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Abstract

Addiction to nicotine and ability to quit smoking are influenced by genetic factors. We used 

functional genomic approaches (chromatin immunoprecipitation (ChIP) and whole genome 

sequencing) to identify CREB targets following chronic nicotine administration and withdrawal in 

rodents. fWe found that chronic nicotine and withdrawal differentially modulate CREB binding to 

the gene for Neuregulin 3 (NRG3). Quantitative analysis of saline, nicotine, and nicotine 

withdrawal in two biological replicates corroborate this finding, with NRG3 increases in both 

mRNA and protein following withdrawal from chronic nicotine treatment. To translate these data 

for human relevance, single nucleotide polymorphisms (SNPs) across NRG3 were examined for 

association with prospective smoking cessation among smokers of European ancestry treated with 

transdermal nicotine in two independent cohorts. Individual SNP and haplotype analysis support 

association of NRG3 SNPs and smoking cessation success. NRG3 is a neural-enriched member of 

the EGF family, and a specific ligand for the receptor tyrosine kinase ErbB4, which is also up-

regulated following nicotine treatment and withdrawal. Mice with significantly reduced levels of 

NRG3 or pharmacological inhibition of ErbB4 show similar reductions in anxiety following 

nicotine withdrawal compared to control animals, suggesting a role for NRG3 in nicotine 

dependence. While the function of the SNP in NRG3 in humans is not known, these data suggest 

that Nrg3/ErbB4 signaling may be an important factor in nicotine dependence.
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INTRODUCTION

Nicotine is the addictive compound in tobacco, exerting its biological effects through 

activation of the nicotinic acetylcholine receptor (nAChR). Though the acute effects of 

nicotine are exclusively mediated through these nAChRs, it is now becoming clear that 

continued drug use induces adaptive changes in the central nervous system that lead to drug 

dependence1. These long-term adaptations in cellular signaling mechanisms are likely part 

of the maintenance of drug dependence. Specifically, the long lasting nature of these 

behaviors and drug responses indicate that changes in gene expression may be necessary for 

their development and persistence.

One well-characterized protein responsible for regulating gene expression is the 

transcription factor cAMP response element binding protein (CREB). CREB is required for 

the rewarding aspects of nicotine as measured in a place-conditioning paradigm using 

CREBαΔ mice2, which have constitutive deletion of CREB, as well as in animals with 

dominant negative knock-down of CREB selectively in the nucleus accumbens3. Correlative 

evidence suggests that CREB may be required for behaviors manifested during nicotine 

withdrawal as well. CREB protein levels, phosphorylated CREB (pCREB)4, 5 and CREB-

DNA binding5 are differentially modulated throughout the brain following nicotine 

withdrawal.

Nicotine withdrawal is characterized by both affective and cognitive symptoms and the role 

of hippocampus in these responses has been well characterized. Structural and functional 

alterations in hippocampus have been associated with nicotine withdrawal symptoms, cue 

reactivity, and quitting success in human neuroimaging studies6–10. Thus, to identify 

relevant CREB-target genes that are altered in the hippocampus following chronic nicotine 

and 24h withdrawal (WD), we performed chromatin immunoprecipitation analyses coupled 

to high-throughput sequencing (ChIP-Seq) and target expression analysis. A neural-enriched 

member of the EGF family, NRG3 was found to be up-regulated following nicotine 

treatment and withdrawal. We used these data to inform an exploratory human genetic 

analysis of prospective smoking cessation. We then evaluated potential mechanisms 

underlying propensity to relapse using genetic and pharmacological manipulation of NRG3 

and its receptor ErbB4 in mice. These studies show that interruption of NRG3 signaling 

during chronic treatment with nicotine reduces withdrawal-induced anxiety, suggesting that 

aberrant NRG3/ErbB4 signaling may be an important factor in nicotine dependence.

METHODS

Animals

Male Nrg3ska mice were purchased from Jackson Laboratories (n=48; 6 weeks of age; 20–

25g) These mice arose as a spontaneous mutation which was later identified as a 
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microsatellite repeat within intron 7 of the Nrg3 gene; strain of origin is A/J. CREBαΔ 

mutant mice were backcrossed to the inbred mouse strains 129SvEv and C57BL/6 for >40 

generations. For these experiments, WT and CREBαΔ mutants were F1 hybrids obtained 

from crossing mice heterozygous for the CREB mutation from each strain (n=164; 2–3 

months of age; 20–30g). All mice were group housed and maintained on a 12 h light/dark 

cycle with food and water available ad libitum in accordance with the University of 

Pennsylvania Animal Care and Use Committee. For the NIH paradigm, mice were housed in 

groups of two. All experimental testing sessions were conducted between 9:00 A.M. and 

3:00 P.M., with animals randomly assigned to treatment conditions and tested in 

counterbalanced order.

Drugs and Treatments

Osmotic Drug Delivery Groups—Nicotine tartrate (reported as free base weight; 

Sigma–Aldrich, St. Louis, MO) was dissolved in sterile 0.9% saline solution and infused 

through subcutaneous osmotic minipumps for 14 days (Model 2002, Alzet, Palo Alto, CA, 

USA). Mice were anesthetized with an isoflurane/oxygen vapor mixture (1–3%), and 

osmotic minipumps were inserted subcutaneously using aseptic surgery techniques. 

Minipumps were placed parallel to the spine at shoulder level with the flow moderator 

directed away from the wound. The wound was closed with 7 mm stainless steel wound 

clips (Reflex, Cellpoint Scientific, Gaithersburg, MD, USA). Osmotic minipump treatment 

groups: In all experiments, animals were implanted with osmotic minipumps to deliver 

chronic administration of either saline or nicotine (18 mg/kg/day). Chronic treatment with 

18mg/kg/day of nicotine in mice yields plasma levels of approximately 0.3 μM, (based on 

nicotine free base molecular weight), a concentration similar to that observed in human 

smokers consuming an average of 17 cigarettes a day (plasma levels between 0.06–0.31 

μM)11. Following two weeks of chronic saline or nicotine administration, one-half of the 

animals from each group received sham surgery, where the mice were anesthetized with an 

isoflurane/oxygen vapor mixture (1–3%), an incision was made above the pump at shoulder 

level, and the incision was then closed with 7 mm stainless steel wound clips. To initiate 

spontaneous withdrawal from nicotine treatment, the osmotic minipumps were physically 

removed from the other half of the animals similar to above. In all experiments, mice were 

sacrificed for tissue collection at 24 hours following surgery.

Injection Drug Delivery Groups—Afatinib (BIBW-2992; reported as salt weight; LC 

Laboratories, Woburn, MA) is an irreversible inhibitor at ErbB4 and ErbB2/4 

receptors12, 13. Afatinib was dissolved in saline containing 16% ethanol and 100mM 

Captisol® (Captisol, La Jolla, CA), a modified beta-cyclodextrin that has a very low side-

effect profile and is currently in use in clinical studies14. Ethanol at this concentration has 

been shown to have no locomotor behavioral effects15. Afatinib treated mice were injected 

once daily for 10 days prior to behavioral testing. Animals not receiving afatinib were 

instead injected with vehicle (saline containing 16% ethanol and 100mM Captisol®) for 10 

days prior to behavioral testing.
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Novelty-induced hypophagia (NIH) test

The NIH test is a well-validated model of anxiety-like behavior in mice that is sensitive to 

treatment with anxiolytic drugs16–25. One week prior to training and for the duration of the 

experiment, mice were housed in groups of two. Training consisted of daily sessions in 

which mice were exposed to a highly palatable food (peanut butter chips; Nestle, Glendale, 

CA) in a clear plastic dish. Plastic dividers (dividing the standard mouse cage lengthwise) 

were placed inside each cage to separate the mice during the training and home cage testing 

periods. Mice were acclimated to the barriers for 1 h before placement of food. Food was 

placed in the cage for 15min and latency to consume was measured. By the 12th day, a 

baseline latency to approach and consume the food was reached such that there was <20% 

variability between mice. Following training, mice underwent their respective chronic 

treatments and were not exposed to behavioral testing during this time. Testing in the home 

cage (home day) and novel environment (novel day) occurred on the last 2 days of 

minipump viability. On Home Day, mice were presented with food and latency to consume 

as well as amount consumed were recorded. In those animals receiving chronic injections, 

the animals were injected 1h prior to testing in either the home or novel environment. 

Following Home Day testing, minipumps were surgically removed for the withdrawal 

groups and sham surgeries were performed on the chronic nicotine group as well as saline 

animals. Twenty-four hours later on Novel Test Day, animals were acclimated for 1h prior 

to testing in the novel environment. Mice were removed from the home cage and placed in 

an empty standard cage with no bedding. The cage was wiped with a cleanser (Pine Sol, 

1:10 dilution) to emit a novel odor and placed in a white box with bright light illumination 

(2150lux). Latency to consume was recorded. Number of subjects in each treatment: 

Wildtype F1 – saline+vehicle (n=6), nicotine+vehicle (n=6), 24hWD+vehicle (n=6), 

24hWD+10mg/kg Afatinib (n=7), and 24hWD+20mg/kg Afatinib (n=6); NRG3ska - saline 

(n=16), nicotine (n=16), 24hWD (n=16).

Marble-burying Test

The marble burying test is an anxiety model in mice, which possesses high predictive value 

to detect anxiolytic drugs 26. All mice were implanted with 14d osmotic minipumps filled 

with nicotine (18mg/kg/day) or 0.9% saline. During this chronic nicotine treatment, the F1 

animals were also injected daily for 10 days with either vehicle or afatinib. Following 

chronic treatment, animals were tested in the marble-burying test 24, 27. One hour prior to 

testing, F1 mice were injected i.p. with vehicle or drug at the doses indicated and left to 

acclimate to the testing room. In the case of the NRG3ska animals, no injections were given. 

Then the mice were placed individually in small cages (26×20×14 cm), in which twenty 

marbles had been equally distributed on top of mouse bedding (5-cm deep), and a wire lid 

was placed on top of the cage. Mice were left undisturbed for 15 min, after which time the 

number of buried marbles (i.e., those covered by bedding three-quarters or more) was 

counted by a blind observer. Number of subjects in each treatment: Wildtype F1 –saline

+vehicle (n=6), nicotine+vehicle (n=5), 24hWD+vehicle (n=6), 24hWD+10mg/kg Afatinib 

(n=7), and 24hWD+20mg/kg Afatinib (n=6); NRG3ska - saline (n=10), nicotine (n=10), 

24hWD (n=10).
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Locomotor Activity

Locomotor activity in response to chronic drug treatments (minipump and i.p. injection) was 

analyzed in a “home cage” activity monitoring system (MedAssociates, St. Albans, VT). 

The home cage (28.9 cm × 17.8 cm × 12 cm) was placed in a photo-beam frame (30 cm × 24 

cm × 8 cm) with sensors arranged in an 8-beam array strip. For injection studies in F1 mice, 

mice chronically treated with drug were injected i.p. with vehicle or drug as indicated. One 

hour following drug administration, the mice were individually placed in the cages. No 

injections were given to the NRG3ska mice. Beam break data was monitored and recorded 

for 60 min. Number of subjects in each treatment: Wildtype F1 –saline+vehicle (n=6), 

nicotine+vehicle (n=6), 24hWD+vehicle (n=6), 24hWD+10mg/kg Afatinib (n=7), and 

24hWD+20mg/kg Afatinib (n=6); NRG3ska - saline (n=4), nicotine (n=6), 24hWD (n=5).

ChIP-Seq library construction, sequencing, and peak calling

CREB ChIP was performed on chromatin isolated from the hippocampus of saline (n=3), 

nicotine (n=2), or 24hWD (n=3) treated mice. Immunoprecipitations were performed and 

ChIP-Seq libraries were prepared as previously described 28, 29. Libraries for each 

hippocampus sample were sequenced individually on an Illumina GAIIx. Reads for each 

individual ChIP-Seq library were mapped to the UCSC mm8 reference genome using 

Illumina’s Eland pipeline. Redundant reads were discarded within each replicate. For each 

condition (saline, nicotine, 24hWD), non-redundant reads from all 3 biological replicates 

were pooled into a single read set, and peak-calling was performed with HOMER v3.0 (5% 

FDR)30.

ChIP-Seq Differential Binding Analysis

To determine the extent of differential CREB binding between conditions genome-wide, we 

first merged the saline, nicotine and 24hWD HOMER peak calls to a common set of binding 

regions. At each region, the peak height was computed for each condition by extending 

reads to 108bp fragments and computing the maximum height of the stack height profile. 

Peak heights as a fraction of total reads were compared using Fisher’s exact test for nicotine 

vs. saline, and 24hWD vs. saline. P-values were corrected for multiple testing by Benjamini-

Hochberg step-up method.

Chromatin Immunoprecipitation (ChIP)

ChIP was modified from a previously reported method 31. Chromatin was prepared from 

fresh tissue (n=6 mice per group). The hippocampus was dissected out, chopped, and 

immediately crosslinked in 1.1% formaldehyde/PBS for 10 minutes with constant agitation, 

then quenched with glycine to a final concentration of 0.125M. Tissue was homogenized 

using a dounce homogenizer (Kontes, 18×150mm tube reservoir; 8×220mm pestle shaft), 

followed by a spin at 1000g for 5 minutes. The nuclear pellet was re-suspended in cell lysis 

buffer then sonicated to an optimal 200bp using a Diagenode Bioruptor for 5 cycles (5 

minutes; 30 sec on, 30 sec off). Immunoprecipitation with CREB (sc-186, Santa Cruz) and 

control IgG (sc-2025, Santa Cruz) was performed as previously described 32. CREB 

enrichment was determined by PCR using SYBR green with primers (underlined in 

sequence below; forward 5′-cacacacacatacacccgaag-3′ and reverse 5′-
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gtgagtcaaactccagcaagc-3′) that flanked the 2 CRE sites (bracketed and in bold in sequence 

below) within the NRG3 promoter.

accctgtccgcggcgactctacacacaaacacacacacacatacacccgaagccgcctggttgagtgcaagaaaacg

cttgga 

gcagcggtcac[gacgtc]cgggacccctgtcgctatctcccatttttgctagcccgggtcggccaggc[agcgtca
]ccgga 

gctgtttggtatcctctgcgtgctggtcggggtgcgccccggggtaccccgctcctgagcggcggggtagcttgctgg

agtttgactc

Primers flanking 18s were used as a control for the PCR reaction (forward 5′-

cagaatgcccttggaagaga-3′ and reverse 5′-gggaaaccagaagaccaaca-3′).

qPCR

Quantitative rtPCR was performed as previously described33 on hippocampi from saline 

(n=6), nicotine (n=10), or 24hWD (n=11) animals. Briefly, RNA was isolated using the 

RNeasy Mini kit (Qiagen). cDNA was synthesized and SYBR-green QPCR reactions were 

assembled using Applied Biosystems 2X SYBR-Green master mix along with 300nM 

primers (final concentration). The mRNA levels of target genes were normalized to the 

housekeeping gene, TATA binding protein (TBP). Primer sequences are available upon 

request.

Western Blots

Protein analysis was performed as described previously34 on hippocampi from the following 

groups: saline (n=4–7), nicotine (n=5–9), and 24hWD (n=10) treated F1 wildtype mice; 

saline (n=9), nicotine (n=9), and 24hWD (n=10) treated CREBαΔ mutant mice; saline (n=6–

7), nicotine (n=8), and 24hWD (n=7) treated Nrg3ska mice. Briefly, 15μg of protein from 

treated tissues were resolved in 10% SDS–PAGE and transferred to nitrocellulose 

membranes. Membranes were incubated with LI-COR blocking buffer (LI-COR, Lincoln, 

Nebraska) for 1h at RT prior to reacting overnight at 4 °C with primary antibodies (pCREB 

(1:1000, CREB phosphorylated at Ser-133, Cell Signaling Technology, Lake Placid, NY), 

NRG3 (1:1000, Abgent, San Diego CA), NRG1 (1:100, sc-28916, Santa Cruz 

Biotechnology, Santa Cruz, CA), ErbB4 (1:100, sc-283, Santa Cruz Biotechnology, Santa 

Cruz, CA) and beta-tubulin (1:2000, BD biosciences, San Jose, CA)). After washing in PBS-

T, the blots were incubated in fluorescent secondary antibodies (1:20,000, LI-COR, Lincoln, 

Nebraska) in LI-COR blocking buffer for 1h at RT. Membranes were then washed and 

immunolabeling detection and densitometry measurements were performed using the LI-

COR Odyssey System (LI-COR, Lincoln, Nebraska). Ratios of pCREB, NRG3 (77 kD 

band), NRG1 (83 kD), or ErbB4 to β-tubulin densities were calculated for each sample and 

analyzed across conditions.

Receptor Binding

Hippocampal tissues were homogenized in 50mM Tris HCl buffer, pH 7.4 at 24°C, and 

centrifuged twice at 35,000xg for 15min in fresh buffer. The membrane pellets were 

resuspended in fresh buffer and added to tubes containing [3H]Epibatidine (EB, 

PerkinElmer, Boston, MA) with or without competing drugs. Incubations were performed in 
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Tris buffer at pH 7.4 for 2h at 24°C with [3H]EB. Bound receptors were separated from free 

ligand by vacuum filtration over GF/C glass-fiber filters (Brandel, Gaithersburg, MD) that 

were prewet with 0.5% polyethyleneimine, and the filters were then counted in a liquid 

scintillation counter. Nonspecific binding was determined in the presence of 300μM 

nicotine, and specific binding was defined as the difference between total binding and 

nonspecific binding.

Behavioral and Molecular Data Analysis

Mouse data was analyzed using Graphpad Prism 5.0. Significance was determined using 

either 1-way or 2-way ANOVA followed by Bonferroni’s Multiple Comparison Test.

Exploratory Genetic Analysis of Smoking Cessation

To evaluate the potential translational relevance of the preclinical NRG3 findings, we 

examined NRG3 SNPs for associations with smoking cessation in clinical samples.

Discovery Cohort—Samples from 449 treatment-seeking European ancestry smokers 

ages 18–65 who smoked ≥ 10 cigarettes per day were assayed. Smokers participated in a 

clinical trial of transdermal nicotine and were enrolled from 2004–2008 at the University of 

Pennsylvania. The exclusion criteria were: DSM IV Axis I psychiatric or substance abuse 

disorder; current use of psychotropic medications; and pregnancy or lactation. 42% of 

participants were female and 35% were college graduates. The mean age was 44.8 years (sd 

= 10.5), and mean cigarettes smoked per day was 22.11 (sd = 9.03). The mean score on the 

Fagerström Test for Nicotine Dependence (FTND) was 5.27 (sd = 2.17). All participants 

received 8 weeks of transdermal nicotine and brief behavioral cessation counseling.

Self-reported smoking was assessed using the timeline follow-back procedure35, and 

biochemically verified with a carbon monoxide (CO) breath sample. The primary outcome 

was biochemically confirmed 7-day point-prevalence abstinence at the end of 8 weeks of 

nicotine patch treatment. As per convention36, participants who reported smoking within 7 

days prior to the assessment (n = 213), failed to provide a CO sample (n = 28), or provided a 

CO > 10ppm (n = 15) were considered non-abstinent. Additional details of this clinical trial 

have been reported previously 37.

Based on the preclinical findings, we genotyped SNPs in the gene encoding neuregulin 3 

(NRG3). Ninety-three multi-marker haplotype tagging SNPs were selected from Hapmap 

(www.hapmap.org) (all MAFs >0.2) across the 1.1 cM gene (Supplementary Table 1). Using 

Sequenom design tools, 4 panels from the 93 SNPs were assembled for multiplexed 

genotyping assays. Briefly, 10ng of genomic DNA was used for a multiplexed PCR to 

amplify up to 40 short genomic regions containing the targeted SNPs. Sequenom genotyping 

was conducted in 384-well format with 10% replicates to check assay concordance. The data 

were assembled using the Sequenom software package to track positive and negative 

controls, calculate quality control parameters such as Hardy-Weinberg equilibrium, and 

export genotype reports formatted for analysis. (See Supplementary Figure 1 for the linkage 

disequilibrium plot.)
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The power analysis was conducted using PASS (Power and Sample Size, NCSS Software, 

Kaysville, UT). Discovery cohort analyses were powered to detect an odds ratio of 1.84 or 

greater for allelic frequencies of 0.2 or greater with 80% power and type I error rate (a) of 

5%. Individual SNP associations with cessation were evaluated using logistic regression as a 

screening tool, with chi-squared tests based on likelihood ratio. Models were adjusted for 

age, sex, and nicotine dependence score. Odds ratios present the increase in risk per copy of 

the minor allele (coded 0, 1, 2). P-values in this initial cohort were not corrected for multiple 

testing because the analysis was conducted primarily for discovery purposes.

Pair-wise LD between all SNP markers in NRG3 was computed using Haploview38, with 

haplotype blocks defined by default criteria recommended by Gabriel et al.39 

(Supplementary Figure 2). The single-SNP analysis informed which haplotype blocks would 

be examined following single SNP analysis. Ultimately, we included significant SNPs found 

at the 3′end of NRG3 (i.e., haplotype blocks 18, 19 & 20), as there was low LD between the 

significant SNPs located at the 5′ end of the gene. We used the EM algorithm40 to estimate 

haplotype frequencies, and haplotype-specific associations with cessation were tested using 

generalized linear models (GLM)41. This approach allowed us to assess the global 

significance between all haplotypes and outcome, and allowed us to include observations 

with some missing genotype information (failed read at one or more SNPs). Analysis relied 

on the haplo.stat program (haplo.glm, haplo.score, haplo.em; R version 2.7.2, http://www.R-

project.org), with some specific contrasts made using the wald.test from the AOD package. 

Haplotypes were treated as categorical predictors, and had to exceed a 5% threshold; those 

under 5% were combined. For ease of interpretation, we also conducted haplotype-specific 

tests and estimated haplotype-specific odds ratios and confidence intervals using the 

common haplotype as the reference haplotype.

Replication Cohort—To confirm associations of SNPs identified as significant in the 

discovery cohort, we utilized an independent sample of participants in an open-label trial of 

nicotine patch versus nicotine nasal spray42. Criteria and clinical trial procedures were 

identical to those described above. Of the 334 participants in the nicotine patch condition 

(those in the spray condition were excluded from analysis), 215 were of European ancestry; 

of these, 174 were genotyped. Three participants had call rates of .70 or below on the SNPs 

examined in the discovery cohort and were excluded from analyses. As described in the 

Results below, to select SNPs from the discovery cohort findings to test in the replication 

cohort, we used a strict Bonferroni correction (p<0.0042); 6 subjects in the replication 

cohort had no result for the single SNP meeting this criterion in the discovery cohort 

(rs1896506), leaving a final sample of 165. 46 percent of participants were female and 50% 

were college graduates. The mean age was 46.8 years (sd = 11.9), and mean cigarettes 

smoked per day was 23.25 (sd = 9.12). The mean score on the Fagerström Test for Nicotine 

Dependence (FTND) was 5.50 (sd = 2.15).
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RESULTS

Chronic Nicotine and 24h Withdrawal Increases pCREB in the Hippocampus

CREB is a highly conserved transcription factor that may require activation through 

phosphorylation following chronic nicotine and withdrawal4. Therefore, to determine if 

changes in CREB-phosphorylation are present in the hippocampus following chronic 

treatment with nicotine and/or 24hWD, we measured levels of phosphorylated-CREB in the 

hippocampus and observed that nicotine and 24hWD increase the amount of phosphorylated 

CREB (Fig 1A).

Chronic Nicotine and 24h Withdrawal Increases CREB Binding to DNA

CREB and its genomic targets represent an important pathway in the hippocampus that 

facilitates long-term plasticity43. The dynamic changes in CREB phosphorylation in the 

hippocampus following chronic nicotine and 24hWD led us to investigate potential CREB 

targets. To this end, we performed chromatin immunoprecipitation coupled to high-

throughput sequencing (ChIP-Seq) and gene expression analysis on mouse hippocampus in 

saline, nicotine, and 24WD. Our results demonstrate that CREB-DNA binding was enriched 

in the nicotine and 24WD treatment groups, particularly in pathways implicated in cell-to-

cell signaling and development (Ingenuity Pathway Analysis) (Table 1). For a complete list 

of CREB targets see Supplementary Tables 2, 3, and 4. We evaluated CREB binding in a 

biological replicate to one of the most highly enriched genes from our ChIP-Seq experiment, 

neuregulin 3 (NRG3). As shown in Fig 1B, CREB binding was significantly enriched at the 

NRG3 Cre site following chronic treatment with nicotine.

Chronic Nicotine and 24h Withdrawal Increases Neuregulin 3 in the Hippocampus

To determine if enrichment of CREB at the Nrg3 promoter had an impact on gene 

transcription, we evaluated mRNA levels of members of the Neuregulin-ErbB4 pathway 

following chronic nicotine and 24hWD. We found a significant increase in mRNA levels for 

NRG3, but not NRG1, following 24h WD from chronic nicotine (Fig 2A,C). Furthermore, 

we found a significant increase in mRNA levels for NRG3’s cognate receptor, ErbB4, 

following both chronic nicotine and 24hWD (Fig 2B). In addition, protein analysis showed 

significant increases in ErbB4 protein levels following chronic nicotine and 24hWD (Fig 

2E). Furthermore, we observed increased protein levels of the CREB target gene, NRG3, 

following 24h WD from chronic nicotine, which was CREB dependent as shown by an 

absence of induction in CREBαΔ mutant mice (Fig 2F). Protein levels for NRG1 were not 

altered in any of the treatment groups (Fig 2D).

Neuregulin 3 SNP Analysis During Smoking Abstinence

The preclinical findings were translated to a human genetic exploratory analysis of NRG3. 

Of the 449 participants genotyped in the discovery cohort, 114 (25.3%) were verified 

quitters and 335 had relapsed. Twelve SNPs in NRG3 exhibited nominal associations (p < 

0.05) with smoking cessation (uncorrected for multiple testing) (Table 2; Supplementary 

Figure 3). These include one SNP (rs10883934) located before haplotype block 2; four 

SNPs (rs1896506, rs1649947, rs765833, and rs1649967) located between haplotype blocks 
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2 and 3; one in haplotype block 4 (rs1336287); two in haplotype block 18 (rs495978, 

rs540697); one in haplotype block 19 (rs19236560), and one between haplotype blocks 19 

and 20 (rs2026495); and two in haplotype block 20 (rs4362091 and rs10787519). However, 

corrected for multiple testing using a stringent Bonferroni correction for all the SNPs tested, 

only the association between rs1896506 and 8-week smoking cessation would remain 

statistically significant (p < 0.004).

In the haplotype analysis we focused on the significant SNPs located in haplotype blocks 18, 

19, and 20 (rs495978, rs540697, rs2026495, rs1923560, rs4362091, and rs10787519). The 

number of participants with complete genotype data for all these SNPs was 399. This 

subsample did not differ significantly from the entire sample of 449 on any of the 

demographics or quit outcome parameters. Common haplotypes accounted for 92% of all 

haplotypes, with the most common one being A-G-T-C-G-T with a frequency of 30%. The 

overall regression analysis based on categorical haplotypes was significant (p = 0.0009). We 

tested the haplotype regression against a model containing only the controlling variables; the 

Wald chi-square test was also significant (p = 0.03). When each haplotype was compared to 

the most common haplotype (A-G-T-C-G-T), haplotype G-AG-A-A-C was found to have a 

significantly reduced probability of cessation at the end of treatment (OR = 0.56, 95% CI = 

(0.38, 0.82), p = 0.003). None of the other haplotypes were associated with quitting 

compared to the reference haplotype.

Of the 165 participants included in the replication cohort, 59 (35.8%) were verified abstinent 

at end of treatment and 106 were classed as non-abstinent. A logistic regression of verified 

7-day point prevalence abstinence at end of treatment, treating rs1896506 genotype as 

dichotomous (0 = G/G, 1 = */A) and adjusting for age, sex, and nicotine dependence score, 

was performed. The effect of rs1896506 was significant (OR = 0.44, 95% C.I. = (0.22, 

0.87); p = .019); no other predictors contributed significantly. When treated as categorical in 

the logistic model, the effect of rs1896506 genotype remained significant (p = .046). Eight-

week quit rates by rs1896506 in the discovery and replication cohort are shown in Figure 3.

Lastly, data from the two cohorts were pooled and logistic regressions of verified 7-day 

point prevalence abstinence at 8 weeks were carried out. The following predictors were 

included: rs1896506 genotype, age, sex, nicotine dependence score, and study. rs1896506 

was a significant predictor, when treated as dichotomous (OR = 0.45, 95% C.I. = (0.31, 

0.65), p < .001) or categorical (p < .001). Additionally, when the logistic regression was 

repeated in the pooled sample of participants from both cohorts who received standard 8-

week duration therapy (n = 386) using 6-month abstinence as the outcome, there was a 

significant association of rs1896506 (dichotomous) with abstinence (OR = 0.54, 95% C.I. = 

(0.31, 0.94), p = .028).

The association of rs1896506 was not significant for pre-treatment nicotine dependence 

score or smoking rate (p values >.20); however, in treatment-seeking smokers, the 

variability in nicotine dependence is limited.
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Evaluation of NRG3ska Mice: NRG3 Protein Levels and Regulation of Neuronal nAChRs by 
Chronic Nicotine and 24h Withdrawal

While the alterations in NRG3 following chronic nicotine and withdrawal in conjunction 

with the human relapse data suggest a role for this novel molecule in affecting smoking 

cessation, these data are correlational. Therefore, in order to evaluate more directly the 

contribution of NRG3 to nicotine withdrawal phenotypes that may influence smoking 

cessation in humans, we utilized the scaramanga (NRG3ska) mouse. This mouse line arose as 

a spontaneous mutation, which was later identified as corresponding to a microsatellite 

repeat in exon 7 of the Nrg3 gene, resulting in reduced expression of NRG344. Indeed, we 

confirmed this reduction of NRG3 protein level in the hippocampus of NRG3ska mice 

compared to the F1 wildtype mice utilized in these experiments (Fig 4A). However, 

following chronic treatment with nicotine or 24h WD, NRG3 protein is not upregulated in 

the NRG3ska mice compared to saline levels (Fig 4B). In order to evaluate whether this lack 

of effect by nicotine was due to a general lack of response to chronic nicotine administration 

in NRG3ska mice, we measured nicotinic receptor (nAChR) upregulation, a hallmark of 

chronic nicotine treatment45, 46. nAChRs were measured with radioactively labeled 

epibatidine, a nAChR ligand that binds with high affinity to heteromeric nAChRs, which are 

the specific type of nAChRs altered following chronic administration of nicotine47–49. As 

shown in Figure 4C, wildtype F1 mice display significantly greater [3H]epibatidine binding 

following chronic treatment with nicotine and 24hWD compared with their saline treated 

controls. Similarly, the NRG3ska mice also display this nAChR upregulation following 

chronic treatment with nicotine and 24hWD (Fig 4D), suggesting that the lack of NRG3 

mRNA and protein induction by nicotine is not attributable to a general lack of response to 

chronic nicotine administration.

Neuregulin 3-ErbB4 Signaling is Required for Anxiogenic Responses to Nicotine 
Withdrawal in the Novelty-Induced Hypophagia Test and the Marble-Burying Test

Nicotine withdrawal in smokers is often characterized by an increase in anxiety50. To model 

this preclinically in the NRG3ska mice, we utilized the NIH test, which is a well-validated 

model for assessing anxiety in mice16–24. Of particular interest to the present study, the NIH 

test is unique in that both the anxiolytic effects of chronic nicotine as well as the anxiogenic 

effects of 24h withdrawal from chronic nicotine can be observed in the same test51. In this 

paradigm, F1 wildtype mice demonstrate an anxiolytic effect following chronic nicotine 

treatment compared to F1 control mice (Fig 5D). However, mice undergoing 24hWD exhibit 

an anxiogenic effect as shown by an increased latency to feed in a novel environment (Fig 

5D). NRG3ska mice treated with chronic nicotine show similar reductions in anxiety 

following chronic nicotine compared to F1 wildtype mice, however they do not demonstrate 

any increases in anxiety during nicotine withdrawal (Fig 5A). Furthermore, afatinib, an 

irreversible inhibitor at ErbB4 and ErbB2/4 receptors12, 13, blocks the increased anxiety 

associated with nicotine withdrawal (Fig 5D). We then evaluated these treatments in a 

second measure of anxiety, the marble-burying test26, which is sensitive to nicotinic 

drugs24, 27, 52. As was observed in the NIH test, nicotine causes an anxiolytic effect in the 

marble-burying test in NRG3ska mice (Fig 5B) as well as in F1 hybrids (Fig 5E). 

Additionally, the increased anxiety seen following 24hWD is absent in mice with reduced 
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levels of NRG3 (Fig 5B) as well as when the NRG3 receptor, ErbB4, is inhibited with 

chronic afatinib treatment (Fig 5E). None of these effects are attributable to alterations in 

locomotor activity, as there were no significant treatment effects in home cage locomotor 

activity measurements (Fig 5C,F).

DISCUSSION

The translational utility of cross-species models is exemplified in the present study, which 

identifies a role for the NRG3/ErbB4 pathway in nicotine dependence. Our findings in the 

mouse demonstrate that a significant induction of NRG3 occurs during early withdrawal that 

is correlated with an increase in anxiety as measured in two different behavioral models. In 

mice with a spontaneous mutation in NRG3 (NRG3ska), levels of NRG3 are reduced, but 

nicotine or 24WD does not induce any upregulation of NRG3 as is seen in F1 WT mice. Of 

interest, the anxiety phenotype observed during 24WD is also absent in NRG3ska mice, 

suggesting a causal relationship between the protein changes and the behavior. Furthermore, 

when the NRG3 signaling pathway is perturbed by afatinib, an irreversible inhibitor at 

ErbB4 and ErbB2/4 receptors as well as EGFRs12, 13, the anxiety-like withdrawal 

phenotypes are abolished. These preclinical data support a causative role of NRG3-ErbB4 

signaling in the anxiety effects of nicotine withdrawal.

While the mouse studies suggest that NRG3 alterations in smokers may impact relapse rates 

by modulating anxiety withdrawal symptoms, the specific impact of this pathway in humans 

and how NRG3 contributes to the increased smoking relapse rates among carriers of the 

NRG3 SNP is not known. Regulation of NRG3 in the hippocampus may have a significant 

effect in mediating synaptic plasticity in this brain region, which has been associated with 

affective and cognitive symptoms prominent during withdrawal6–8, 51. Identification of this 

candidate gene in the mouse nominated it for analysis of single nucleotide polymorphisms 

(SNPs) for association with prospective smoking cessation in two independent cohorts of 

smokers treated with transdermal nicotine. Some SNPs previously associated with cognition 

or psychosis were not included in the panel53–57 and it is possible that other unexamined 

SNPs may impact NRG3 expression and be more relevant to nicotine dependence. However, 

of the SNPs selected for this investigation, individual SNP and haplotype analysis suggest 

an association of SNPs and smoking cessation success. These findings, in conjunction with 

Loukola et al. who identify associations of ErbB4, the receptor for NRG3, in a different 

cohort of smokers, strongly implicate this pathway in the molecular mechanisms underlying 

nicotine dependence and smoking cessation.

Neuregulins are presynaptic epidermal growth factor (EGF)-like molecules, which are 

released via presynaptic cleavage. The neuregulin extracellular domain then signals 

postsynaptically through ErbB receptors, which are receptor tyrosine kinases. Activation of 

the ErbB receptor by any of the neuregulin family results in activation of downstream 

intracellular signaling pathways, including the AKT and JAK/STAT cascades58–60. While 

we observed no mRNA changes in NRG1, we found a significant increase in NRG3 mRNA 

and protein following 24hWD from chronic nicotine. NRG3 expression is found in the 

cerebellar nuclei, vestibular nuclei, olfactory nucleus, medial habenula, and hypothalamus, 

and expression is especially high in the hippocampus, cortex, and thalamus61, 62. Unlike 
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many other neuregulins, NRG3 binds quite specifically to the ErbB4 receptor subtype61, 

which has been shown to have a critical role in activity-dependent excitatory synapse 

formation63.

Most studies have described the function of NRG3 in mammary development44; however, 

very little is known about the specific function of NRG3 in the brain. A limited number of 

gene association studies have suggested a role for NRG3 in schizophrenia53–56 and 

ADHD57. Its involvement in these disorders is particularly interesting in light of smoking 

rates among these co-morbid populations. For example, nicotine dependence is highly co-

morbid in schizophrenia, where ~80% of the population smoke64, as well as in ADHD, 

where ~45% of the population smoke65.

The functional significance of the SNP in NRG3 replicated in the two cohorts is not known 

nor are the effects of NRG3-ErbB4 stimulation in an individual experiencing nicotine 

withdrawal. However, SNPs in the closely related gene, NRG1, predict α7 nAChR 

expression66, which has been suggested to potentially underlie some of the neurological 

deficits apparent in schizophrenia67. While the precise mechanism by which these NRG1 

SNPs influence nAChRs is unknown, application of NRG1 in slice and cell culture 

preparations alters both nAChR expression as well as function68–70. Furthermore, behavioral 

studies in NRG1 transgenic mice that have reduced expression of NRG1 demonstrate a 

differential behavioral effect of nicotine compared to wildtypes71.

The present studies show that chronic treatment with nicotine elicits CREB-dependent 

changes in NRG3 mRNA and protein levels. Whereas other CREB targets may drive other 

aspects of nicotine withdrawal, we describe the mechanism by which nicotine induces 

CREB binding and activation of the NRG3 gene, resulting in its increased expression and 

subsequent activation of the ErbB4 receptor, which then drives nicotine withdrawal-induced 

anxiety. Our investigation into this pathway presents a novel target for therapeutic 

development of smoking cessation aids designed specifically to address nicotine 

withdrawal-induced anxiety, which has been shown to directly influence smoking relapse 

rates72–76.

In order to model withdrawal-associated anxiety in our evaluation of NRG3/ErbB4 signaling 

during 24hWD, we utilized two complementary models of anxiety in mice, the NIH test and 

the marble-burying test. The marble-burying test measures the ability of an aversive 

environment to induce an anxiety-like state, which results in an active response (burying). 

This is in contrast to the NIH test, where an aversive environment elicits a passive 

behavioral response (not approaching and consuming the food), which is indicative of 

heightened anxiety in the animal. Both ourselves24, 27, 51 and others52, 77–79 have utilized 

these behavioral paradigms to investigate the anxiety-related effects of nicotinic drugs. It is 

important to note that there may be some developmental effects associated with the 

polymorphism present in the NRG3ska mice; however, it is unlikely that these effects 

account for their anxiolytic phenotype following 24hWD from nicotine. Previous studies 

conducting extensive behavioral phenotyping of these mice demonstrated that while they 

exhibit reduced sociability, there are no significant effects on aggression, nest building, 

motor coordination, or learning and memory80, 81. Furthermore, these mice present with an 
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anxiety-like and antidepressant-resistant phenotype in multiple behavioral measures80, 82, 83. 

This is supported by our data showing an increased baseline latency to approach the food on 

Novel Test Day in the saline treated NRG3ska mice compared with the saline treated F1 WT 

mice (Fig 5A,D). While chronic nicotine treatment results in anxiolytic responses in the NIH 

in both the F1 and NRG3ska, they exhibit differential responses to 24hWD. Though it is 

possible the blunted 24hWD phenotype in the NRG3ska mice may be due to developmental 

compensation, the more likely phenotype would have been an exacerbated anxiogenic 

phenotype during 24hWD. Furthermore, the 24hWD behavior in the NIH test is ablated in 

F1 WT mice chronically treated with an ErbB4 inhibitor (afatinib, Fig 5D), suggesting that 

modulation of this pathway in particular impacts nicotine withdrawal behaviors. This is 

further supported by the human data, where individuals possessing a SNP in the NRG3 gene 

have significantly higher relapse rates. It is important to replicate the human genetic 

association findings in independent samples, with larger populations and longer follow-up. 

In addition, the function of this SNP (and other SNPs in NRG3) is unknown, and in the case 

of a lack of functionality, this SNP may be in linkage disequilibrium with other functional 

variants that have gone undetected to date. However, despite these limitations, these 

translational findings in conjunction with those highlighted in Loukola et al, provide support 

for the NRG3-ErbB4 pathway in nicotine dependence.

Cigarette smoking constitutes a major health burden in the US with smoking accounting for 

1 in 5 deaths each year in the U.S.84 Even with available FDA-approved treatments, most 

smokers fail, underscoring the need to develop novel medications72. Therefore, it is crucial 

to discover the cellular, molecular, neural, and behavioral basis of early nicotine abstinence 

effects that contribute to relapse. Methods used to identify these mechanisms can vary. Our 

approach was to focus on the targets of a transcription factor, CREB, which mediates long-

term plasticity43 and has been shown to be required for nicotine conditioned place 

preference2, 3. Furthermore, studies examining CREB signaling following nicotine 

administration and/or withdrawal show induction of CREB phosphorylation in the reward 

pathway2,4, and our current findings demonstrate a significant effect of chronic nicotine and 

withdrawal on CREB phosphorylation in the hippocampus. Analysis of differentially 

induced CREB ChIP-Seq targets identified a number of genes associated with gene 

expression, cell-to-cell signaling, and cellular development. More specifically, these data 

highlighted enrichments in the neuregulin3/ErbB4 signaling pathway, which lead to 

identification of a modest signal for association of SNPs in NRG3 with prospective smoking 

cessation. Thus, our combination of functional and molecular analysis following chronic 

nicotine and withdrawal to inform candidate gene analyses in smokers may help identify 

novel molecular targets for development of new smoking cessation therapies. Furthermore, 

these types of cross-species analyses have the potential to accelerate target identification for 

smoking cessation therapies.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Chronic treatment with nicotine and/or 24hWD significantly increases phosphorylation 
of CREB in the hippocampus and increases CREB binding to the promoter for Nrg3
Animals were treated in vivo with either saline, nicotine (18 mg/kg/day), or undergoing 24h 

withdrawal (WD) from nicotine. Hippocampal tissues from treated animals were used in A) 
Western blot analysis to evaluate phosphorylation levels of CREB as well as in B) ChIP 

analysis to evaluate binding to the promoter for Nrg3. A) Both chronic nicotine as well as 

24h WD from chronic nicotine elicited significant increases in pCREB relative to saline in 

wildtype (WT) animals. No change was observed in CREB mutant mice, which exhibit a 

90% reduction in total CREB levels (N=4–5). Representative blots are shown below panel 

A. B) CREB binding to Nrg3 was significantly increased following chronic treatment with 

nicotine (18 mg/kg/day) (N=6–7). *, p<0.05; **, p<0.01.
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Figure 2. Chronic treatment with nicotine and/or 24hWD significantly increases neuregulin 3, 
but not neuregulin 1, in the hippocampus
Animals were treated in vivo with either saline, nicotine (18 mg/kg/day), or undergoing 24h 

withdrawal (WD) from nicotine. Hippocampal tissues from treated animals were used in 

qPCR or Western blot experiments to evaluate mRNA or protein levels. As shown, chronic 

treatment with nicotine or 24hWD does not alter neuregulin 1 (NRG1) (A) mRNA or (D) 
protein levels in the hippocampus. In contrast, mRNA (B) and protein (E) levels of ErbB4 

are increased following chronic treatment with nicotine and/or during 24hWD. Additionally, 

mRNA levels of the CREB target neuregulin 3 are increased following chronic nicotine 

treatment and 24hWD (C). Furthermore, protein levels of NRG3 (F) are increased following 

24hWD in wildtype (WT), but not CREB mutant, mice. Representative blots are shown 

below each panel. *, p<0.05; **, p<0.01. A–C: N=6–11; D–F: 6–10.
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Figure 3. Smoking cessation with transdermal nicotine, by study and NRG3 rs1896506 genotype. 
A)
Eight-week quit rate was significantly lower in A/* carriers of the rs1896506 genotype in 

both the discovery cohort and the replication cohort. B) Six-month quit rate in the pooled 

sample of participants from both cohorts who received standard 8-week duration therapy 

was significantly lower in A/* carriers of the rs1896506 genotype. The number of subjects 

in each group is indicated above its respective bar.
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Figure 4. Chronic treatment with nicotine and withdrawal results in differential biochemical 
responses in the F1 wildtype and NRG3ska mice
F1 hybrid and NRG3ska mice were treated in vivo with either saline, nicotine (18 mg/kg/

day), or undergoing 24h withdrawal (WD) from nicotine. A) Hippocampal tissues from 

saline treated animals were used in Western blot analysis to evaluate basal levels of NRG3 

in the two strains of mice. NRG3ska mice demonstrated a signficant reduction in NRG3 

levels compared to F1 hybrids (N=8). Representative blots are shown below. B) 
Hippocampal tissues from NRG3ska mice treated with saline, nicotine, or 24h WD were used 

in Western blot analysis to evaluate treatment changes in NRG3 levels. NRG3ska mice did 

not show an induction of NRG3 following chronic nicotine or 24h WD (N=8). 
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Representative blots are shown below. C) Hippocampal tissues from F1 hybrid mice treated 

with saline, nicotine, or 24h WD were used for homogenate-binding experiments with a 

saturating concentration of [3H]epibatidine ([3H]EB, 1.5 nM). F1 hybrid mice chronically 

treated with either nicotine or 24h WD displayed an increased density of nAChRs compared 

to saline controls (N=4). D) Hippocampal tissues from NRG3ska mice treated with saline, 

nicotine, or 24h WD were used for homogenate-binding experiments with a saturating 

concentration of [3H]epibatidine ([3H]EB, 1.5 nM). NRG3ska mice chronically treated with 

either nicotine or 24h WD displayed an increased density of nAChRs compared to saline 

controls (N=4). *, p<0.05; **, p<0.01; ***, p<0.005.
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Figure 5. Chronic treatment with nicotine and withdrawal results in differential behavioral 
responses in the F1 wildtype and NRG3ska mice
NRG3ska mice were treated in vivo with either saline, nicotine (18 mg/kg/day), or 

undergoing 24h withdrawal (WD) from nicotine. F1 hybrid mice were treated in vivo with 

either saline, nicotine (18 mg/kg/day), or undergoing 24h withdrawal (WD) from nicotine; 

additionally, these mice also received daily injections of either vehicle or afatinib at the 

concentrations indicated for 10 days. A) NRG3ska mice treated with saline, nicotine, or 24h 

WD were tested in the NIH test. Mice chronically treated with either nicotine or 24h WD 

displayed a reduced latency to feed on novel test day compared to saline controls (N=16). B) 
NRG3ska mice treated with saline, nicotine, or 24h WD were tested in the marble-burying 

test. Mice chronically treated with either nicotine or 24h WD buried fewer marbles 

compared to saline controls (N=10). C) Locomotor activity was tested in NRG3ska mice 

treated with saline, nicotine, or 24h WD. No treatment effects were observed (N=4–6). D) 
F1 hybrid mice treated with saline, nicotine, 24h WD, or 24h WD + Afatinib were tested in 

the NIH test. Mice chronically treated with either nicotine or 24h WD + Afatinib displayed a 

reduced latency to feed on novel test day compared to the saline group or the 24hWD group 

(N=6–7). E) F1 hybrid mice treated with saline, nicotine, 24h WD, or 24h WD + Afatinib 

were tested in the marble-burying test. Mice chronically treated with either nicotine or 24h 

WD + 20mg/kg Afatinib buried fewer marbles compared to saline controls (N=5–7). F) 
Locomotor activity was tested in treated F1 Hybrid mice. No treatment effects were 

observed (N=4–6). Significant compared to vehicle control - **, p<0.01; ***, p<0.005. 

Significant compared to 24hWD - #, p<0.05; ###, p<0.005.
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Table 1

Top Networks Altered Following Chronic Nicotine and 24h Withdrawal

Rank Associated Network Functions Score

1 Gene Expression, Cell-to-Cell Signaling and Interaction, Cellular Development 25

2 Cancer, Cell Cycle, Cell Death 2

3 Cell Death, Cell-to-Cell Signaling and Interaction, Cellular Development 2

4 Post-Tranlational Modification, Cellular Growth and Proliferation 2

5 Cell-to-Cell Signaling and Interaction, Carbohydrate Metabolism, Lipid Metabolism 2
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