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Abstract

Background: The reconstruction of metabolic networks and the three-dimensional
coverage of protein structures have reached the genome-scale in the widely studied
Escherichia coli K-12 MG1655 strain. The combination of the two leads to the
formation of a structural systems biology framework, which we have used to analyze
differences between the reactive oxygen species (ROS) sensitivity of the proteomes
of sequenced strains of E. coli. As proteins are one of the main targets of oxidative
damage, understanding how the genetic changes of different strains of a species
relates to its oxidative environment can reveal hypotheses as to why these variations
arise and suggest directions of future experimental work.

Results: Creating a reference structural proteome for E. coli allows us to
comprehensively map genetic changes in 1764 different strains to their locations on
4118 3D protein structures. We use metabolic modeling to predict basal ROS
production levels (ROStype) for 695 of these strains, finding that strains with both
higher and lower basal levels tend to enrich their proteomes with antioxidative
properties, and speculate as to why that is. We computationally assess a strain’s
sensitivity to an oxidative environment, based on known chemical mechanisms of
oxidative damage to protein groups, defined by their localization and functionality.
Two general groups - metalloproteins and periplasmic proteins - show enrichment of
their antioxidative properties between the 695 strains with a predicted ROStype as
well as 116 strains with an assigned pathotype. Specifically, proteins that a) utilize a
molybdenum ion as a cofactor and b) are involved in the biogenesis of fimbriae
show intriguing protective properties to resist oxidative damage. Overall, these
findings indicate that a strain’s sensitivity to oxidative damage can be elucidated
from the structural proteome, though future experimental work is needed to validate
our model assumptions and findings.

(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Mih et al. BMC Bioinformatics          (2020) 21:162 
https://doi.org/10.1186/s12859-020-3505-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-3505-y&domain=pdf
http://orcid.org/0000-0003-2357-6785
mailto:palsson@ucsd.edu
mailto:palsson@ucsd.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(Continued from previous page)

Conclusion: We thus demonstrate that structural systems biology enables a
proteome-wide, computational assessment of changes to atomic-level
physicochemical properties and of oxidative damage mechanisms for multiple strains
in a species. This integrative approach opens new avenues to study adaptation to a
particular environment based on physiological properties predicted from sequence
alone.

Keywords: Structural systems biology, Oxidative stress, Structural proteome,
Physicochemical properties, Oxidative damage, Metabolic model

Background
Reactive oxygen species (ROS) can cause severe oxidative damage to cellular proteins,

which often results in chain reactions that spread the damage to neighboring macro-

molecules and leads to systems-level changes of cellular function [1]. While ROS can

be beneficial - and even necessary in some contexts [2–5] - at a high concentration,

oxidative damage must be responded to and repaired. As a result, cells are equipped

with a number of mechanisms to quench ROS, directly repair the damaged compo-

nents, or manage ROS indirectly [6]. Certain amino acids that constitute the structures

of proteins are principal sites of oxidative damage [7]. This damage can be divided into

two groups - reversible or irreversible modifications. The sulfur-containing residues

methionine and cysteine incur reversible modifications, while irreversible damage im-

pacts histidine, arginine, lysine, proline, threonine (RKPT), and tyrosine (with reactive

nitrogen species) [8]. The damage to the RKPT amino acids is a post-translational

modification known as carbonylation, and is commonly used as an experimental meas-

urement of oxidative damage with mass spectrometric methods [9–11].

A number of studies have explored the adaptations of an organism’s proteome to deal

with an oxidative environment. These studies have examined how the amino acid usage

of their proteomes differs between anaerobes versus aerobes [12], or between short-

and long-living organisms [13–15]. The latter case has been of interest due to the pro-

posed oxidative stress theory of aging [16] which states that the accumulation of oxida-

tive damage to macromolecules is a major reason why organisms age. As a result of

these studies, there are a number of proposed hypotheses regarding how aerobic organ-

isms have evolved to live in oxygen-rich environments or why certain species have in-

creased longevity. In the context of the structural proteome, these proposals include: 1)

the use of “amino acid sponges” that can absorb oxidative damage by enriching cyto-

solic protein surfaces with methionine [17–20] or cysteine [21], and additionally tyro-

sine or tryptophan in transmembrane proteins [22]; 2) the avoidance of cysteines [23]

or carbonylation-susceptible residues [10, 24] on the surface of a protein; 3) the avoid-

ance of charged or disorder-prone residues [25–28] to favor a more stable folded state;

4) the protection of reactive cofactors such as transition metal ions or flavins with ex-

tended domains [29] or by altering global or local structural characteristics [30–32];

and 5) a number of other novel mechanisms [33–37]. The true impact of these adapta-

tions remains unclear as patterns observed could be attributed to other factors [12],

but it is clear from these studies that antioxidative protein properties have manifested

themselves within the genetic code over time.
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In this study, we use a combination of both structural and systems biology ap-

proaches to evaluate if the differential manifestation of these antioxidative properties in

the proteomes of multiple E. coli strains reflects the varying oxidative environments

they may encounter. We extend a pipeline to construct genome-scale models with

protein structures (GEM-PROs) to the entire reference proteome of E. coli K-12

MG1655, with additional methods to select representative cofactor-bound struc-

tures and protein complexes. We use this information along with a set of 1764 se-

quenced E. coli strains to map DNA sequence variation to the reference proteome,

with the goal of characterizing physicochemical changes in groups of proteins de-

fined by their localization and functionality (Fig. 1). We additionally create strain-

specific genome-scale metabolic models capable of predicting basal ROS production

levels (henceforth referred to as “ROStypes”) [41, 42] to understand how adaptation

may arise not only due to levels of ROS encountered exogenously, but also pro-

duced endogenously. With this information, we are able to pinpoint shared changes

in relation to a strain’s phenotype and the antioxidative properties of its proteome.

We unexpectedly find that strains with predicted higher levels of endogenous ROS

relative to MG1655 (ROShi) share antioxidative properties in their proteomes to

those with predicted lower levels (ROSlo). We find that generally, metalloproteins

and periplasmic proteins differ in these antioxidative properties, and detail two spe-

cific examples of molybdenum-binding enzymes and proteins involved in the bio-

genesis of fimbriae. This work demonstrates a structural systems biology approach

Fig. 1 Schematic of modeling workflow and the hypothetical antioxidative properties of a protein. a The
genomes of 1764 strains of E. coli were gathered and orthologous genes were mapped to the reference E.
coli K-12 MG1655 strain. External data sources were integrated to gather protein sequence and structure
annotations with regards to susceptibility of oxidative damage, such as the locations of metal-binding sites
[38], known carbonylation sites [39], and known cysteine damage sites [40]. The structural proteome is
further categorized into protein groups by their annotated localization and functionality (see Additional file
1: Table S1). We conducted gene deletions upon the genome-scale metabolic model of MG1655 integrated
with ROS generating reactions (iML1515-ROS [41, 42]) for strain-specific predictions of basal ROS production
levels, defining a strain’s “ROStype”. We utilized the GEM-PRO pipeline [43, 44] to select representative
protein structures for 95% of the MG1655 proteome. b A hypothetical protein resistant to oxidative
damage. Protein sequence and structure properties are highlighted based on previous studies finding
enrichment of these properties in aerobes or long-living organisms. Structural properties defined by
locations in 3D space, such as surface-exposed residues or those in a specified radius within a metal-
binding site, are used to further divide a single protein into residue groups (see Additional file 1: Table S3)
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to explore patterns of protein sequence variation in relation to predicted or known

phenotypes, specifically in the context of adaptation to an oxidative environment.

Results
Reconstructing the reference structural proteome of E. coli K-12 MG1655

The construction of a reference structural proteome for the 4313 proteins of the E. coli

K-12 MG1655 strain resulted in 1457 proteins that could be represented by an experi-

mentally determined 3D structure, an additional 2661 proteins with a homology model,

and 195 with no available structure. Proteins were segregated into functionally similar

groups, first based on their localization within the cell and further using clusters of

orthologous group (COG) categories and metabolic subsystem groupings, resulting in

over 200 groups of proteins (henceforth referred to as protein groups) analyzed for dif-

ferences in their structural properties that could potentially contribute to oxidative

stress resistance (henceforth referred to as antioxidative properties) (Fig. 1) (see Add-

itional file 1: Table S1). These antioxidative properties were selected on the basis of

previous studies that characterized hypothesized resistance patterns seen in aerobes or

in long-living organisms, and are listed in Additional file 1: Table S3.

Improvements to the GEM-PRO pipeline [43, 44] allowed for the refined selection of

experimental protein structures for 42 iron and iron-sulfur binding enzymes. For these,

selection of a representative structure was extended beyond sequence identity and

structural resolution by considering cofactor-bound states if experimental structures

were available in both apo (cofactor-unbound) and holo (cofactor-bound) forms. The

integration of external data sources enabled the assessment of changes to experimen-

tally determined damage points on proteins for carbonylation (24 proteins with 84 total

experimentally carbonylated residues) and cysteine damage (94 proteins with 150 total

experimentally damaged cysteines). These improvements result in a more rigorous re-

construction of the structural proteome and also enable future analyses to consider im-

portant protein subsequences (Fig. 1b), such as for changes within a certain radius of a

metal-binding site or known sites of damage.

Strains with significant variance in ROStypes display enrichment of antioxidative

properties in their proteomes

The protein sequences of 1764 strains of E. coli were gathered from public databases

(see Methods). Simulations to predict the ROStype of available E. coli strains were suc-

cessful for 695 strains, and resulted in a set of 16 strains that had a significantly higher

basal ROS production rate (ROShi, > 105% measured K-12 MG1655 production rate

[45]) and 26 that had a lower basal rate (ROSlo, < 95% measured rate) (Fig. 2a). This

cutoff was selected from a previous study that validated a number of gene deletions

and their impact on measured endogenous ROS levels [41]. The production rate of

H2O2 and O2
− was highly correlated (r = 0.98) and thus, classification of a strain based

on their ROStype refers to production rates of both H2O2 and O2
−. A large number of

strains (653) displayed non-varying levels (within ±5%) compared to K-12 MG1655

(ROSK-12) while the remaining strains (1069) failed to simulate growth under minimal

media conditions, most often due to missing amino acid synthesis pathways that were
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Fig. 2 Classifying strains by predicted endogenous ROS levels and missing reactions that contribute to the
predicted phenotype. a Simulations of strain-specific metabolic models enable the prediction of
endogenous ROS levels, or ROStype. A defined ROStype results from changes to pathway usage due to the
deletion of certain reactions from missing genes. Strains are classified by their predicted endogenous ROS
levels as “high” (ROShi) or “low” (ROSlo) ROStypes if their predicted rates of production of hydrogen peroxide
(H2O2) or superoxide (O2

−) differ by more than 5% from the measured production rate in the K-12 MG1655
strain (orange dotted line). If predicted endogenous ROS levels do not differ by more than 5%, a strain is
classified as similar to MG1655 (ROSK-12). b Histogram of the metabolic subsystems of missing reactions that
contribute to the ROStype. Reactions that are shared between strains with ROShi and ROSlo predictions are
denoted as shared missing reactions in gray
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not mapped from orthologous genes. Gap-filling of the strain-specific metabolic models

was not carried out.

From the set of ROShi and ROSlo strains, we inspected the gene deletions that

resulted in the predicted phenotypes. Computationally, this could have been the

case due to a common missing reaction from a set of sequenced strains that had a

shared quirk, due to sequencing errors or other technical problems. Closer inspec-

tion of the missing reactions revealed no defined set of gene deletions that lead to

a ROShi or ROSlo phenotype, however, there are similarities between the two in

terms of which reactions were eliminated. In both classes, the major subsystem of

reactions missing due to gene deletions were involved in alternate carbon metabol-

ism and lipopolysaccharide biosynthesis, consistent with other studies of the core

and pan genome [46, 47]. Both strain sets shared missing reactions in methionine

metabolism, nitrogen metabolism, and inner membrane transport pathways. ROShi

strains were missing additional lipopolysaccharide (LPS) biosynthesis reactions, and

the only non-LPS reaction unique to these strains was a deletion of UDP-

galactopyranose mutase. ROSlo strains on the other hand, had a variety of missing

reactions in different subsystems (Fig. 2a). Interestingly, in most protein groups,

the computed antioxidative properties did not significantly cluster apart the ROShi

and ROSlo strains in principal component analysis (PCA) (top panels of Fig. 3a,

Fig. 4a, Fig. 5a). It was observed that these strains clustered together, but apart

from strains with non-varying levels of endogenous ROS. To verify that these anti-

oxidative features were indeed unable to be used to cluster ROShi and ROSlo

strains apart from each other, a random forest classifier was trained and features

were tuned using leave-one-out cross validation. The classifier performed poorly

(AUC < 0.6) using these features in the reported protein groups of this work, ex-

cept for the metal-binding enzymes which had a modest AUC of 0.86. This indi-

cates that there may indeed be some discriminating features in the metal-binding

enzymes of ROShi versus ROSlo strains, which is not unexpected as they are main

targets of damage.

Fig. 3 Principal components analysis (PCA) of antioxidative properties in all metal-binding proteins as well
as all periplasmic proteins. Antioxidative properties are computed for all metal-binding proteins and
averaged for every strain. A feature matrix containing these properties is used as input to PCA, and
subsequently, strains with predicted ROStypes (top left) and strains with pathotype annotations (bottom
left) are highlighted. PCA for all proteins localized to the periplasm is also shown (right). These two general
groups of proteins show clusters with the highest homogeneity in regards to predicted endogenous ROS
or pathotype labels
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Known chemical mechanisms of oxidative damage to proteins enable the assessment of

a strain’s oxidative environment

Pathotype classifications were available for a subset of 116 from the overall set of

1764 strains, while growth/no growth phenotypes in a variety of media conditions

were available for up to 650 strains depending on the condition [55]. PCA of the

selected antioxidative properties successfully segregated strains with predicted ROS-

types (i.e., ROShi and ROSlo strains vs. ROSK-12) and those with defined pathotypes

(i.e., ExPEC/AIEC/APEC vs. other pathotypes) for a number of protein groups

(Table 1, Table 2). These groups were ranked by cluster homogeneity following

Density-Based Spatial Clustering of Applications with Noise (DBSCAN). Examples

of proteins showing significant cluster homogeneity include the general protein

groups of all metal-binding enzymes as well as all proteins localized to the peri-

plasm (Fig. 3). Specifically, in these groups, the metal-binding enzymes that utilize

a molybdenum cofactor and periplasmic enzymes involved in the assembly of fim-

briae showed clear clustering. These specific groups are expanded upon below.

Other protein groups with high homogeneity included other extracellular and

Fig. 4 Molybdenum-binding proteins are enriched in antioxidative properties in strains with both high and
low predicted levels of endogenous ROS as well as strain pathotypes likely encountering oxidative
environments. a PCA of antioxidative properties for molybdenum-binding proteins of strains, in relation to
their predicted ROStype and annotated pathotype. Proteins were inspected individually for changes in
antioxidative properties, since analysis of the component contributions showed both enrichment and
avoidance of certain properties. b Biotin sulfoxide reductase shows avoidance of surface-exposed cysteine
residues in both ROShi/ROSlo and ExPEC/AIEC/APEC strains. The residues highlighted on the protein
structure indicate common mutations in strains of ExPEC/AIEC/APEC pathotypes. The size of the highlighted
residue corresponds to the number of strains that mutation appears in. Note that all mutations do not co-
occur together in all strains. The distribution plots for strain phenotypes to the right of the protein figure
show the normalized percentage of the residue in relation to the protein subsequence, i.e. percentage of
cysteines on the protein surface. c Xanthine dehydrogenase subunit A similarly shows enrichment of
antioxidative properties, by avoiding carbonylatable and charged residues on the protein surface, along
with an increase of a total percentage of order-promoting residues. Structural models shown here are all
homology models from the SWISS-MODEL database [48]
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motility proteins, murein biosynthesis enzymes, and proteins involved in lipid or

inorganic ion transport and metabolism (Table 1, Table 2).

We observed very little segregation of the panel of strains with available growth/no

growth phenotypes in various media conditions [55], with our original hypothesis being

that strains with growth phenotypes in oxidative environments would show enrichment

of antioxidative properties in proteins important for metabolic function. A major rea-

son for this observation was due to a much lower statistical power as many conditions

contained a very small number of strains with “no growth” phenotypes compared to

those with a “growth” phenotype.

Molybdoenzymes with promiscuous activity are enriched in antioxidative properties

Enzymes that utilize molybdenum as an inorganic cofactor in catalysis carry out a var-

iety of redox reactions in E. coli [56] and in all eukaryotic organisms [57, 58]. The

Fig. 5 Proteins in the periplasm involved in the assembly of fimbriae are enriched in antioxidative
properties. a PCA of antioxidative properties for periplasmic fimbriae assembly proteins, in relation to their
simulated ROStype and annotated pathotype. PC1 separates the observed ExPEC/AIEC/APEC strains well,
confirmed by DBSCAN clustering (Table 1, Table 2). The location of two asymptomatic strains (83972) is
specified as they have been found to outcompete UPEC strains in adhesion of the bladder wall [51]. b
Specific antioxidative properties contributing to PC1. The 2D and 3D columns indicate if the protein
subsequences were determined by predictions from sequence (2D) or calculations from structure (3D). c
Selected examples from the proteins involved in fimbriae assembly that show enrichment of antioxidative
properties. YehB, YehD, and YfcS are relatively unknown components of operons similar to the fim operon
[52]. Up to 3000 copies of FimA form the structural pilus of the fimbriae [53]. Highlighted residues indicate
mutations which are seen in the cluster with the most ExPEC/AIEC/APEC pathotypes. The size of the
highlighted residue corresponds to the number of strains that mutation appears in. Note that all mutations
do not co-occur together in all strains. The structures shown here are from a collection of homology
models from the SWISS-MODEL and I-TASSER modeling pipelines [48, 54]
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molybdoenzyme group created through the structural proteome reconstruction was

composed of 14 enzymes containing molybdenum-binding sites in their associated Uni-

Prot entries (see Additional file 1: Table S5). PCA of their antioxidative properties dis-

played clear clustering of ROStypes and pathotypes (Fig. 4a). However, analysis of the

antioxidative properties contributing to the first principal component revealed conflict-

ing properties among the proteins contained within the group (see XdhD, below). Thus,

we proceeded to inspect the properties of each of the 14 molybdoenzymes individually.

The subset of these enzymes that show enrichment of antioxidative properties in the

pathotype and endogenous ROS clusters display dual functionalities in many cases. For

example, the main function of biotin sulfoxide reductase (BisC) is in biotin salvage (i.e.,

to reduce the oxidized form of biotin), but it has also been shown to reduce oxidized

free methionine [59]. BisC most significantly shows an avoidance of surface-exposed

cysteines and negatively-charged residues (p < 0.0001, Mann-Whitney U test) (Fig. 4b).

An avoidance of surface-exposed methionines was also observed. Trimethylamine-N-

oxide (TMAO) reductase 2 (TorZ) reduces the compound TMAO, an alternative

Table 1 Homogenous clusters formed using DBSCAN on the first two principal components,
following labeling with ROStype

Protein group Protein count Cluster count V-measure

COG I (Lipid transport and metabolism) 97 2 0.33

Metabolism - Murein recycling 40 3 0.30

Manganese-binding enzymes 33 2 0.29

Fimbriae assembly proteins 39 4 0.29

Metabolism - All metabolic proteins 1515 2 0.27

All metal-binding proteins 590 3 0.27

COG P (Inorganic ion transport and metabolism) 198 2 0.27

Metabolism - Inner membrane transport 299 2 0.26

All periplasmic proteins 315 3 0.14

Molybdenum-binding enzymes 14 4 0.14

For ROStypes, both high and low predictions were considered the same label in homogeneity measurements. If a
ROStype is unavailable for a strain, it was excluded from the homogeneity measurements. A V-measure is the harmonic
mean of clustering homogeneity and completeness measures [49].

Table 2 Homogenous clusters formed using DBSCAN on the first two principal components,
following labeling with pathotype

Protein group Protein count Cluster count V-measure

Fimbriae assembly proteins 24 2 0.47

Metabolism - All metabolic proteins 1515 2 0.44

COG Q (Secondary metabolites biosynthesis) 41 4 0.44

COG N (Cell motility) 27 3 0.41

Metabolism - Alternate carbon metabolism 231 3 0.39

Iron-sulfur-binding enzymes 118 2 0.38

Zinc-binding enzymes 125 3 0.37

All periplasmic proteins 315 2 0.37

All metal-binding proteins 590 3 0.33

Molybdenum-binding enzymes 14 2 0.31

For pathotypes, ExPEC/AIEC/APEC strains are grouped together as they likely encounter oxidative environments more
frequently [50]. If a pathotype is unavailable for a strain, it was excluded from the homogeneity measurements.
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electron acceptor for anaerobic growth [60, 61]. Additionally, TorZ carries out the

same biotin sulfoxide reductase reaction as BisC [62], although at a lower catalytic

rate. TorZ displayed properties in the same strain sets trending towards more or-

dered residues, and less surface-exposed carbonylatable and charged residues.

Xanthine dehydrogenase subunit A (XdhA), which showed similar property enrich-

ments as TorZ (Fig. 4c), is involved in purine catabolism and reduces NAD+ to

NADH in the process [63]. Increases in xanthine levels are potentially indicative of

higher rates of DNA damage, such as from ROS [64]. Out of the set of molyb-

doenzymes which avoided antioxidative properties, most are either known to only

have a single function, or do not have their functions well characterized as of yet.

As an example, a hypothesized xanthine oxidase (XdhD), displayed changes that

shifted it to be more susceptible to damage, such as an enrichment of disordered

and carbonylatable residues. These changes may be due to the fact that XdhD can-

not carry out the dehydrogenase reaction that XdhA does, since it lacks the FAD-

binding domain to catalyze it [63]. As such, being an oxidase, XdhD is involved in

the generation of ROS and may not be desirable for use in high ROS

environments.

Operons containing type 1 fimbriae biogenesis proteins are enriched in antioxidative

properties

Fimbriae are special pili that are synthesized and transferred to the outer membrane of

E. coli. They are involved in the attachment of the bacteria to their host environments

[65]. The fim operon is the most well characterized system that assembles type 1 fim-

briae [66]. A number of other similar operons are encoded within the K-12 MG1655

genome, but require specific environmental stimuli to be expressed [52]. PCA and sub-

sequent DBSCAN clustering identified this set of proteins as creating highly

homogenous clusters, again for both strains with predicted ROStypes and defined

pathotypes (Fig. 5a).

One cluster contained a majority of the annotated ExPEC/AIEC/APEC strains

(36 of 38), along with two asymptomatic (ABU) 83,972 strains and 8 strains with

a variety of other pathotypes (see Additional file 1: Table S6). Another cluster

was comprised by a majority of EHEC strains (37 of 65). The antioxidative prop-

erties contributing to the first principal component were largely consistent with

many of the previously outlined properties hypothesized to contribute to oxida-

tive stress resistance. Specifically, the rightmost strains on PC1 are enriched in

order-promoting residues in disordered regions of their proteins, along with solv-

ent accessible methionines. The leftmost strains on PC1 are characterized by

amino acid features opposite to providing oxidative stress resistance, such as an

increase in disorder-promoting residues in disordered regions, more solvent ac-

cessible cysteines, charged residues, and residues susceptible to irreversible car-

bonylation (Fig. 5b). The proteins that diverged in sequence the most from the

orthologous K-12 sequence were those in the yeh and yfc operons (Fig. 5c). The

function of these operons is relatively unknown but hypothesized to assemble

other type 1 fimbriae due to their homology to fim components [52].
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Discussion
Endogenous ROS levels suggest convergent evolution in oxidative stress resistance

The principal component analyses of the antioxidative properties of protein groups re-

vealed that similar adaptive features are displayed by strains with both ROShi and ROSlo

ROStypes. This result was surprising as we had initially expected to see features in op-

position to each other, such that ROShi strains would have adapted their proteomes to

deal with this constant source of oxidative stress while ROSlo strains would perhaps

vary in other ways unique to their environment. However, it has been found that other

organisms adapt to environments of high oxidative stress by lowering their endogenous

ROS levels [67], but conversely, high endogenous ROS can allow for natural adaptive

mutations to occur lending to a general increased tolerance to oxidative environments

[68]. Thus, the relationship between genetic variation, endogenous ROS, and exogenous

ROS is complex, but trends towards similar genetic adaptations as seen in our simula-

tion results. A caveat that should be considered by the reader is that a 5% difference in

endogenous ROS generation within our simulations only leads to a nanomolar increase

in steady state ROS levels, which may not be substantial enough to warrant changes

within the proteome. Furthermore, metadata for the gathered E. coli strain sequences

was sparse with the only consistent annotation being the strain isolation site, which

does not show any correlation to oxidative environments. The analysis of strains and

their associated genome sequences could benefit greatly from richer and standardized

annotations of observed phenotypes for large-scale studies. In regards to the shared an-

tioxidative features seen in both these ROStypes, proteomics methods to quantify dam-

age sites and create a “proteomic signature” of oxidative stress resistance represents a

clear path forward to experimentally verify these predictions in the future [69].

Dual functionalities of molybdoenzymes potentially contribute to the oxidative damage

repair response

The molybdoenzymes within E. coli generally catalyze unique redox reactions under

aerobic conditions, such as biotin salvage, and also enable the usage of alternative elec-

tron acceptors in anaerobic conditions, such as nitrate [56]. Due to their redox capabil-

ities, some molybdoenzymes can also act promiscuously to reverse oxidation events to

other metabolites such as methionine [59]. Interestingly, the standard repair system for

methionine sulfoxide - specifically in the stressful oxidative environment of the peri-

plasm (MsrPQ) - utilizes molybdenum as its cofactor of choice and is able to reduce

both stereoisomers of oxidized methionine [8]. The proposed stability of these molyb-

doenzymes under oxidative conditions suggests two factors: 1) that these enzymes

would be upregulated in response to oxidative stress to reduce their main binding part-

ners that are being oxidized by ROS, and 2) that they may be called upon to carry out

their promiscuous repair functions on other oxidized metabolites.

Although the function of molybdoenzymes in anaerobic respiration seems unrelated

to oxidative stress, there may be reasons for their use in aerobic conditions. Interest-

ingly, a previous study indicated the metabolite trimethylamine-N-oxide (TMAO) to

confer protein structural stability in vitro, by stabilizing charged residues, disordered re-

gions, and preventing protein aggregation [70]. The identified TorZ enzyme in this ana-

lysis may then have a role in maintaining reduced TMAO in conditions of oxidative
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stress. The usage of nitrate as an electron acceptor in anaerobic respiration generates

reactive nitrogen species, which, similarly to ROS, damage cysteine and additionally

tyrosine residues [71]. Manual analysis of TorZ and BisC structures displayed avoidance

of surface-exposed tyrosines, suggesting that similar structural analysis could be carried

out for other sites of protein damage.

Type 1 fimbriae biogenesis operons and their use in oxidative environments

The type 1 fimbriae biogenesis components are interesting to approach from the

standpoint of oxidative damage resistance due to three reasons. First, the assembly

of the fimbriae depends on an oxidation event to create a single disulfide bond on

the components that make up the tip of the fimbriae, which ends up adhering to

the environmental surface [72]. Second, there are many similar operons with hom-

ologous genes that encode for other fimbriae, supposedly for different environmen-

tal conditions [52]. Third, the expression of these components is sensitive to

oxygen levels, being inactive under anaerobic conditions [73]. Fourth, recent work

has identified this group of proteins as a more discriminatory typing assay to iden-

tify UPEC strains [74]. We grouped together ExPEC, AIEC, and APEC strains since

their encountered environments are associated with high oxidative stress and be-

cause of their similarity in both phylogenetic origin and virulence factors [75–77].

The assembly of the fimbriae begins when a subunit is translocated into the peri-

plasm and bound to a chaperone, which accompanies the subunit to the outer mem-

brane “usher” (collectively known as the chaperone-usher pathway). This binding event

depends on the subunit being oxidized by DsbA, a periplasmic enzyme that creates and

maintains disulfide bonds [72]. The formation of disulfide bonds would be accelerated

by an environment with higher levels of ROS, but would additionally demand the

chaperone to have antioxidative properties if the fimbriae were to properly assemble.

Additionally, previous studies have shown that most sequence variation on the extracel-

lular fimbriae subunits do not decrease the specificity of adhesion to carbohydrates

[78]. However, specific point mutations on the FimH adhesin do provide higher adhe-

sion capabilities [79]. The results presented here suggest that variations are likely impli-

cated in greater stability during translocation and when being presented on the

exposed regions of the fimbriae. The existence of the other type 1 fimbriae operons

points to a highly adaptable set of adhesins available to an E. coli cell. Finally, the find-

ing that the expression of these operons responds to changes in oxygen levels [73]

points to a likely link between their antioxidative properties and survival within an oxi-

dative environment.

The two E. coli ABU 83972 strains in the cluster of ExPEC/AIEC/APEC strains have

been shown to outcompete UPEC strains in colonization of the bladder [80]. The simi-

lar properties of their type I fimbriae biogenesis proteins may point towards a similar

resistance to oxidative damage in the urinary tract, which is a stressful environment

during urinary tract infection [81, 82]. We hypothesize that the greater stability of the

biogenesis enzymes under these conditions potentially allow these nonpathogenic

strains to assemble their fimbriae and colonize the bladder, outcompeting the UPEC

strains. This finding suggests that further experimental work to characterize these
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relatively unknown fimbriae operon components may elucidate adherence properties of

E. coli strains.

Conclusion
In this study, we have applied two protocols in a structural systems biology approach

to develop an understanding of the genotype-phenotype relationship. At the systems-

level, we utilized strain-specific genome-scale metabolic models to predict levels of en-

dogenous ROS, while also guiding orthologous gene mapping of strains for sequence-

level variation analysis. With structural information, we mapped this variation to spe-

cific groups of proteins and their location within three-dimensional space. Specific pro-

tein groups were identified as differentiating in regards to their antioxidative properties.

The analysis of 1764 sequenced strains confers strong evidence pointing towards fur-

ther experimental study of the contributions of molybdenum-binding enzymes as well

as fimbriae assembly proteins in the oxidative stress response. The workflow presented

here also demonstrates a method for understanding important features of the structural

proteome to enable modeling of different stress responses in silico. Looking forward,

the exploration of natural variation in regards to enzymatic capabilities to confer a spe-

cific environmental advantage could be applied in the creation of fine-grained meta-

bolic models taking into account the properties of the structural proteome. In the lab,

this approach could also guide drug development pipelines by identifying susceptible

targets as well as library design for directed evolution experiments in protein

engineering.

Methods
Construction of the E. coli structural proteome

We applied an existing pipeline to create genome-scale models of metabolism with pro-

tein structures (GEM-PRO models) [43, 83] for the entire proteome of E. coli str. K-12

substr. MG1655 (reference proteome downloaded from UniProt [84] on March 20, 2018),

using the current implementation contained in the ssbio Python package [44]. This pipe-

line results in the selection of a single representative three-dimensional tertiary protein

structure, either from experimental data in the Protein Data Bank [85] or from homology

models generated from the I-TASSER pipeline [54] and the SWISS-MODEL repository

[48]. The representative structure is selected after a number of quality checks, which in-

clude 1) aligning the reference sequence to all available structures and ranking them based

on their percent identity and sequence completeness (i.e. structures with missing portions

outside the N- or C- termini are ranked lower than those with complete inner portions);

2) for experimental structures, ranking based on their experimentally determined reso-

lution; and 3) for homology models, ranking them based on their provided quality scores

(c-scores for I-TASSER models [54] and QMEAN scores for SWISS-MODEL models

[86]), where I-TASSER models are preferentially chosen over SWISS-MODEL models.

The list of available structures is first trimmed based on selected cutoffs for sequence

identity and completeness (not missing more than 10% of the length of the sequence on

both termini, no insertions or deletions, and over 60% sequence identity to the reference

sequence), resolution (< 3 Å), and quality score (QMEAN>-4 or c-score > − 1.5). Next, if

experimental structures remain, the one with the highest sequence identity, completeness,

Mih et al. BMC Bioinformatics          (2020) 21:162 Page 13 of 23



and resolution is selected. If there are no experimental structures that remain, the top

ranking homology model is selected.

In addition to the methodology reported above, a number of improvements were im-

plemented for this study and are slated for incorporation into the publicly available

pipeline in ssbio. These improvements include 1) the selection of representative experi-

mental structures with the consideration of bound substrates or cofactors [87]; 2) the

definition of membrane spanning domains in transmembrane proteins by consolidating

information as predicted by TMHMM [88] or OPM [89] and as annotated in UniProt;

3) the selection of quaternary structures of protein complexes by a breadth-first search

matching algorithm to determine the structure with the highest quality and coverage of

annotated subunits, either from biological assemblies in the PDB or from predicted

complexes in the SWISS-MODEL repository.

For metal-binding proteins specifically, we implemented a more rigorous selection

scheme due to their importance in oxidative stress tolerance. Annotated binding resi-

dues were retrieved from each protein’s UniProt entry, and mapped to the correct resi-

due numbering scheme in the structure file. The representative structure for the metal-

binding protein was then based on the following four factors: 1) sequence identity,

coverage, and resolution as described above; 2) presence of the annotated metal binding

site in the solved structure; 3) presence of the metabolic model-annotated metal ion;

and 4) presence or absence of any model-annotated cofactors other than the metal ion.

The MetalPDB database [38] was used to help expedite this analysis, as they provide

extracted metal-binding sites from the PDB structures that can be used to verify the

presence of the metal ion along with the residues involved in binding. Per protein, these

factors contributed to a weighted score enabling a custom rank-ordering of all available

structures, leading to a final structure that best represents the enzyme and its state in

the metabolic model.

Division of the proteome into groups

To delineate search spaces within the structural proteome we created groups of

proteins first defined by their localization, and then defined by their functional as-

signment (Fig. 1a, Additional File 1: Table S1). Localization within a cell is defined

by the categories: outer membrane, periplasm, inner membrane, and cytosol. This

information was taken from a consensus of a previously generated genome-scale

model of proteome synthesis [90], proteomics information from [91], the Echo-

LOCATION database [92], the UniProt database, and finally predictions from

TMHMM [88] if no other information was available. Secondary functional groups

were either created with 1) the clusters of orthologous group (COG) categories

[93]; 2) metabolic network subsystem as defined in iML1515; 3) metal-binding en-

zymes as annotated in UniProt; and 4) manual assignment in relation to ROS gen-

eration or repair. The manually curated list of proteins (see Additional file 1: Table

S2) were collected based on their functional relation to oxidative stress levels in E.

coli. These include proteins that are known generators of reactive oxygen species,

are involved in the repair of oxidative damage to macromolecules, are involved in

regulation of metal ion transport, etc. A table summarizing the protein groups can

be found in Additional file 1: Table S1.
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Protein property calculations and division into subsequences

The physicochemical properties of each representative protein’s sequence and structure

were calculated using a variety of tools and stored as per-residue annotations using ssbio.

The properties used in this study include: 1) definitions of protein “sites” (i.e. binding,

catalytic, or active sites) as annotated in UniProt, the Catalytic Site Atlas [94], and

MetalPDB [38]; 2) regions of protein flexibility and disorder as retrieved from PDBFlex

[95] or predicted from sequence with DisEMBL [96] and IUPred [97]; 3) parameters of

solvent accessibility as calculated using FreeSASA [98] or predicted using SCRATCH

[99]; 4) parameters of residue depth (a calculation of the distance in Angstroms of a resi-

due from the surface of the protein [100]) as calculated using Biopython [101] and MSMS

[102]; and 5) definitions of secondary structure using DSSP [103] or predicted using

SCRATCH. We additionally incorporated the locations of known oxidizable cysteines

from RedoxDB [40], known carbonylatable amino acids (R, K, P, T) from CarbonylDB

[39], and predicted disulfide bridges using a distance-based metric (3 Å cutoff) in an ex-

tension of the PDB module in Biopython (http://biopython.org/wiki/Struct).

The aforementioned properties were then used to delineate search spaces within sin-

gle proteins into what we refer to as “protein subsequences” (Fig. 1b). In all cases, there

exists at least one of the following methods to compute their definition: 1) “2D subse-

quences”, which are simply a 3D structural feature predicted from the amino acid se-

quence (such as running SCRATCH for predicting secondary structure); 2) “2.5D

subsequences”, that only apply to sites of a protein that have an annotated site feature

in a sequence database such as UniProt and can be mapped to a 3D structure, but for

which there exists no structural evidence of the binding (an example of this would be

an annotated metal-binding site that is annotated in UniProt, but no metal ion is

present in the experimental structure); and finally 3) “3D subsequences” for which clear

structural evidence is available (such as a calculated secondary structure).

To give an illustrative example for one subsequence, let us outline the procedure for

“surface” residues, If a 3D structure was available for a protein, residue depth and solvent

accessibility algorithms are run on this structure. If a 3D structure is not available, we fall

back to defining a 2D subsequence by running a solvent accessibility predictor algorithm

(SCRATCH) on the protein sequence. Next, a surface residue is defined as one with a

relative solvent accessibility of above 25%, and if a 3D structure was available, an add-

itional constraint of residue depth of less than 2.5 Å. These cutoffs were then applied to

all residues in a protein sequence and those that meet the cutoff then form a defined sur-

face subsequence (this corresponds to Additional file 1: Table S3, on the first row). Other

properties that were utilized to form protein subsequence definitions are: disordered re-

gions, transmembrane domains, solvent-exposed residues surrounding a sphere of a de-

fined radius around a metal-binding site, catalytic site, DNA-binding site, or any other

annotated generic site, and residues within ROS-sensitive sites as found in RedoxDB or

CarbonylDB. For a summary table describing all cutoffs used, prediction methods, or

structural calculations for these features, please see Additional file 1: Table S3.

Gathering strains, phenotypes, and pathotypes

The proteomes of E. coli strains in this study were gathered from three separate

sources: 1) the Ecoref strain panel [55]; 2) the iML1515 metabolic network
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reconstruction resource [42]; and 3) a manually curated set of adherent-invasive E. coli

(AIEC) strains. The Ecoref strain panel is a published panel of 696 strains that were tested

for growth/no growth under a number of media conditions. The sequenced genomes,

resulting protein sequences, and pathotype annotations were downloaded from the pub-

licly accessible database (https://evocellnet.github.io/ecoref/download/). Out of the 214

media conditions, 24 of which include a chemical that induces oxidative stress in some

manner were selected for this study (see Additional file 1: Table S7). Out of the 696

strains, 676 were selected due to the presence of phenotypic data under the selected

media conditions. From the iML1515 resource, the proteomes and pathotype information

of 1045 strains of E. coli were downloaded from the PATRIC database [104]. The number

differs from the original reported number of strains in the resource due to database up-

dates and removal of poorly annotated genomes. The strains obtained from Ecoref and

PATRIC also contained pathotype information for 116 of the strains. Finally, the manually

curated set of 23 AIEC strains was obtained through literature review and downloading of

the individual genomes from various publications [105–111]. Two pathotype groups was

created by 1) extra-intestinal pathogenic (ExPEC), adherent-invasive (AIEC), and avian

pathogenic (APEC) strains (which have been shown to be similar to ExPEC strains, see

[112, 113]) and 2) all other pathotypes. This grouping was chosen to discriminate patho-

types by the oxidative environments they may encounter.

Simulation of strain-specific endogenous ROS levels

The construction of strain-specific metabolic models follows a previously established

protocol [114]. Briefly, this involves creating a presence/absence orthology matrix of pro-

teins in a strain following orthology detection through bidirectional-best BLAST hits

(BBH) at an 80% sequence identity cutoff. The orthology matrix is then used to trim reac-

tions in a metabolic model given a protein’s usage in a reaction. Instead of trimming the

original metabolic model of E. coli K-12 MG1655, the iML1515-ROS model was used as

the base model. Based on a previously developed model [41], iML1515-ROS includes 298

reactions that have the potential to produce H2O2 and O2
− [42]. Thus, the strain-specific

ROS models predicts changes in endogenous ROS production levels based on the devi-

ation from the measured MG1655 ROS production rates.

Ensemble models (sampling different stoichiometric coefficients of the ROS generating re-

actions) of each strain were then simulated to sample total endogenous production of ROS.

Simulations were conducted under glucose minimal media per [41]. The mean H2O2 and O2
−

production rates were normalized to the growth rate, thus assigning per-strain predictions of

mmol H2O2 gDW
− 1 and O2

− gDW− 1. The deviations of endogenous ROS production from

the “wild-type” MG1655 strain were classified as “high” or “low” if they deviated above or

below 5% of the measured ROS production levels, and “non-varying” if otherwise [45]. This

cutoff was chosen as it was previously found that increasing endogenous ROS production

rates above this level resulted in a higher likelihood of cell death after treatment with antibi-

otics, indicating that ROS detoxification methods are compromised [41].

Characterization of strain-specific changes

The orthology matrix used to generate strain-specific models was used to align ortholo-

gous strain protein sequences to the K-12 proteins, using default parameters in the

Mih et al. BMC Bioinformatics          (2020) 21:162 Page 16 of 23

https://evocellnet.github.io/ecoref/download/


Needleman-Wunsch pairwise alignment tool in the EMBOSS package [115]. All ortho-

logous sequences were loaded into their related Protein objects using the ssbio Python

package, and alignments were executed in parallel using the Apache Spark Python API

(PySpark, https://spark.apache.org). From this, strain-by-feature matrices describing the

proteomic features of all strains and the averaged antioxidative properties were gener-

ated (see Additional file 1: Table S8, for a description of the types of averaged proper-

ties calculated per subsequence). To deal with missing data in the case of portions of

protein sequences that have been truncated (either due to technical reasons such as

genome sequence or annotation errors, or true deletions of a strain’s sequence com-

pared to MG1655), we only compared sequences where the aligned length was greater

than or equal to 80% of the original K-12 sequence length. In the case of proteins ab-

sent from certain strains in protein groups, missing values were imputed using mean

imputation for percentages of physicochemical properties.

The strain-by-feature matrices are created for principal component analysis (PCA) as

follows. For all combinations of protein groups and subsequences, amino acid ratios

were calculated relative to the subsequence length. Ratios of certain groupings of amino

acids were also calculated, such as from the number of positively charged, bulky, or dis-

order promoting residues. These groupings were again chosen due to previous hypoth-

eses that enrichment or avoidance of these changes may be associated with resistance

to oxidative damage [7, 9, 26, 31, 116]. All groupings are defined in Additional file 1:

Table S9.

As an example, let us take the protein group of cytoplasmic, metal-binding enzymes,

retrieved from UniProt and defined in row 11 of Additional file 1: Table S1. The subse-

quences of all of their metal-binding sites are next defined (Additional file 1: Table S3,

row 8). Next, important changes within these binding sites are manually defined (Add-

itional file 1: Table S8, rows 12–18). These changes are stored as percentages of the full

subsequence length, in order to summarize changes in bulk. If a strain has an overall

avoidance of positively charged residues in proximity to the metal-binding site, this is

reflected as a lower overall percentage stored for this strain’s protein. Finally, for the

group of metal-binding enzymes, the percentages are averaged together and normalized

for sequence length. The strain-by-feature matrix thus contains the strain identifiers as

the columns, and summarized features of their metal-binding enzymes as the rows.

Statistical analysis of protein groups

The data set gathered here could potentially be run through unsupervised, semi-

supervised, or supervised learning algorithms due to the existence of labels (ROStype

or pathotype) for only a portion of the strains. Unsupervised learning was carried out

due to the desire to utilize the entire set of observations (strains) along with their fea-

tures, to understand if variability existed in the dataset without biasing for the assigned

labels, which could potentially be incorrect due to their nature: ROStype being solely a

simulated prediction and pathotype coming from multiple disparate annotation

databases.

For each protein group, subsequence, and associated strains, features were first stan-

dardized to be centered around a zero mean with unit variance, using the preprocessing

module from the Python package scikit-learn [117]. Features were then filtered for
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PCA following the hierarchical clustering by rank correlation coefficient method as pre-

sented in [26, 118]. Briefly, this clusters the features together based on Spearman rank

correlation, and cuts off similar features over a coefficient of 0.9, keeping the feature

closest to the center of the cluster as representative. Since the availability of features

varied from prediction from sequence and calculation from structure, this allowed for

the filtering out of redundant features when both predictions and calculations were

available. To further filter down the feature set before PCA, we created manual filters

for features specific to a protein group. For example, if the group to inspect was a set

of metal-binding proteins, only then would features specific to the metal-binding site

(such as the percentage of cysteines in proximity to site) be included in the feature

matrix. A table describing these group specific features is included in Additional file 1:

Table S4. PCA was then carried out to understand if specific features contributed to

the differentiation of the following: 1) growth/no growth phenotypes in different media

conditions; 2) strains with predicted ROStypes higher or lower than “wild-type” (K-12)

endogenous ROS levels; and 3) annotated strain pathotypes. To do so, observation la-

bels associated with these phenotypes were assigned back to the transformed data.

Next, we wanted to identify protein groups which showed the largest separation be-

tween phenotypes. Clustering of the transformed data points on the principal compo-

nents (PC1 and PC2) was carried out using Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) [119]. The “performance” of the clustering relative

to the labeled phenotypes acted as a proxy to judge which protein groups showed the

best clustering. Performance was measured and ranked using the V-measure [49] which

reports the harmonic mean of homogeneity (if a cluster contains only one label type)

and completeness (if a label type is assigned to the same cluster) and ranges from 0 to

1, with a value of 1 denoting good clustering.

Training random forest classifiers

To understand if the identified proteome properties can be used to distinguish between

ROShi and ROSlo ROStypes, we trained random forest classifiers using the R package

randomForest (version 4.6–14) [120, 121]. Proteomic features were centered and scaled

before training. The number of features that were sampled at each split (i.e., the hyper-

parameter mtry) was tuned using leave-one-out cross-validation by selecting the high-

est area under the ROC curve that resulted from ten equidistant integers between two

and the respective number of features. This cross-validation procedure was imple-

mented in the caret package version 6.0–82 [122].
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