating that the
angiogenesis score represented a protective factor. Finally, we
explored the correlation between two of the clusters and the
clinicopathological features (Figure 4E) and found that a higher
angiogenesis score was negatively correlated with the tumor size
(T), grade, and stage and tumor metastasis (M).

Relationship Between the Drug Sensitivity
and the Angiogenesis Clusters
Considering that molecularly targeted therapy is currently a
common way to treat KIRC, we obtained related data from the
GDSC database to assess the response of these three angiogenesis
clusters to 12 types of drugs. These drugs primarily include
both commonly used targeted therapeutics, especially for kidney
cancer, and classical drugs in tumor research, such as metformin.
For the treatment of recurrent or metastatic RCC, the targeted
drug therapy is preferred. This includes the use of tyrosine kinase
inhibitors (e.g., sunitinib, sorafenib, axitinib, and pazopanib)
and mTOR inhibitors (e.g., Texiromu) (27). Metformin, an
activator of AMP-activated protein kinase (AMPK), is primarily
used for the management of type 2 diabetes. The studies
have shown that metformin exerts antitumor effects against
different types of cancer (e.g., breast, colon, liver, prostate, and
kidney cancer) (28–30) primarily by reducing glycemia to cutoff
the phosphoinositide 3-kinase (PI3K)/mitogen-activated protein
kinase (MAPK) pathway or by activating the AMPK pathway
(31). Therefore, it is necessary to explore the correlation between
these targeted drugs and the angiogenesis pathway. Hence, we
conducted a drug sensitivity analysis and obtained estimated
IC50 values of the drugs for each sample. A lower IC50 value is
indicative of better drug sensitivity. The ridge regression model
revealed the different drug sensitivities among the angiogenesis
clusters to be as follows: pazopanib: C3 > C2 > C1; sorafenib: C1
> C2; sunitinib: C3 > C2; nilotinib: C2 > C1; vorinostat: C3 >

C2 > C1; axitinib: C2 > C1; gefitinib: C1 > C2; temsirolimus: C3
> C1; lapatinib: C2 > C1; metformin: C1 > C2; bosutinib: C3 >

C2; and tipifarnib: C1 > C2 (Figures 5A–L).

Correlations Between the Angiogenesis
Score and the Classical Cancer-Related
Genes or Immune Cell Infiltration
To further explore the differential expression patterns of the
oncogenes and tumor suppressor genes in the three angiogenesis
clusters, their related heat maps were plotted. We found that the
expression levels of the oncogenes CCND1, BRAF, AKT1, MYC,
KRAS, MTOR, PIK3A, and VEGFA were significantly higher
in C2 than in C1. Additionally, the expression levels of the
tumor suppressor genes von Hipel-Lindau (VHL), TP53, and
PTEN were significantly lower in C1 than in C2 (Figure 6A).
Among these tumor suppressor genes, the mutation of VHL

can result in the overexpression of hypoxia-inducible factor-1
alpha (HIF-1α) protein, which is considered a hallmark of KIRC
(32, 33). Continuously activated HIF-1α is shown to be related
to cell proliferation, angiogenesis, and epithelial–mesenchymal
transition, leading to the progression of KIRC and its metastasis
to other organs (32, 34). The above results indicate that the poor
prognosis of C1 may be correlated with the inhibition of tumor
suppressor gene expression, which may play a more important
role than the activation of oncogenes in C2. Additionally, the
expression level of the oncogene HRAS was significantly higher
in C1 than in C2.

In recent years, many studies have shown that SIRTs
are involved in a variety of biological processes related
to tumorigenesis, such as the changes in both the tumor-
related metabolic pathways and tumor microenvironment and
uncontrolled cell proliferation. In different cancer types and
under different experimental conditions, SIRTs are thought to
play a complex role as oncogenes or tumor suppressors (35).
In our study, the level of SIRT1 expression was significantly
higher in the angiogenesis-active group than in the angiogenesis-
inactive group. By contrast, the levels of SIRT4, SIRT6, and SIRT7
expression were significantly lower in the angiogenesis-active
group (Figure 6B). One study showed that Patrinia scabiosaefolia
induced the death of 786-O cells via metabolic disruptions
mediated by SIRT1 and mTOR signaling (36). Thus, SIRT1
inhibitors may be more effective for the patients who belong to
the angiogenesis-active group. However, another study showed
that SIRT1, SIRT3, and SIRT6 function as the tumor suppressors
in RCC (37). In summary, these results indicate that SIRTs have
a strong correlation with the angiogenesis signaling pathway
and may act synergistically to promote or inhibit the multiple
processes in the progression of KIRC.

Histone deacetylases, which catalyze the removal of acetyl
groups from the histones and non-histone lysine residues, play
an important role in gene transcription regulation (38) and are
closely related to tumorigenesis and tumor metastasis. HDAC
inhibition has recently become a clinically validated strategy for
the treatment of cancer (39). We found that the expression levels
ofHDAC1,HDAC2,HDAC3,HDAC4,HDAC5, andHDAC9were
significantly higher in the angiogenesis-active group than in the
angiogenesis-inactive group. By contrast, the expression levels of
HDAC8, HDAC10, and HDAC11 were significantly lower in the
angiogenesis-active group (Figure 6C). These results may offer
new directions for the future precision treatment of tumors. For
example, becauseHDAC2was almost exclusively expressed in the
angiogenesis-active group, the use of HDAC2 inhibitors may be
more beneficial for patients with an active angiogenesis pathway.

The tumor microenvironment is composed of immune
cells, tumor cells, stromal cells, and secreted cytokines and
chemokines (40) and regulates the occurrence and progression
of cancer (41). As an important component of the tumor
microenvironment, the immune cells are closely related to
the clinical outcome of cancer and are effective targets for
anticancer treatment (42). In addition, angiogenesis plays a
key role in regulating the tumor immune microenvironment
(43). To investigate the correlation between the angiogenesis
pathway and immunity in the patients with KIRC, we performed
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FIGURE 6 | The correlations between the angiogenesis score and the classical cancer-related genes or immune cell infiltration. (A–C) Heatmap shows that the

angiogenesis-score is correlated with other signaling pathways in KIRC. (A) The correlation with oncogenes and tumor suppressor genes. (B) The correlation with

sirtuin family genes. (C) The correlation with histone deacetylases (HDAC) family genes. The statistical method used in A–C is “ANOVA” (*p < 0.05, **p < 0.01, ***p <

0.005, and ****p < 0.001). (D) The heat map shows that the correlation between the angiogenesis pathway genes and immune cells infiltration. The “ggplot2” and

“dplyr” packages in R Studio were then used to draw the heat map, with Spearman’s correlation coefficient being applied for the statistical analysis. Red represents

positive correlation and blue represents negative correlation (*p < 0.05 and **p < 0.01). (E) The plot shows the correlation between the angiogenesis-score and

immune cells infiltration. On the right side of the plot, the area of the sphere represents the degree of abs (correlation) and the color indicates the p-value. (F–I) The

scatter diagram shows the correlation between the angiogenesis-score and four immune-infiltration-related substances. The angiogenesis-score was found to be

positively correlated with the infiltration of type II IFN response cells, mast cells, and neutrophils, and negatively correlated with that of Tfh cells.

a correlation analysis between the angiogenesis pathway
and immune cell infiltration (Figure 6D) and found that
many genes related to the angiogenesis signaling pathway
were associated with the immune cell infiltration, especially
PDGFRA, MMP9, MAPK14, FGF2, and FGFR2. Among
these, PDGFRA, MMP9, MAPK14, and FGF2 were positively
correlated—whereas FGFR2 was negatively correlated—with
immune cell infiltration. Next, we analyzed the correlation
of the angiogenesis score with immune cell infiltration
(Figures 6E–I), whereupon it was found to be positively
correlated with the infiltration of type II IFN response cells, mast

cells, and neutrophils, and negatively correlated with that of
Tfh cells.

Construction of a Risk Model Using the
LASSO–Cox Regression Analysis
To explore the relationship between the genes in the angiogenesis
pathway, co-expression analysis of the 24 angiogenesis-related
genes was carried out, and the results are shown in Figure 7A.
To determine whether the angiogenesis-related genes could be
used to establish a model for predicting the clinical outcomes of
patients with KIRC, the LASSO–Cox regression analysis of the
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FIGURE 7 | Construction of a risk model using the least absolute shrinkage and selection operator (LASSO)–Cox regression analysis. (A) The plot shows the result of

co-expression relationships of 24 angiogenesis pathway genes in KIRC. In the color bar on the right side, blue represents positive correlation and yellow represents

negative correlation. (B) The LASSO coefficient profiles of angiogenesis pathway genes in KIRC. (C) The distribution and median value of the risk scores. Fifteen

genes were screened by LASSO Cox regression analysis. (D) The survival curve was obtained based on this model. The overall survival rates of patients in the

high-risk group were significantly lower than those of the patients in the low-risk group. Blue represents the high-risk group and yellow represent the low-risk group.

(E–H) ROC curve of 3-, 5-, 7-, and 10-years, area under the curve (AUC) of the curve are 0.734, 0.752, 0.763, and 0.787, respectively. (I) The correlation of risk score

and the clinicopathological characteristics. The color bar shows the expression of genes. Yellow represents the upregulation of genes, blue represents the

downregulation of genes (***p < 0.001).

24 genes was performed, and 15 were finally selected to build
the risk score model (Figures 7B,C, Supplementary Tables 10,
12). The patients with KIRC were divided into a high-risk
group and a low-risk group according to their RS values.
The overall survival rates of patients in the high-risk group
were significantly lower than those of patients in the low-
risk group (Figure 7D, Supplementary Table 12). To explore
the prognostic prediction efficiency of the new survival model
in these same patients, a ROC curve analysis was performed.
The areas under the ROC curves of the survival model for
predicting 3-, 5-, 7-, and 10-year survival rates were 0.734,

0.752, 0.763, and 0.787, respectively, indicating that the risk
model had a high predictive value (Figures 7E–H). Survival
probability predicted by our angiogenesis prognostic signature
was superior to the m6A-related lncRNA signature constructed
by Yu et al. (25) and the seven-MDEG signature constructed
by Hu et al. (26). For the patients with KIRC whose survival
time was 1–4-years, our prognostic signature also showed a
higher predictive accuracy compared with the autophagy-related
long non-coding RNA signature constructed by Yu et al. (24).
Additionally, for the patients whose survival time was 4–8-years,
our prognostic signature showed similar predictive accuracy
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FIGURE 8 | Predicting the outcome of patients with KIRC using a nomogram. (A) The univariate Cox regression analysis of the association among risk score (RS), the

clinicopathological parameters [age, grade, stage, tumor size (T), and tumor metastasis (M)] and the overall survival (OS) of the patients with KIRC. The forest plot

showed that the age, tumor grade, stage, T, M, and RS correlated with the OS of the patients (p < 0.05). (B) A multivariate Cox regression analysis of the association

among the RS, clinicopathological parameters, and the OS of the patients with KIRC. The forest plot revealed that the patient’s age, grade, stage, and RS were

independent risk factors correlated with OS (p < 0.05). (C) Nomogram drawn by the “rms” package in R Studio incorporated riskScore, age, grade, and stage, which

can be used to predict the outcome of patients with KIRC. The second to fifth lines represent the patient’s age, tumor grade, tumor stage, and RS. The total score in

the sixth row is the sum of the scores for each item from the second to fifth lines. The 5-, 7-, and 10-year survival rates were predicated based on the total score.

compared with the autophagy-related long non-coding RNA
signature (24) (Supplementary Figure 3). A further statistical
test was performed on the differences between the risk subgroups
and a heat map was drawn to visualize the correlation between
the RS and clinical data (Figure 7I). We found that the risk
model was correlated to tumor metastasis (M) and the tumor size
(T), stage, grade, and fustat, with patients in the high-risk group
tending to have an advanced histological grade and to be in an
advanced clinical stage.

Predicting the Outcome of Patients With
KIRC Using a Nomogram
First, we performed a univariate Cox regression analysis on
the RS and other clinicopathological features of the patients
with KIRC (Figure 8A, Supplementary Table 13). The forest
plot showed that the patient age, tumor grade, stage, and size
(T), tumor metastasis (M), and RS correlated with the overall
survival of the patients. The multivariate Cox regression analysis

(Figure 8B, Supplementary Table 14) revealed that the patient
age, tumor grade and stage, and RS were independent risk factors
correlated with the overall survival. On the nomogram based on
the risk model (Figure 8C), the second to ninth lines represent
the patient age, tumor grade, tumor stage, RS, total points, 5-, 7-
, and 10-year survival, respectively. The total score in the sixth
row is the sum of the scores for each item from the second to fifth
lines. The 5-, 7-, and 10-year survival rates were predicated based
on the total score. For example, if the total score is 100, then the
5-year survival rate is approximately 0.3.

TIMP3 Inhibition of Clear Cell RCC Growth
in vitro
The viability of TIMP3-overexpressing 786-O renal cancer cells
was determined using the CCK-8 assay, which showed that the
proliferation of these cells was significantly inhibited (Figure 9).
These results were consistent with our previous bioinformatics
analysis, which indicated that TIMP3 was a protective gene.

Frontiers in Medicine | www.frontiersin.org 12 October 2021 | Volume 8 | Article 731214

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Che et al. Angiogenesis Pathway in KIRC

FIGURE 9 | The proliferation curve of 786-O cells, which showed that the

proliferation of tissue inhibitor of metalloproteinase 3 (TIMP3)-overexpressing

786-O renal cancer cells was significantly inhibited (***p < 0.001).

DISCUSSION

Angiogenesis, the mechanisms of which are only gradually
beginning to be understood, refers to the formation of new
blood vessels from the existing ones during organ development
and wound healing (44). The VEGF family consists of six
growth factors (VEGFA through VEGFF), which play the most
critical role in angiogenesis by binding to receptors VEGFR1
through VEGFR3 and neuropilin (45). As a process that is
highly regulated by the pro-angiogenic and anti-angiogenic
factors, angiogenesis is disrupted and dysregulated in cancer
(46). Tumor-driven hypoxia increases the expression of pro-
angiogenic factors, leading to the formation of new blood vessels
that are required for the growth of solid tumors (47). Until
recently, the treatment with drugs targeting VEGF or the VEGFR
pathway was the main approach for the advanced KIRC therapy.

Based on known research findings, we first chose to study
the genetic mutations of angiogenesis pathway genes in 32
types of cancer. We then analyzed the alterations in the
expression of the angiogenesis-related genes and explored
whether they existed as protective genes or risk genes in the
different types of cancer. We observed that most angiogenesis-
related genes existed as protective genes in the patients with
KIRC, which was inconsistent with the previous findings that
overexpression of the angiogenesis pathway can lead to cancer
development. It was previously shown that the activation of
VEGF resulted in an improved blood supply and enriched
source of nutrients for KIRC (48), whereas the inhibition of
VEGFA inhibited the proliferation, promoted apoptosis, and
suppressed the migration and invasion of 786-O KIRC cells
(49). However, in our study, we found that VEGFA was
neither a protective nor a risk gene. In another study, GLI1
and GLI2 were shown to be activated by the PI3K/protein

kinase B (AKT) pathway, which was negatively correlated with
the overall survival of KIRC patients (50). By contrast, our
analysis showed that PIK3CA existed as a protective gene,
an inconsistent phenomenon. The possible reason for these
contradictory results is that there are still undiscovered pathways
that may influence each other or simply that tumors are
heterogeneous. Therefore, we focused our attention on the
dataset of the patients with KIRC, dividing them into three
clusters according to their angiogenesis scores and angiogenesis-
related gene expression patterns. We found that the overall
survival rates of patients in the angiogenesis-active cluster were
significantly higher than those of the patients in the angiogenesis-
inactive cluster, indicating once again that the genes involved in
angiogenesis were mostly protective. However, the reason for this
phenomenon remains unclear.

The agents targeting the angiogenesis pathway, such as
sorafenib and sunitinib, are the mainstay therapeutics for
metastatic KIRC (11, 12). Therefore, we looked at the roles
of some of the most common drugs used to target the
angiogenesis pathway genes in KIRC therapy. We found that
the three patient clusters showed different sensitivities to
the drugs studied, which suggests that a more personalized
treatment plan could be provided to the patients based
on their patterns of angiogenesis-related gene expression.
For example, the use of pazopanib and nilotinib may be
more beneficial to a patient whose angiogenesis pathway
is highly active, whereas sorafenib and gefitinib may be
more beneficial to a patient whose angiogenesis pathway
is inactive.

The infiltrating inflammatory cells are an important part
of the overall tumor mass. Initially, it was thought that these
immune cells were part of the response of the host for combating
the tumor; however, it was gradually recognized that most
tumors were not regarded as foreign to the host and that
inflammation/immune cell infiltration promoted the tumor
growth and metastasis instead (51, 52). Angiogenesis plays an
important role in immunosuppression and can lead to primary
and secondary resistance to immune checkpoint inhibitors.
VEGF and the growth factor angiopoietin-2 participate in
this process by inhibiting the proliferation and differentiation
of the activated immune effector cells while at the same
time recruiting suppressive tumor-related immune cells (53).
Therefore, in this study, we explored the correlation between
the immune cell infiltration-related factors and angiogenesis
pathway genes. We found that the mast cells, neutrophils,
and Treg cells correlated positively with the angiogenesis
score. The Treg cells, a subpopulation of CD4+ helper T
cells, can facilitate the tumor progression by suppressing the
antitumor immune responses of the host (54). In addition,
the mast cells are also important contributors to immune-
mediated tumor growth (51, 55). The neutrophils can play
both tumor-promoting and antitumor functions, depending on
their differentiation state and the presence of TGF-β (56).
Therefore, the relationship of the angiogenesis score with the
mast cells and Treg cells did not fit our expectations. The findings
may be related to the complexity of the immune system and
its interaction with the angiogenesis pathway. Given that the
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immune system of the host is considered to be the best tool
for fighting cancer by limiting the spread of tumor cells, the
development of immunotherapy has revolutionized the first-
line treatment of metastatic KIRC (57, 58). The combination
of pembrolizumab (a programmed cell death-1 inhibitor) and
axitinib (a tyrosine kinase inhibitor) resulted in better outcomes
than sunitinib among the patients with previously untreated
advanced RCC (59).

Histone deacetylases are major epigenetic regulatory
factors whose dysfunctional deacetylase activity is closely
related to tumorigenesis and tumor metastasis (60). HDAC1
overexpression inhibits tumor suppressor p53 and VHL,
but induces HIF-1a and VEGF, and increases angiogenesis.
Conversely, HDAC inhibitors derepress p53 and VHL and
repress HIF-1a and VEGF and correspondingly decrease
the angiogenesis signaling. In addition to their direct
antitumor effects, HDAC inhibitors have the ability to
improve the recognition of tumors by immune cells,
which may contribute to their antitumor activity indirectly
(61). In this study, we found that most of the oncogenes,
tumor suppressor genes, and HDACs were either positively
or negatively correlated with the angiogenesis pathway.
Therefore, the HDAC inhibitors offer a new strategy for
tumor treatment, and our research results can further provide
new directions for future precision tumor treatment. For
example, the expression level of HDAC1 in the angiogenesis-
active group was significantly higher than that in the
angiogenesis-inactive group, suggesting that the use of
HDAC1 inhibitors may be more beneficial to the former
group of patients.

Next, we constructed a risk model using LASSO–Cox
regression analysis to predict the survival rate of patients with
KIRC. The areas under the ROC curves indicated that this model
has a high predictive value. Finally, we incorporated the RS,
patient age, and tumor grade and stage into a nomogram for
predicting the 5-, 7-, and 10-year survival rates of the patients
with KIRC. Currently, other predictors of risk or survival based
on different mechanisms or aspects do exist for KIRC. For
example, Yu et al. constructed two prognostic signatures on the
basis of autophagy-associated long non-coding RNAs (lncRNA)
and m6A-related lncRNAs, respectively, both of which could
effectively predict the outcome of patients with KIRC (24, 25).
In another study, a 7-methylated differentially expressed gene
signature was found to be a powerful prognostic factor for
these patients (26). On the whole, our angiogenesis prognostic
signatures exhibit a higher predictive accuracy for the patients
with KIRC compared with the above prognostic signatures. Our
current model adds to these other prognostic models and may
provide more comprehensive and useful suggestions for the
development of personalized therapies for patients with KIRC.
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(LASSO) risk of the KIRC samples.
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