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 Background: Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary 
artery vascular growth and remodeling. Aberrant expression of miR-17 has been shown to be involved in the 
pathogenesis of PAH, but its underlying molecular mechanism has not been elucidated.

 Material/Methods: Mitofusin 2 (MFN2) expression was determined by qRT-PCR. The protein expression levels of MFN2, prolifer-
ating cell nuclear antigen (PCNA), and pro-apoptotic protein cleaved Caspase-3 were measured using Western 
blot analysis. Cell proliferation and apoptosis were assessed by CellTiter-Glo reagent and flow cytometry, re-
spectively. Caspase-3/7 activity was measured using an Apo-ONE Homogeneous Caspase-3/7 assay kit. The 
regulation of miR-17 on MFN2 expression was assessed using luciferase reporter assay system.

 Results: miR-17 expression was upregulated in human pulmonary artery smooth muscle cells (hPASMCs) treated with 
hypoxia and lung tissues of PAH patients. Inhibition of miR-17 suppressed hypoxia-induced proliferation and 
promoted apoptosis in hPASMCs. miR-17 inhibited MFN2 expression by binding to its 3’-UTR. Decreased cell 
viability and increased apoptosis and Caspase-3 activity were observed in the anti-miR-17 + siNC group com-
pared with the anti-miR-NC + siNC group. The expression of cleaved Caspase-3 was upregulated and the ex-
pression of PCNA was downregulated in the anti-miR-17 + siNC group. Moreover, these alterations were atten-
uated by knockdown of MFN2.

 Conclusions: miR-17 regulates proliferation and apoptosis in hPASMCs through MFN2 modulation. We found that miR-17 
acts as a potential regulator of proliferation and apoptosis of hPASMCs, and that it might be developed as a 
promising new strategy for the treatment of PAH.
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Background

Pulmonary arterial hypertension (PAH) is a chronic and pro-
gressive disease, which is diagnosed by an increased mean 
pulmonary arterial pressure of >25 mmHg in resting state or 
30 mmHg with exercise, measured by right heart catheteriza-
tion [1]. Increased lung vascular resistance and pressure dur-
ing severe PAH could result in right heart failure and death [2]. 
The 3- and 5-year survival rates of idiopathic PAH patients were 
38% and 17%, respectively. Several types of specific drugs are 
used for the clinical treatment of PAH, including prostanoids, 
endothelin receptor antagonists, and phosphodiesterase type 
5 inhibitors [3]. Various treatments have been used during the 
past few decades, but there is still no curative treatment for 
PAH [4]. The exact molecular mechanism of PAH is not clear, 
but several pathological changes of pulmonary vasculars have 
been found in PAH patients, which include pulmonary vascu-
lar remodeling, pulmonary vasoconstriction, and thickening of 
pulmonary artery walls. The smooth muscle layer plays a vital 
role in the pathogenesis of PAH [5]. Excessive proliferation of 
pulmonary artery smooth muscle cells (PASMCs) and apoptot-
ic resistance contribute to irreversible pulmonary arterial re-
modeling, leading to decreased luminal diameters and, even-
tually, the blockage of resistance-level pulmonary arteries [6].

Apoptosis is an important physiological process in multicellular 
organisms and is essential for cell development and differen-
tiation [7]. Intracellular zymogens termed caspases and cyste-
ine-dependent aspartate specific protease are activated during 
apoptosis. Dysregulated apoptosis contributes to the develop-
ment of many kinds of pathological conditions, including can-
cer and autoimmune and neurodegenerative diseases [8]. In 
apoptosis induced by multiple types of stimuli, mitochondria 
play a vital role in regulating Caspase activity through the pro-
duction of cytochrome c [9]. Both PAEC apoptosis and endothe-
lial dysfunction are considered to play a key role in the early 
phase of the pathogenesis of PAH. Excessive proliferation and 
migration of medial cells, including PASMC, fibroblasts, and 
PAEC, contribute to the pulmonary vascular remodeling [10].

microRNAs (miRNAs) are approximately 22 nucleotide-long, 
noncoding, small RNAs that regulate gene expression at the 
post-transcriptional level through translational repression or 
mRNA degradation. Aberrant expression of miRNAs has been 
found in cancer, neurodegenerative disease, immune system 
diseases, and cardiovascular disease. miR-182 facilitates clon-
al expansion of activated helper T lymphocytes and regulates 
IL-2-driven helper T cell-mediated immune responses in vitro 
and in vivo [11]. miR-21 negatively regulates the expression of 
tumor suppressor programmed cell death protein 4 and pro-
motes invasion, intravasation, and metastasis in colorectal 
cancer [12]. In recent years, a large amount of evidence sug-
gests that miRNAs are implicated in the pathologic process of 

PAH. A study has reported that miR-145 is overexpressed in 
lung tissues of patients with PAH when compared with health 
control individuals matched with the patients. Moreover, an-
ti-miR-mediated downregulation of miR-145 prevents the de-
velopment of PAH in mice exposed to hypoxia [13]. A previ-
ous study showed that miR-17 was transiently upregulated 
in the hypoxia-induced pulmonary hypertension mouse mod-
el. Moreover, inhibition of miR-17 improves heart and lung 
function in experimental pulmonary hypertension models by 
interfering with lung vascular and right ventricular remodel-
ing [14]. Zhang et al. have reported that knockdown of MFN2 
inhibits hypoxia-induced proliferation of PASMCs and the 
PI3K/Akt signaling pathway is critical for the promotive effect 
of MFN2 on PASMC proliferation. MFN2 contributes to cell cy-
cle progression in the proliferation of PASMC, thus promoting 
pulmonary vascular remodeling [15]. Therefore, we speculat-
ed that downregulation of miR-17 might inhibit hPASMC pro-
liferation and attenuate PAH, at least partially by targeting 
MFN2. In this study we demonstrated the crucial role of miR-
17 in the pathologic process of PAH and investigated its un-
derlying molecular mechanism.

Material and Methods

Acquisition of human lung tissues

Human lung tissues were acquired from idiopathic PAH pa-
tients undergoing lung transplantation (n=10) and from nor-
mal controls (normal lung tissues adjacent to benign lung tu-
mors; n=10). This experiment was approved by the Ethics 
Committee of our hospital, and all the participants gave in-
formed consent before the study.

Cell culture

Human pulmonary artery smooth muscle cells (hPASMCs; 
Cascade Biologics Inc., Portland, OR) were cultured in SmGM-2 
BulletKit media (Lonza, Basel, Switzerland) containing 5% (vol-
ume/volume) heat-inactivated fetal bovine serum (FBS; Gibco, 
Carlsbad, CA), 0.5 ng/ml human recombinant epidermal growth 
factor, 2 ng/ml human recombinant fibroblast growth factor, 
5 μg/ml insulin, and 50 μg/ml gentamicin. HEK293 cells were 
maintained in DMEM supplemented with 10% heat-inactivat-
ed FBS, penicillin (100 U/ml), and streptomycin (100 µg/ml) 
at 37°C in a humidified atmosphere containing 5% CO2. Cells 
at passages 6–8 were used for experiments. For induction of 
hypoxia, cells were transferred in a special hypoxia incuba-
tor (Thermo Scientific, model 3130, Rockford, IL) with 3% O2, 
5% CO2, and balanced nitrogen. The O2 concentration inside 
the chamber was detected continuously by using an oxygen 
monitor (Hudson Ventronics Division, CA) to ensure that the 
O2 concentration was 3%.
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Quantitative real-time polymerase chain reaction 
(qRT-PCR)

Total RNAs were isolated from human pulmonary artery smooth 
muscle cells with Trizol reagent (Invitrogen, Carlsbad, CA) ac-
cording to the manufacturer’s protocol. The purity of total RNAs 
was evaluated using a NanoDrop 2000 UV-Vis spectrophotom-
eter (Thermo Scientific) at 260 nm and 280 nm. cDNA was syn-
thesized from 1 μg of total RNA by using a ImProm-II™ Reverse 
Transcription System (Promega, Madison, WI) in accordance 
with the manufacturer’s instructions. qPCR was conducted with 
a SensiFAST SYBR No-ROX kit (Bioline, Taunton, USA) in 7300 
sequence detection system (Applied Biosystems, Foster City, 
CA). b-actin and U6 small nuclear RNA genes were used as in-
ternal controls for mitofusin 2 (MFN2) and miR-17 mRNAs ex-
pression, respectively. The primer sequences were as follows:
miR-17 forward: 5’-GCAGGAAAAAAGAGAACATCACC-3’,
miR-17 reverse: 5’-TGGCTTCCCGAGGCAG-3’;
U6 forward: 5’-CTCGCTTCGGCAGCACA-3’,
U6 reverse: 5’-AACGCTTCACGAATTTGCGT-3’;
MFN2 forward 5’-ATTCAGAAAGCCCAGGGCATG-3’,
MFN2 reverse 5’-GACCGTGTGCTGCTCAAACTTG-3’;
b-actin forward: 5’-TGAGAGGGAAATCGTGCGTGAC-3’,
b-actin reverse: 5’-AAGAAGGAAGGCTGGAAAAGAG-3’.

The relative expression levels were calculated using the 2–DDCt 
method and normalized against the control gene. Each exper-
iment was repeated 3 times.

Western blot analysis

At 48 h after transfection, cells were harvested and total pro-
teins were isolated with RIPA reagents (Thermo Scientific). 
The protein concentration was detected using a bicinchoninic 
acid protein assay reagent kit (Pierce, Rockford, IL) according 
to the manufacturer’s instructions. Equal amount of proteins 
per sample were separated by SDS-polyacrylamide gel elec-
trophoresis, and then transferred onto a polyvinylidene fluo-
ride membrane (Millipore, Billerica, MA). The membranes were 
blocked with 5% nonfat dry milk powder in Tris-buffered sa-
line containing 0.1% Tween-20 (Tris 20 mM, NaCl 150 mM, and 
Tween 20 0.1%, pH 7.6; TBST) for 1 h at room temperature, and 
then incubated with anti-MFN2 antibody (Abcam, Cambridge, 
MA), anti-PCNA antibody (Santa Cruz Biotechnology, Santa 
Cruz, CA), anti-cleaved Caspase-3 antibody (Abcam) or anti-
b-actin antibody (Sigma-Aldrich, Louis, MO) overnight at 4°C. 
b-actin was used as an internal control. After 3 washes with 
TBST (10 min each), membranes were incubated with the cor-
responding horseradish peroxidase (HRP)-conjugated second-
ary antibody (Santa Cruz Biotechnology) for 1 h at room tem-
perature. After 3 washes with TBST (15 min each), blots were 
visualized with an enhanced chemiluminescence kit (Pierce, 
Rockford, IL) and then exposed to X-ray film. Protein bands 

were quantified using ImageJ software (National Institutes of 
Health, Bethesda, MD).

Proliferation assay

Transfected hPASMCs (1×104) were plated into each well of 
96-well plates, followed by incubation for 48 h in hypoxic con-
ditions. Proliferation assay was performed using CellTiter-Glo 
reagent (Promega) according to the manufacturer’s protocol. 
The supernatant was removed, and 100 µl of SmGM-2 BulletKit 
media containing 20 μl of 3-(4, 5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium, and 
inner salt (MTS)/phenazine methosulfate (PMS) mixture was 
added to each well for incubating another 4 h at 37°C in hy-
poxia. The optical density (OD) values were read at an absorp-
tion of 490 nm on a microplate scanner (BioTek, Winooski, VT).

Apoptosis assay

Transfected hPASMCs were re-plated in 96-well plates and cul-
tured for 48 h in hypoxia. The apoptosis assay was carried out 
by using an Apo-ONE homogeneous kit (Promega). Caspase-3/7 
activity was measured as a second parameter of apoptot-
ic cell death. Fluorescence-activated cell sorter (FACS) was 
also used to measure the apoptosis rate by using an annexin 
V-fluorescein isothiocyanate (FITC) apoptosis detection kit (BD 
Biosciences Pharmingen, San Jose, CA). After 48 h of incuba-
tion in hypoxia, hPASMCs were harvested, washed twice with 
cold phosphate-buffered saline (PBS), and then stained with 
Annexin V-FITC and propidium iodide (PI) in the dark. Stained 
cells were identified and analyzed by a FACScan flow cytom-
eter (Becton Dickinson, CA). The data analysis was performed 
using FACStation software (Becton Dickinson).

Luciferase assay

miR-17 mimics, anti-miR-17, siMFN2, and the luciferase re-
porter constructs fused with the 3’-UTR of human MFN2 were 
purchased from GenePharma (GenePharma Co., Ltd., Shanghai, 
China). hPASMCs were plated into a 24-well plate 1 day be-
fore transfection to reach approximately 80% confluence in the 
day of transfection. hPASMCs were co-transfected with 0.4 µg 
of wild-type or mutant MFN2 plasmid constructs and 50 nM 
miR-17 mimics or control miRNA using Lipofectamine 2000 
(Invitrogen). At 48 h after transfection, firefly and Renilla lucif-
erase activities were measured with the Dual-Luciferase Assay 
System (Promega) according to the manufacturer’s protocol.

Statistical analysis

Data are presented as the means ± standard deviation (SD). 
The statistical analysis was conducted by SPSS 16.0 software 
(SPSS Inc., Chicago, IL). The means were compared using 
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student’s t-test between groups or one-way analysis of vari-
ance test among groups. Statistical significance was deter-
mined at a P<0.05 level.

Results

miR-17 is upregulated and MFN2 is downregulated in 
hPASMCs treated with hypoxia and lung tissues of PAH 
patients

The expression levels of miR-17 and MFN2 in normal lung 
tissues and PAH tissues were determined by qRT-PCR and 
Western blot, respectively. miR-17 expression (Figure 1A) was 
upregulated and MFN2 protein (Figure 1B) was downregulat-
ed in PAH tissues compared with matched normal lung tis-
sues. In addition, expression of miR-17 was also increased in 
hPASMCs exposed to hypoxia compared with that in normox-
ic controls (Figure 1C). A reduction of MFN2 protein level was 
observed in hPASMCs treated with hypoxia compared to con-
trols (Figure 1D). These results suggest that downregulation 
of miR-17 and upregulation of MFN2 protein may be involved 
in the pathogenesis of PAH.

Inhibition of miR-17 suppresses hypoxia-induced hPASMC 
proliferation in vitro

miR-17 expression was found to be upregulated in PAH tissues 
and hPASMCs, suggesting that miR-17 may function in regulating 

the proliferative phenotype of the pulmonary vasculature. To in-
vestigate the effect of miR-17 in hPASMC proliferation, hPASMCs 
were transfected with anti-miR-17 or control inhibitor (anti-miR-
NC). The effect of miR-17 inhibitor was confirmed by using qRT-
PCR method (Figure 2A). Proliferation of hPASMCs exposed to 
normoxia or hypoxia was determined by using the CellTiter-Glo 
Luminescent cell viability assay kit. As shown in Figure 2B, the 
number of viable cells was greater in the miR-17 inhibitor group 
as compared with the control group, indicating that inhibition 
of miR-17 suppressed hypoxia-induced hPASMC proliferation. 
Western blot assay showed that the protein expression level 
of the proliferation marker PCNA was decreased in hPASMCs 
transfected with anti-miR-17 compared with that in hPASMCs 
transfected with anti-miR-NC (Figure 2C, 2D).

Inhibition of miR-17 promotes apoptosis in hPASMCs

Decreased apoptotic activity has been found to exist in 
hPASMCs from PAH patients. To confirm the effect of miR-
17 on hPASMC apoptosis, the apoptosis rate was measured 
by a flow cytometry. We found that the number of apoptotic 
hPASMCs was remarkably increased in the anti-miR-17 group 
compared with the control group (Figure 3A). Furthermore, 
cell apoptosis was evaluated using a Caspase 3/7 assay kit. 
The results showed that the Caspase-3 activity in hPASMCs 
transfected with miR-17 inhibitor was increased when com-
pared with that in hPASMCs transfected with negative controls 
(Figure 3B). Taken together, these results suggest that inhibi-
tion of miR-17 contributes to apoptosis in hPASMCs.
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Figure 1.  The expression levels of miR-17 and MFN2 in lung tissues of PAH patients and hPASMCs under hypoxic condition. qRT-PCR 
and Western blot analysis were performed to detect the levels of miR-17 (A) and MFN2 protein (B) in lung homogenates 
from PAH patients (n=10) or normal controls (n=10). After hPASMCs were exposed to hypoxia for 48 h, cells were harvested 
to determine the expression of miR-17 (C) and MFN2 protein (D). Data are expressed as the mean ±SD. * P<0.05, ** P<0.01.
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Figure 2.  Inhibition of miR-17 downregulates hPASMC proliferation. hPASMCs were transfected with anti-miR-17 or control miRNAs. 
(A) At 48 h after transfection, miR-17 level was determined by using qRT-PCR. (B) Proliferation of hPASMCs transfected with 
anti-miR-17 was determined by using CellTiter-Glo Luminescent cell viability assay kit. (C, D) Western blot analysis was 
conducted to detect the protein expression level of the proliferation marker PCNA in hPASMCs transfected with anti-miR-17. 
Data are expressed as the mean ±SD (n=3). ** P<0.01, *** P<0.001.
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Figure 3.  Inhibition of miR-17 increases apoptosis in hPASMCs. At 48 h post-transfection, flow cytometry and Caspase 3/7 activity 
assay were performed to assess cell apoptosis. (A) An increased cell apoptosis rate was observed in the anti-miR-17 group 
compared with the anti-miR-NC group. (B) Caspase 3 activity was remarkably increased in hPASMCs transfected with anti-
miR-17 as compared with that in hPASMCs transfected with negative control. Data are expressed as the mean ±SD (n=3). 
** P<0.01, *** P<0.001.
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miR-17 directly inhibits expression of MFN2 via its 3’-UTR.

To identify whether miR-17 negatively regulates MFN2 at the 
post-transcriptional level, a dual-luciferase reporter assay was 
conducted at 48 h after transfection. The potential miR-17 tar-
get sites in MFN2 3’UTR region with or without mutation are 
shown in Figure 4A. A decrease in relative luciferase activi-
ty was observed when cells were co-transfected with miR-17 
mimics and WT MFN 3’UTR, whereas no change was found 
in cells co-transfected with miR-17 and mutant MFN 3’UTR 
(Figure 4B). To determine whether miR-17 suppresses the ex-
pression of MFN2 protein, we conducted Western blot anal-
ysis to detect the expression in cells transfected with miR-
NC, miR-17 mimics, anti-miR-17, or anti-miR-NC. As shown in 
Figure 4C, the protein expression level of MFN2 was higher 
in the miR-17 anti-miR-17 group than that in the anti-miR-NC 
group, indicating that anti-miR-17 upregulates MFN2 expres-
sion at the protein level.

miR-17 regulates proliferation and apoptosis in hPASMCs 
through MFN2 modulation

To investigate the underlying mechanism by which miR-17 reg-
ulates proliferation and apoptosis of hPASMCs under hypoxic 
conditions, we inhibited MFN2 expression in hPASMCs exposed 
to hypoxia. Decreased cell viability (Figure 5A) and increased 
apoptosis (Figure 5B) and Caspase-3 activity (Figure 5C) were 
observed in the anti-miR-17 + siMFN2 group as compared with 

the anti-miR-NC + siNC group. Moreover, upregulation of the 
pro-apoptotic protein cleaved Caspas-3 and downregulation 
of the proliferation marker PCNA were observed (Figure 5D). 
These data suggest that the pro-apoptotic and anti-prolifera-
tive effects may be attributed to MFN2 upregulation mediat-
ed by miR-17 inhibition.

Discussion

PAH is a cardiovascular disorder characterized by increased 
proliferation and suppressed apoptosis of PASMCs. Previous 
studies have shown that hypoxia induces PASMC proliferation 
and vascular remodeling, which eventually causes PAH [16,17]. 
Mitochondria are involved in the regulation of apoptosis 
through a range of mechanisms that are different in verte-
brates and invertebrates. In vertebrates, mitochondria re-
lease cytochrome c from the intermembrane space to initiate 
Caspase activation in the cytosol during apoptosis [18]. In re-
cent years, numerous studies have shown that several pro-
teins involved in mitochondrial fission and fusion play a vital 
role in apoptosis induction [19]. MFN2, a mitochondrial trans-
membrane GTPase, localizes on the outer membrane mito-
chondria and is required for mitochondrial fusion. The MFN2 
contains a GTPase domain in its NH2-terminal region, a coiled-
coil domain, 2 transmembrane spans, and a coiled-coil domain 
in the carboxyl-terminal region [20]. MFN2 is abundantly ex-
pressed in many tissues and organs, including heart, skeletal 
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Figure 4.  MFN2 is a target of miR-17. (A) Wild-type (WT) and mutant (Mut) 3’UTR binding sites are shown. The mutated bases are 
labeled with a horizontal line. (B) HEK293 cells were co-transfected with WT or Mut MFN2 3’-UTR and miR-17 mimic or miR-
NC. The relative luciferase activity was detected 48 h after transfection. (C) At 48 h post-transfection, Western blot analysis 
was performed to assess the effects of miR-17 and aiti-miR-17 on expression of MFN2 protein. Data are expressed as the 
mean ±SD (n=3). * P<0.01, ** P<0.01; NS – no significant difference compared to control.
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muscle, liver, lung, brain, and kidney. MFN2 has been demon-
strated to regulate cell proliferation, apoptosis, and differen-
tiation of vascular smooth muscle cells and multiple cancer 
cell lines. The cell proliferation rate was obviously increased 
in MFN2-knockdown mouse embryonic fibroblast cells, but 
the proliferative effect was abolished by over-expression of 
MFN2 [21]. Here, we detected the expression levels of miR-17 
and MFN2, and found that miR-17 is upregulated and MFN2 
is downregulated in PAH tissues and hPASMCs treated with 
hypoxia. More importantly, the dual-luciferase reporter assay 
showed that MFN2 was a target gene of miR-17.

miRNAs are important regulators of gene expression in var-
ious cell types. A large number of miRNAs, aberrantly ex-
pressed in cancer cells, have been proved to be involved in 
modulating gene expressions, thereby regulating the malig-
nant progression of cancer [22–24]. However, the roles of miR-
NAs in the pathogenesis of PAH remain unclear. A recent re-
port showed that miR-214 was involved in the regulation of 
smooth muscle cell contractile phenotype in PAH. Hypoxia-
induced hPASMC proliferation was suppressed by an antago-
nist of miR-214 [25]. The expression level of miR-140-5p was 
decreased in whole blood samples from patients with PAH and 

in the monocrotaline and Sugen5416 plus hypoxia models of 
PAH. Inhibition of endogenous miR-140-5p promoted PASMC 
proliferation and migration and downregulated the expression 
of SMURF1 [26]. Downregulation of miR-204 expression has 
been observed in PASMCs of PAH patients and rodent mod-
els of PAH. miR-204 reverses the pro-proliferative and anti-
apoptotic phenotypes of hPASMCs isolated from patients with 
PAH [27]. Caruso et al. found that miR-17-5p expression was 
upregulated in a monocrotaline model of PH in rats [28]. miR-
17-5p expression was upregulated in hPASMC during hypoxia 
and inhibition of miR-17-5p decreased hypoxia-induced argi-
nase II expression in hPASMC [29]. However, whether miR-17 
is able to directly target MFN2 and thereby modulate the pro-
liferation, differentiation, and apoptosis of PASMC in hypoxia 
has not been reported.

In this study, we conformed that the expression of miR-17 was 
enhanced in hPASMCs treated with hypoxia, which was consis-
tent with the findings of previous research [30]. Moreover, en-
dogenous miR-17 in hPASMCs were inhibited by its antagomir. 
We found that inhibition of miR-17 suppressed hypoxia-induced 
hPASMC proliferation and promoted apoptosis in hPASMCs in 
vitro. To further study the exact mechanism by which MFN2 

Anti-
miR-NC

Anti-
miR-17

Anti-
miR-NC

Anti-
miR-17

Anti-
miR-NC

Anti-
miR-17

Anti-
miR-NC

Anti-
miR-17

siNC
siMFN2

200

150

100

50

0

Ce
ll v

iab
ilit

y (
%

)

**

*
** 40

30

20

10

0

Ap
op

to
sis

 ra
te

 (%
) ***

**

***

Anti-
miR-NC

Anti-
miR-17

Anti-
miR-NC

Anti-
miR-17

60

40

20

0

Ca
sp

as
e-

3 a
ct

ivi
ty

***

*

***

Anti-
miR-NC

Anti-
miR-17

Anti-
miR-NC

Anti-
miR-17

Anti-
miR-NC

Anti-
miR-17

Anti-
miR-NC

Anti-
miR-17

2.0

1.5

1.0

0.5

0.5

PCNA

β-actin

Cleaved
Caspase-3

Re
lat

ive
 PC

NA
 pr

or
ein

 le
ve

l

**

*
**

Anti-
miR-NC

Anti-
miR-17

Anti-
miR-NC

Anti-
miR-17

2.5

2.0

1.5

1.0

0.5

0.0

Re
lat

ive
 cl

ea
vd

ed
 Ca

sp
as

e-
3 p

ro
te

in
 le

ve
l

***

*

**

A

D

B C

Figure 5.  MFN2 is essential for the miR-17-mediated regulation of proliferation and apoptosis in hPASMCs. hPASMCs were co-
transfected with anti-miR-17 or anti-miR-NC and with either siMFN2 or siNC, and then incubated for 48 h. (A) Proliferation 
assay was performed with CellTiter-Glo reagent. (B) The apoptosis rate was determined by FCM with Annexin V/PI staining. 
(C) The activity of Caspase-3 was measured using a Caspase-3 colorimetric assay kit. (D) To determine the protein expression 
of pro-apoptotic protein cleaved Caspase-3 and PCNA, cells were harvested 48 h post-transfection and then subjected to 
Western blot analyses. Data are expressed as the mean ±SD (n=3). * P<0.05, ** P<0.01, *** P<0.001.
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functions in the pathogenesis of PAH, hPASMCs were transfect-
ed with siMFN2. We found that inhibition of miR-17 decreased 
cell viability and increased apoptosis and Caspase-3 activity. 
In addition, the pro-apoptotic protein cleaved Caspase-3 was 
increased and the proliferation marker PCNA was decreased 
in hPASMCs transfected with anti-miR-17 + siNC. However, 
the pro-apoptotic and anti-proliferative effects of anti-miR-17 
were attenuated when hPASMCs were transfected with siM-
FN2, suggesting that MFN2 is required for miR-17-mediated 
regulation of hPASMC proliferation and apoptosis. Taken to-
gether, our data demonstrate that inhibition of miR-17 sup-
pressed hypoxia-mediated hPASMC proliferation and promot-
ed apoptosis, at least partly by modulating MFN2 expression, 
providing a theoretical foundation for the clinical application 
of miRNAs in therapy of PAH.

Conclusions

Our study reveals that miR-17 was overexpressed in hypox-
ia-mediated hPASMCs and in lung tissues from PAH patients. 
Aberrantly expressed miR-17 affected proliferation and apop-
tosis of hPASMCs, at least partially by targeting MFN2 ex-
pression, indicating that miR-17 plays a vital role in the de-
velopment of PAH. Our findings suggest that downregulation 
of miR-17 could be a promising therapeutic strategy for the 
treatment of patients with PAH.
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