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Abstract: To define the growing significance of cellular targets and/or effectors of cancer drugs, we
examined the fitness dependency of cellular targets and effectors of cancer drug targets across human
cancer cells from 19 cancer types. We observed that the deletion of 35 out of 47 cellular effectors
and/or targets of oncology drugs did not result in the expected loss of cell fitness in appropriate
cancer types for which drugs targeting or utilizing these molecules for their actions were approved.
Additionally, our analysis recognized 43 cellular molecules as fitness genes in several cancer types in
which these drugs were not approved, and thus, providing clues for repurposing certain approved
oncology drugs in such cancer types. For example, we found a widespread upregulation and fitness
dependency of several components of the mevalonate and purine biosynthesis pathways (currently
targeted by bisphosphonates, statins, and pemetrexed in certain cancers) and an association between
the overexpression of these molecules and reduction in the overall survival duration of patients with
breast and other hard-to-treat cancers, for which such drugs are not approved. In brief, the present
analysis raised cautions about off-target and undesirable effects of certain oncology drugs in a subset
of cancers where the intended cellular effectors of drug might not be good fitness genes and that
this study offers a potential rationale for repurposing certain approved oncology drugs for targeted
therapeutics in additional cancer types.

Keywords: cancer fitness genes; breast cancer hard-to-treat cancers; Mevalonate and Purine biosyn-
thesis; oncology drugs; repurposing

1. Introduction

Over the past few decades, cancer treatment has witnessed tremendous progress in
disease-free survival and in the delay and/or prevention of cancer recurrence in cancer
patients. The first-generation of cancer chemotherapeutics and cytotoxic drugs generally
target cellular processes that are fundamental to the growth of both cancer and normal
cells, such as nucleic acids, protein synthesis and cell metabolism. Such drugs exhibit
both anticancer and toxic side effects due to their non-specificity with respect to targets in
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cancer and normal cells in addition to other variables of drug metabolism etc. [1–4]. By
contrast, a targeted cancer therapy targets specific cellular biomolecules and pathway(s)
that are differentially overexpressed and/or hyperactivated in cancer cells as compared
with normal cells and has emerged as a preferred option in the treatment of cancer [5–7].
The US Food and Drug Administration (FDA) has approved approximately 235 oncology
drugs until May 2019, which target or utilize approximately 232 cellular components. The
core of targeted cancer therapy is the intended cellular target against which an inhibitory
molecule was developed. However, targeted cancer therapeutics could also result in
both beneficial and toxic effects due to the on- and off-target effects of the drug [2,8,9].
The mere presence of an upregulated cellular molecule or target in cancer cells and its
activity does not ensure that a given cancer drug will exhibit a homogenous therapeutic
response across the patient population with a given cancer subtype. For example, despite
a widespread overexpression of human epidermal growth factor receptor 2 (HER2) in
breast cancer patients, only approximately 26% of patients with breast cancer receiving
trastuzumab (an anti-HER2 monoclonal antibody) as a single agent exhibited a beneficial
clinical response [10], whereas approximately 34% of patients with metastatic colorectal
cancer positive for epidermal growth factor receptor (EGFR) presented stable disease
upon receiving cetuximab (an anti-EGFR monoclonal antibody) as a single agent. Thus,
a majority of cancer patients receiving monotherapy exhibited the progression of cancer
despite of the presence of its intended target—generally the basis for cancer patient’s
enrolment for a given targeted therapy [11]. HER2-directed therapies such as trastuzumab
therapy in patients with breast cancer resulted in a median survival of over 3 years [12],
whereas the therapy led to a modest increase by approximately 4 months in the median
survival of patients with gastric cancer [13]. Such somewhat limited beneficial effects could
be due to the inherent genomic and cellular heterogeneity, acquired compensatory rewiring
of proliferative and survival pathways [10–14], or unidentified mechanism of drug action,
etc. Moreover, whether the differential effectiveness of targeted therapy in these settings
was due to the lack of or accessibility to the intended target or due to the ineffectiveness of
the targeted therapy in inhibition of the target [8,9,14] remains unclear.

Currently available FDA-approved oncology drugs have been developed through
molecule-driven empirical approaches [15]. This has also been very fruitful and was
somewhat essential to reach the current stage of targeted cancer therapy. However, these
approaches did not fully consider the post-genomic data or the fact that cancer is a poly-
genic disease in selecting the target for developing a drug [16]. Although the polygenic
nature of cancer [17] was not always factored during the development of FDA-approved
oncology drugs, it is generally considered in the development of combination therapy.
Additionally, the post-genomic data and high-throughput screening platforms are actively
utilized for the molecular classification and diagnosis of tumors, assessment of the thera-
peutic sensitivity, and patient stratification to improve the effectiveness of existing oncology
drugs [18–20].

Targeted cancer therapy is still unable to inhibit the growth of all tumor cells of a given
cancer-type in patients. It is possible that a new approach might be helpful for additional
benefits for cancer patients. In this context, Behan et al. developed a comprehensive portrait
of the gene dependency of human cancer [21] wherein the team utilized the CRISPR-Cas9
approach to selectively knock out approximately 7460 genes in 324 well-characterized cell
lines with respect to their genomes [22]. The team assayed the requirement of each gene for
the cellular fitness (viability) of cancer cell lines representing 19 cancer-types. The results
were depicted as a negative fitness effect (the loss of cell viability in the absence of a test
gene) or positive fitness effect (no loss of cell viability in the absence of a test gene), with
the outcome presented as “fitness gene” or “not a fitness gene” for each gene in 324 cell
lines [21,23]. The work by Behan et al. identified 628 priority genes out of 7470 genes across
the 19 cancer types for advancing the field of cancer therapeutics [21].

These findings postulated that the effectiveness of approved oncology drugs in a given
cancer type might be influenced by its ability to target or impair the functionality of specific
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cellular targets as fitness genes. However, whether these cellular targets (of approved
oncology drugs) are also fitness genes in other types of cancer remains unknown. Such an
analysis will result in a broader utility of targeting specific cellular targets in additional
cancer types and is being investigated here using the above CRISPR-Cas9-based cellular
fitness dependency datasets [21,23]. In the present discovery and/or hypothesis-generating
study, we bring out a global concept about the value of fitness genes across human cancer
in the context of the utility of approved oncology drugs for cancer-types for which these
drugs are approved or not approved.

2. Materials and Methods
2.1. Datasets

U.S. Food and Drug Administration approved oncology drugs during the period
of 1952–September 2019 were collected from the FDA website (https://www.accessdata.
fda.gov/scripts/cder/daf/index.cfm, accessed on 13 September 2019). FDA approved
oncology drugs searched on Bank databases (https://www.drugbank.ca/; version 5.1.4,
accessed on 13 September 2019) [24–28] and the targets were identified. Fitness score
for the gene targets were collected from the Cancer Dependency Map dataset (https:
//score.depmap.sanger.ac.uk/gene, accessed on 13 September 2019) [23].

2.2. U.S. Food and Drug Administration Approved Drugs

The Drug bank database mined for the targets of 235 oncology drugs included 185
small molecules, 5 enzymes and 45 biotechnology drugs. Among these targets, 230 are
approved/re-approved after January 2000. Drug accession number, type of molecule,
and weight of the molecule are collected and documented for each drug (Supplementary
Table S1).

2.3. Drug-Target Data

Drug associated with 232 targets were extracted from the Drug bank database with
one to one and one to many relationships. Drug targets included DNA, enzymes, protein
complexes and genes. Among the target 109 genes of oncology drugs, 100 genes were
found to be also present in the quality-control passed list of 7460 genes in the Cancer
Dependency Map dataset [23].

2.4. Cell-Fitness Data

Complete set of 7470 fitness genes from CRISPR-Cas9-mediated knock-out study in
324 cancer cell lines representing 19 cancer-types were compared with the oncology drug
target data and obtained an 100 genes targets present in common. We analyzed the fitness
dependency of these genes using Cancer Dependency Map database. A set of 47 targets of
FDA approved drugs were showing significant loss of fitness in corresponding cell lines
were collected and categorized for cancer types based on the cell line model.

2.5. Fitness Score Data Analysis

Fitness scores for each target for cancer types were plotted using in-house R imple-
mentation. Multiple analysis for fitness scores to compare the targets for same cancer
type, multiple cancer type for same cancer types etc. were performed and plotted to
interpret results.

2.6. Genome Alterations and Gene Expression Analysis

Genome alterations and gene expression analysis for selected genes in the corre-
sponding cancer datasets were performed using the cBioPortal.org [29,30] and Xena
Browser [31] and other curated cancer dataset from Gene Expression Omnibus. The data
sets were downloaded, normalized and converted to log expression values and thereafter
represented the expression of the genes using the heatmap package of R bioconductor
(https://www.bioconductor.org, version 3.12, accessed on 10 August 2020) and Genepat-

https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm
https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm
https://www.drugbank.ca/
https://score.depmap.sanger.ac.uk/gene
https://score.depmap.sanger.ac.uk/gene
https://www.bioconductor.org
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tern heatmap algorithms (https://notebook.genepattern.org, accessed on 8 June 2020).
Alteration graph was directly exported from the cBioPortal web browser.

2.7. Survival Analysis

Survival plots for selected genes for corresponding datasets were performed using the
SurvExpress tool [32] using default parameters.

2.8. Drug Target Cancer Relationship Diagram

Drug Target relationship for FDA approved oncology drugs for approved cancer
types as well as significant fitness cancer types was identified and represented as Sankey
chart diagram using Sankey MATIC tool (http://sankeymatic.com, accessed on 11 Decem-
ber 2020).

3. Results
3.1. Fitness Dependency of Cellular Targets of Oncology Drugs in Cancer Cell Lines

To define the global significance of cellular targets/effectors of oncology drugs in
cancer cell growth, we examined the fitness dependency of known cellular targets and/or
effectors of oncology drugs in cancer cell lines, that is, the requirement of a given gene
for cell viability or cell growth. First, we examined the presence of 232 cellular targets
known to be utilized by 235 FDA-approved oncology drugs (Supplementary Table S1) in
the CRISPR-Cas9 fitness screen datasets [21] involving 324 validated cell lines [22,23]. We
detected 100 out of 232 cellular targets in the database (Supplementary Table S2). Our
analysis of the cancer-dependency screen identified 47 of these 100 cancer targets and/or
effectors (of FDA-approved drugs) as fitness genes across 19 cancer types (Supplementary
Figure S1A,B) and remaining 53 cellular molecules were identified without any loss of
cellular fitness upon knocking out a specific molecules (Supplementary Tables S3 and S4).

We focused on the 47 cellular cancer target and/or effector genes (targeted by FDA
approved drugs) in the subsequent studies. We observed that 15 of the 47 cellular targets
of oncology drugs overlapped with recently identified 628 priority therapeutic targets [21]
(Figure 1A, Supplementary Table S5). Both the 47 cellular targets of FDA-approved drugs
and their subset of 15 cellular targets shared with priority therapeutic targets [21] were
distributed across cancer types for which drugs targeting these cellular targets were either
not approved (Figure 1B) or approved (Supplementary Figure S1C). Of the 15 cellular
targets shared with the priority therapeutic targets, 10 molecules were targeted by small
molecules, and 3 molecules were targeted by therapeutic antibodies (Supplementary Tables
S6 and S7). These observations not only confirmed the recent findings of cellular target
detection of approved cancer drugs as priority therapeutic targets [21] but also recognized
43 cellular targets and/or effectors with an excellent fitness effect in cancers for which
drugs acting on these molecules are not approved (Supplementary Table S8). Moreover,
53 cellular targets and/or effectors of oncology drugs were without any effect on the
cellular fitness effect upon their depletion (Figure 1A). Additionally, a small number of the
47 cellular molecules could be fitness genes in cancer-type context manner. For example,
phosphoribosylglycinamide formyl transferase (GART) is an excellent fitness gene in
ovarian cancer, for which pemetrexed targeting GART was approved; however, GART is
not a fitness gene for lung and kidney cancers.

https://notebook.genepattern.org
http://sankeymatic.com
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Figure 1. Oncology drug targets and/or effectors as good or poor cellular fitness genes. (A) Strategy to examine the
fitness- dependency of cancer types for which oncology drugs targeting these targets are either approved or not approved.
(B) Distribution of 43 cancer targets and/or effectors of FDA-approved drugs, a subset of 14 targets shared with 628 priority
therapeutic targets and common targets between these two groups across cancer types, for which drugs targeting these
cellular targets are not approved. (C) Distribution of significant fitness dependency of 47 molecules across 19 cancer types,
for which drugs targeting these molecules are either approved (dark green boxes) or not approved (light green boxes). Here,
n—collective number of target fitness values among cancer cell lines in a given cancer type; one dot per target per cell line.
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To determine the requirement of the 47 known cellular targets and/or effectors (of
cancer drugs) for the cellular fitness of cancer types, we examined the fitness dependency
of these 47 genes in the CRISPR-Cas9-derived Cancer Dependency Map [23]. We observed
that the individual depletion of these molecules in appropriate cancer types for which the
drugs targeting these cellular molecules were approved resulted in a significant loss of
cell fitness, thereby implying a role of these cellular targets in the growth of these cancer
cell types (Figure 1C, dark green boxes; Supplementary Figure S1D). For example, the
depletion of 13 targets (i.e., RRM1, TOP2A, TYMS, etc.) in breast cancer cells, 8 targets (i.e.,
RRM1, TOP1, MTOR, etc.) in glioblastoma cells, and 6 targets (i.e., TYMS, RRM1, TOP1,
etc.) in pancreatic cancer cells resulted in a significant loss of cellular fitness, as depicted
by the negative fitness effect. The depletion of 43 cellular molecules in cancer types for
which drugs targeting these molecules were not approved also resulted in the loss of cell
fitness (Figure 1C, light green boxes), suggesting that targeting or inactivating the functions
of these 43 cellular molecules in these cancer types may also lead to growth inhibition.
However, it’s worth mentioning that mere elevation of these targets in certain cancers and
their noted correlation with the disease outcome are not indicative of a direct causative
effect [14]. In general, the number of dots corresponds to light green boxes, representative
the effect of knocking out a single target gene in a given cancer cell line. The number
of light green dots are substantially more than the number of dots corresponds to dark
green. This suggests that the depletion and/or inactivating these 43 cellular molecules by
appropriate targeting agents will have a fitness effect in these cancer cell lines.

3.2. Cellular Targets of Oncology Drugs Do Not Always Exhibit Fitness Dependency

In the next set of studies, we analyzed the effect of knocking out 53 cellular genes
(previously known to be targeted by oncology drugs) across 19 cancer types and found that
the deletion of these genes did not result in a significant loss of cellular fitness in multiple
cell types (Figure 2A). Similar to these cellular targets, knocking out 35 of the 47 fitness
genes was not accompanied by a loss of cell fitness in any one of the cancer type for which
drugs targeting these molecules were approved (Figure 2B). For example, knocking out
of the Fc Fragment of IgG receptor isoforms (FCGR1A, FCGR2B, and FCGR3a)– which
are required for the manifestation of antibody-dependent cellular cytotoxicity and anti-
angiogenic activity of bevacizumab [33], which targets the vascular endothelial growth
factor receptor (VEGFR) in ovarian, intestinal, and kidney cancers, did not influence the
cancer cell fitness (Figure 2C). Similarly, knocking out of cyclin-dependent kinase 4 (CDK4)
and cyclin-dependent kinase 6 (CDK6) (targets of palbociclib or ibrancein in breast cancer),
ERBB2 (target of trastuzumab in breast cancer), Bruton’s tyrosine kinase (BTK) (target of
ibrutinib or imbruvica in hematopoietic cancer), CRBN (target of lenalidomide or revlimid
in skin cancer), and CYP17A1 (target of abiraterone acetate or zytiga in prostate cancer)
did not influence the fitness of cancer cell lines (Figure 2D). In contrast, we noticed that the
depletion of such cellular genes was often accompanied by significantly improved fitness
in cancer types (without the loss of cellular fitness), implying an enhanced cell growth of
certain cancer-types if such genes are targeted in these cancer type. This raises some concern
as targeting such molecules might potentially lead to a cell survival/proliferative response.

A number of recent reports demonstrated growth-promoting activities of oncology
drugs in physiologically relevant whole animal models [34–38]. These observations raised
two important possibilities for targeted cancer therapy. First, beneficial antitumor and
therapy-associated toxic effects may result from off-target effects of certain oncology drugs
if the intended drug target is not a fitness gene for the cell growth or cell viability in certain
cancer types. Second, in the absence or loss of fitness dependency, attempts to inhibit such
cellular target genes may lead to the increased proliferation of certain cancer cell types
through indirect pathways. This possibility implies that if intended cellular drug targets
are not affected by drugs, this could lead to undesirable effects in some cancer types.



Cells 2021, 10, 433 7 of 19

Figure 2. Revelation of cellular molecules with differential effects on cellular fitness. (A) Overall distribution of the 88
cancer targets with no loss of cellular fitness upon depletion across the 19 types of cancer cell lines. (B) Distribution of the
positive fitness effect of depleting the 47 targets across cancer types, for which drugs utilizing these molecules are either
approved or not approved. Here, n—collective number of target fitness values among cancer cell lines in a given cancer
type; one dot per target per cell line. (C) Representative examples of the three fitness genes important in the action of
bevacizumab in the three referred cancer types. (D) Selected examples of the above representative targets in cancer-types
for which drugs targeting these molecules are approved using data from Drug bank and corresponding Fitness score for
were derived from the Cancer Dependency Map.

3.3. Cellular Targets of Oncology Drugs Are Excellent Fitness Genes in New Cancer Types

To reveal a broader significance of the 47 cellular molecules which exhibited a signifi-
cant fitness dependency in multiple cancer-types, we determined whether these molecules
are required for the fitness or growth of cancer types for which drugs targeting these
molecules were not approved. We found that the depletion of 43 of the 47 cellular molecules
in multiple cancer types was associated with a substantial loss of cell fitness (Figure 1C and
Figure 3A ). Further, a direct comparison of the status of cellular targets and/or effectors
which otherwise are known to be targeted by drugs that are approved or not approved
for a given cancer, revealed that majority of cellular molecules with significant fitness
dependency are present in cancer types for which drugs targeting these molecules are not
approved for that cancer. Figure 3B illustrates the distribution of the fitness dependency
scores of molecules which are targets and/or effectors of approved (dark green) or not
approved (light green) drugs for breast cancer, pancreatic cancer, and glioblastoma. The
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fitness dependency of the 43 targets of approved oncology drugs across Peripheral Nervous
System, Large Intestine and Ovarian cancers is presented in Supplementary Figure S2.

Figure 3. Distribution of fitness genes in a sub-set of cancer types. (A) Distribution of the 43 cancer
cell fitness genes with a significant loss of cellular fitness upon depletion across the 19 cancer types.
(B) Distribution of the loss of cellular fitness upon depletion of targets of either approved (dark green)
or not approved (light green) oncology drugs in breast cancer, pancreatic cancer, or glioblastoma.
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In general, cancer drug targets and/or effectors exhibited a widespread fitness depen-
dency in cancer types for which drugs targeting these cellular targets are not approved
(light green) compared with that in cancer types for which drugs targeting such molecules
are approved (dark green) (Supplementary Figure S3). For example, the cellular fitness
of breast, ovarian, and endometrial cancer cell lines was significantly compromised by
the depletion of 13 (GGPS1, Farnesyl Diphosphate Synthase (FDPS), GART, and others),
24 (GGPS1, FCGR1A, TUBD1, and others), and 23 (GGPS1, FDPS, BRAF, and others)
molecules, utilized by approved oncology drugs, respectively (Figure 3, Supplementary
Figure S4A).

A multivariant analysis of tumors for overexpression versus underexpression of these
fitness genes was associated with a highly significant reduction in the overall survival of re-
spective cancer patients (Supplementary Figure S4B,C). Similarly, the fitness of esophageal,
pancreatic, and stomach cancer cell lines was significantly compromised by the depletion
of 30, 25, and 28 genes, respectively (Supplementary Figure S5A). A multi-variant analysis
of overexpression versus underexpression of these fitness genes was also associated with a
highly significant overall reduction in the survival of respective cancer patients (Supple-
mentary Figure S5B,C). All 43 newly recognized fitness genes are otherwise known targets
and/or effectors of FDA-approved drugs in referred cancer types for which drugs targeting
these molecules are not approved (Supplementary Table S8). These results revealed the
significance of cellular targets and/or effectors of approved oncology drugs in cellular
fitness for cell viability in certain cancer types, raising the probability of repurposing
certain cancer drugs for a set of new cancer types for which these drugs are not approved.
However, depletion of such cellular targets and/or effectors in such cancer types revealed
a significant fitness dependency.

3.4. Components of the Mevalonate Pathway as Fitness Genes in Breast Cancer

To study women’s cancer, we evaluated the expression of 13 targets and/or effectors
of cancer drugs, of which 10 are common among breast, ovarian, and endometrial cancers,
with a significant fitness dependency in breast cancer (Supplementary Figures S2 and S4A).
Among these cell fitness molecules, we observed a widespread mRNA overexpression and
copy number amplification of Geranylgeranyl pyrophosphate synthase (GGPS1), Farnesyl
diphosphate synthase (FDPS), and GART (also known as glycinamide ribonucleotide
formyl transferase—(GARFT) in breast tumors (Figure 4A and Supplementary Figure S6).
The noted upregulation of GGPS1 and FDPS is an important observation in the context of
breast cancer pathogenesis as these enzymes are components of the mevalonate pathway
with role in cholesterol biosynthesis and bone metastasis of breast cancer, prostate cancer,
and multiple myeloma [39–44]. The GART protein [45] is a mandatory trifunctional enzyme
which plays an essential role in purine biosynthesis (Supplementary Figure S7A). The levels
of GGPS1, FDPS, and GART were significantly elevated in breast tumors (Figure 4B) as
compared to matching adjacent normal tissues [46], breast cancer cell lines (Figure 4C),
breast cancer subtypes (Figure 4D), and triple negative breast cancer (TNBC) compared
with the normal adjacent tissue or non-TNBC tumors (Figure 4E) [47]. The overexpression
of GGPS1, FDPS, and GART mRNAs and their respective proteins was observed in breast
tumors (Figure 5A) [48], along with the coexpression of GGPS1, FDPS, and GART proteins
in several of the same breast tumors (presented as empty blocks).
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Figure 4. Expression of GGPS1, FDPS, HMGCS1 and GART in breast cancer. (A) Amplification and expression of indicated
molecules in breast tumors in The Cancer Genome Atlas (TCGA) (left) and Metaberic data (right) [49] using Copy Number
Variation (CNV) and gene alteration rate data from cBioPortal.org [29,30]. (B) Expression of GGPS1, FDPS, GART and
3-Hydroxy-3-Methylglutaryl-CoA Synthase 1 (HMGCS1) mRNAs in breast cancer sub-types, in breast tumors and adjacent
matched normal tissues using the data from cBioPortal (left panel) [29,30] and from Xena Browser (right panel) [31]. (C—E)
Expression of indicated four mRNAs in TNBC and matched normal tissues from Xena Browser (right panel) [31], in TNBC
samples [50], in TNBC and non-TNBC breast tumors, and breast cancer cell lines [51]; Right panel: Gene expression
representation using heatmap in breast cancer cell lines—AU565, BT20, BT474, BT483, BT549, CAL120, CAL148, CAL51,
CAL851, CAMA1, DU4475, EFM192A, EFM19, HCC1143, HCC1187, HCC1395, HCC1419, HCC1428, HCC1500, HCC1569,
HCC1599, HCC1806, HCC1937, HCC1954, HCC202, HCC2157, HCC2218, HCC38, HCC70, HDQP1, HS274T, HS281T,
HS343T, HS578T, HS606T, HS739T, HS742T, JIMT1, KPL1, MCF7, MDAMB134VI, MDAMB157, MDAMB175VII, MDAMB231,
MDAMB361, MDAMB415, MDAMB436, MDAMB453, MDAMB468, SKBR3, T47D, UACC812, UACC893, YMB1, ZR751,
ZR7530, EVSAT and HMC18 cells using data from cBioPortal.org [29,30].

GGPS1 and FDPS are targets of nitrogen-containing bisphosphonates such as zole-
dronic acid derivatives that are widely used to prevent bone-related events related to breast
cancer relapse. These drugs reduce mortality in postmenopausal women through the
inhibition of bone metastasis by suppressing osteoclast-mediated bone resorption [39–42].
This is achieved by inhibiting osteoclastic activity and decreasing the bone turnover as
supported by reduction in the levels of bone resorption markers N-telopeptide and C-
telopeptide [39–44]. Bisphosphonates are generally considered supportive therapy and not
anti-cancer therapy for solid tumors due to a modest modifying effect on the overall sur-
vival of patients with solid tumors in clinical trials undertaken by two of the authors of this
study [42–44]. Bisphosphonates also increase the overall survival in multiple myeloma [52].
However, the nature and context of cellular targets of bisphosphonates in breast cancer
(GGPS1 and FDPS) are expected to be different from its targets in bone.
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Figure 5. Coexpression and significance of GGPS1, FDPS, GART and HMGCS1 in breast cancer. (A) Proteogenomics
expression status of the four indicated molecules in breast tumors. Yellow: CNV, Green:a RNAseq, and Orange: Protein [48].
(B) SurvExpress [32] survival analysis of GGPS1, FDPS, and GART and that of GGPS1, FDPS, GART, and HMGCS1 in
patients with breast tumors.

A recently completed clinical trial, named AZURE trial, postulated certain beneficial
antitumor activity of bisphosphonates against breast cancer in the adjuvant setting in a
subset of postmenopausal women who were negative for MAF transcription factor [53,54].
Previously studies have shown that MAF regulates the expression of genes important in
breast-to-bone metastasis [55–57]. We next analyzed the relationship between the levels of
MAF and bisphosphonate’s targets in breast tumors. We noticed an inverse relationship
between levels of MAF upregulation and those of GGPS1 or FDPS, and an almost exclusive
expression of MAF and GGPS1 or MAF and FDPS in breast tumors (Supplementary Figure
S8A). We also found that MAF is not a fitness gene because its depletion in cancer cell
lines had no effect on cellular viability (Supplementary Figure S8B). It remains an open
question whether the responders to bisphosphonates in the AZURE trial were positive for
GGPS1 and/or FDPS—both of which have been implicated in oncogenesis [58–60], and
thus, MAF-negative breast tumors might have responded well to bisphosphonate therapy
due to the presence of its targets—a question for validation in a prospective clinical study.

Zoledronic acid acts by inhibiting these enzymes due to its analogous nature with
naturally occurring pyrophosphates and by suppressing the geranylgeranylation and far-
nesylation of small GTPases (Supplementary Figure S7A). Antifolates such as pemetrexed,
which are approved for ovarian and kidney cancers, target GART, dihydrofolate reductase,
and thymidylate synthase [45]. The overexpression of GGPS1, FDPS, and GART in breast
cancer was also associated with a highly significant overall reduction in the survival of
patients with breast cancer compared with that of patients without overexpression of these
cellular molecules (Figure 5B). The significance of the overexpression of GGPS1, FDPS, and
GART in the pathophysiology of breast cancer is also evident by the fitness dependency of
breast cancer cells on these genes (Figure 5B). As most of relapses occur in the first 5 years,
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it would be interesting to understand whether these fitness genes are responsible for cancer
progression, or recurrence of cancer in future studies.

3.5. Components of the Mevalonate Pathway as Fitness Genes in Hard-to-Treat Cancer Types

GGPS1, FDPS, and GART are upregulated in multiple cancers in addition to breast
cancer (also TNBC) (Figures 4 and 5, Supplementary Figure S9), including hard-to-treat
cancers such as esophageal, pancreatic, lung, and oral cancers and glioblastoma (Figure 2,
Supplementary Figures S3 and S9–S11). The potential significance of the noticed over-
expression of GGPS1, FDPS, and GART in the pathophysiology of cancer types, other
than breast cancer, is evident by the fitness dependency of multiple hard-to-treat cancer
cell types such as esophageal, central nervous system (CNS), head and neck, and ovarian
cancers, on the presence of GGPS1, FDPS, and GART (Figure 6A,B).

Additionally, the overexpression of GGPS1, FDPS, GART, and 3-hydroxy-3-methylg
lutaryl-CoA synthase 1 (HMGCS1) was also associated with a highly significant overall
reduction in the survival duration of patients with esophageal and pancreatic cancers.
Similarly, the overexpression of GGPS1, GART, and HMGCS1 reduced the overall survival
duration in patients with glioblastoma, ovarian cancer, and endometrial cancer but not in
those with prostate cancer (Supplementary Figure S10). We found that the levels of GGPS1,
FDPS, and GART were not upregulated in prostate cancer (Supplementary Figure S10).
GGPS1 did not exhibit any fitness dependency in prostate cancer cells, whereas FDPS and
GART had no fitness values (Supplementary Figure S10). Zoledronic acid is also used for
prostate cancer bone metastases, suggesting that some degree of cell-type specificity of
fitness dependency of the same set of genes may exist between breast and prostate cancer
cells for presently obscure reasons.

FDPS and GGPS1 are downstream components of 3-hydroxy-3-methylglutaryl-CoA
reductase (HMGCR) (Supplementary Figure S7A), a rate-limiting enzyme and a target
of statins [61]. The statin treatment of cancer cells leads to a compensatory upregula-
tion of HMGCS1, which is widely upregulated in breast [58,60] and other cancer-types
(Figures 4 and 5; Supplementary Figures S6 and S9). Although HMGSC1 is not a target
of any FDA-approved oncology drug, the knock-out of HMGSC1 in fitness screens was
accompanied by a significant fitness dependency of breast cancer and other cancer cell
types (Figure 4A,B). We also observed that the overexpression of HMGCS1, GGPS1, FDPS,
and GART in breast (Figure 4), ovarian, endometrial, pancreatic, and CNS cancers (Sup-
plementary Figure S10) correlated well with a reduction in the overall survival of patients
when compared with that of patients without overexpression of these genes.
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Figure 6. Fitness dependency of the four enzymes of the mevalonate/cholesterol pathway in cancer-types. (A). Status
of cellular fitness of cancer types upon knocking out GGPS1, FDPS, HMGCS1, or GART in cancer types for which drugs
utilizing these molecules are approved (dark green dots) or not approved (light green) or are non-oncology drugs (orange).
(B) Relationship between the four cellular targets or effectors and fitness dependency of cancer types, for which indicated
drugs targeting these molecules are not approved.
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4. Discussion

The present study encouraged the utilization of post-genomic data for the benefit
of patients with cancer by repurposing approved cancer drugs by integrating fitness
dependency of the intended target and/effector of a given oncology drug. Summary of
the work presented here in Figure 7 illustrates a substantial increase in the number of
fitness gene targets in cancer types for which oncology drugs targeting these targets are
not approved compared with cancer types for which these drugs are approved—as evident
by the number of lines connecting the target and cancer types. These results support the
notion of utilizing the genomic data for the benefit of patients with cancer by repurposing
approved cancer drugs by integrating fitness dependency of the intended target, its cellular
overexpression, and role in the overall survival of patients with high versus low expression
of fitness genes in multi-variant analyses.
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To exemplify the usefulness of the findings presented here, we focused on breast
cancer and demonstrate that targets of bisphosphonates such as FDPS and GGPS1 as well
as statin such as HMGCS1 are excellent fitness genes in breast cancer and many hard-
to-treat cancers. Because a large body of prior data suggests that use of statins may be
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associated with a reduced incidence of breast as well as esophageal cancer etc. [62–66] and
the fact that all four enzymes, i.e., GGPS1, FDPS, HGMCS1 and HGMCR, belong to the
mevalonate pathway, these observations might offer some degree of scientific reasoning
for potentially combining bisphosphonates with statins (along with strategies to target
HMGCS1) for cancer-types for which these drugs are not approved (Figure 6B). However,
completed clinical trials have not prescreened the patients for the status or activity of
cellular targets of bisphosphonates (i.e., FDPS and GGPS1) and statins (HMGCR and
HMGCS1)—a premise for targeted therapy. The combination of bisphosphonates and
statins (probably with or without pemetrexed) may yield a superior therapy response
in a subset of cancers such as TNBC and ovarian, pancreatic, and CNS cancer if such
patients are stratified on the basis of the expression of FDPS, GGPS1, HMGCR, and GART
in future clinical trials (Figure 6B). Zoledronic acid exhibits synergistic growth inhibitory
activity with other anticancer agents in cellular models [67]. A recently completed breast
cancer clinical trial aimed at repurposing zoledronic acid in a neoadjuvant setting suggests
that zoledronic acid promotes the anticancer activity of chemotherapy and antiHER2
therapy [68]. Bisphosphonates or statins have been proven to be safe when used over an
extended period of time. The expression of GGPS1, FDPS, GART, and HMGCS1 is very
low or albeit in the normal cell types and immune cell types (Supplementary Figure S11),
and in human blood cells (Supplementary Figure S12)

The findings presented here can impact the field of cancer drug repurposing and
provide new hypotheses to be tested in future studies using appropriate preclinical model
systems and subsequently, a novel cancer-specific clinical trial. In addition to repurposing
bisphosphonates and statins, with or without pemetrexed, for breast cancer (and perhaps,
other cancer-types), the present analysis provided a rationale for repurposing a range of
approved oncology drugs in cancer-types for which these drugs are not approved, but their
cellular targets are excellent fitness genes in these cancer-types. The potential relationship
between the levels of cancer therapeutic targets in serum, plasma, and tumors might also
be of interest because certain targets and/or effectors of oncology drugs were also detected
in extracellular fluids as secretory proteins (FDPS, GART, and HMGCS1) [69], in addition
to being fitness genes and overexpression in human tumors. Such secretory fitness gene
products could be potentially developed as surrogate biomarkers for the assessment of
disease status and therapeutic responsiveness.
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409/10/2/433/s1, Figure S1: Fitness-dependency of cellular targets of approved oncology drugs
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genes in cancer-types for which drugs targeting these are not approved, Figure S3: Status of fitness-
dependency of 47 oncology drug targets in cancer-dependency map, Figure S4: Widespread over-
expression and significance of cellular fitness targets in women’s cancer, Figure S5: Widespread
overexpression and significance of cellular fitness targets in digestive cancers, Figure S6: CNV ampli-
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