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Abstract

Mapping the relation between cortical convolution and structural/functional brain architectures could provide deep
insights into the mechanisms of brain development, evolution and diseases. In our previous studies, we found a
unique gyral folding pattern, termed a 3-hinge, which was defined as the conjunction of three gyral crests. The
uniqueness of the 3-hinge was evidenced by its thicker cortex and stronger fiber connections than other gyral
regions. However, the role that 3-hinges play in cortico-cortical connective architecture remains unclear. To this
end, we conducted MRI studies by constructing structural cortico-cortical connective networks based on a fine-
granular cortical parcellation, the parcels of which were automatically labeled as 3-hinge, 2-hinge (ordinary gyrus)
or sulcus. On human brains, 3-hinges possess significantly higher degrees, strengths and betweennesses than 2-
hinges, suggesting that 3-hinges could serve more like hubs in the cortico-cortical connective network. This hypoth-
esis gains supports from human functional network analyses, in which 3-hinges are involved in more global func-
tional networks than ordinary gyri. In addition, 3-hinges could serve as ‘connector’ hubs rather than ‘provincial’
hubs and they account for a dominant proportion of nodes in the high-level ‘backbone’ of the network. These
structural results are reproduced on chimpanzee and macaque brains, while the roles of 3-hinges as hubs become
more pronounced in higher order primates. Our new findings could provide a new window to the relation between
cortical convolution, anatomical connection and brain function.
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Introduction

Cerebral cortical convolution patterns have been shown to be
correlated with brain structural connective patterns and brain
functions to a certain extent (Van Essen 1997; Zilles et al.
1997; Thompson et al. 2004; Fischl et al. 2007; Nordahl
et al. 2007; Bullmore and Sporns 2009; Honey et al. 2010).
The studies of such relationships could provide useful insights
into the mechanisms of brain development, evolution and ab-
normality (Zilles et al., 1988; Roth and Dicke, 2005; Hilgetag
and Barbas 2006; Fischl et al. 2007; Dubois et al. 2008; Giedd
and Rapoport 2010; Honey et al. 2010; Holland et al. 2015).
For example, it has been demonstrated that cortical convolu-
tion patterns can be used as predictors of primary and second-
ary Brodmann areas (BAs) (Fischl et al. 2007), the boundaries
between which were determined by the considerable changes
of cyto- and myelo- architectures. Indeed, cortex can be fur-
ther decomposed into finer-granular basic morphological pat-
terns, such as gyri and sulci. It was found that gyri and sulci
were significantly different in their cyto-architecture
(Connolly 1950; Richman et al. 1975), myelo-architecture
(Rakic 1984; Van Essen 1997; Hilgetag and Barbas 2005)
and even on a genetic basis (Gotz and Huttner 2005; Stahl
etal. 2013; Zeng et al. 2015). On this basis, a school of studies
focused on the relationship between these two folding patterns
and axonal wiring diagram (Van Essen 1997; Hilgetag and
Barbas 2006; Xu et al. 2010; Chen et al. 2013; Budde and
Annese 2013; Zhang et al. 2014). For example, some reports
suggested that gyri were generated by the tension on axons
which pulls the cortices closer (Van Essen 1997; Hilgetag and
Barbas 2006). In other studies (Xu et al. 2010; Nie et al. 2012;
Budde and Annese 2013; Zhang et al. 2014), gyri were ob-
served to be connected by axons with greater density than
sulci at different scales while being spatially further away
from each other. There are other studies suggest that a super-
ficial axonal system exist at the border of white matters and
gray matters and could impede the detection of axonal con-
nections, especially in sulcal regions (Reveley et al. 2015). In
spite of the debate, the consensus is that gyro-sulcal patterns
are closely related to axonal connective patterns, and their
relation to the brain’s structural and functional architectures
can be further inferred. For example, in the tension hypothesis
(Van Essen 1997), axons pull the cortices closer to reduce the
cost of information transit between the cortical pairs. In an-
other hypothesis (Nie et al. 2012), gyri were connected by
denser axons and could serve as information gathering and
distributing centers (Deng et al. 2014; Jiang et al. 2015), such
that the information transit cost is reduced in a global manner.

These abovementioned cortical-area-based and gyro-
sulcal-pattern-based works demonstrated that the convolution
pattern of cerebral cortex is a multi-scale concept. Our recent
investigations continued along this line and showed a possi-
bility that gyral patterns can be further sub-divided. It is noted

that we limited our interests in the comparison between fold-
ing patterns within gyral regions, because the contrast be-
tween different gyral folding patterns could possibly be less
biased by the limitation of diffusion Magnetic Resonance
Imaging (AMRI) tractography (Van Essen et al. 2014). In Li
etal. 2010, a novel cortical folding pattern in gyral region was
defined as a gyral hinge, which is the conjunction of gyri
coming from multiple directions (white bubbles in Fig. la
show the locations of gyral hinges). As gyral hinges with more
than 4 spokes are rarely seen (Li et al. 2010), our previous and
current studies focused on the ones with 3 spokes, termed 3-
hinges. The uniqueness of these 3-hinges were progressively
uncovered by a series of our recent works (Li et al. 2010; Yu
et al. 2013; Chen et al. 2014; Jiang et al. 2015; 2018; Li et al.
2017; Ge et al. 2017): 3-hinges have thicker cortices (Fig. lc,
Li et al. 2010), stronger structural connections by means of
dMRI streamline counting (Fig. 1b, Ge et al. 2017) and more
pronounced structural connective diversities (Li et al. 2010;
Yu et al. 2013; Chen et al. 2014; Li et al. 2017). These obser-
vations significantly contrast those on ordinary gyri, termed 2-
hinges.

Although these studies have shown the possibility of gyral
sub-division, the role that 3-hinges play in brain connective
architecture still remains elusive. For example, 3-hinges tend
to have stronger connections than other gyral regions (Ge et al.
2017), but it is unknown whether these connections are re-
stricted to one cortical area to simply enhance the information
transit efficiency or dispersed to multiple regions to make 3-
hinges information segregators. To answer these questions, we
reconstructed a cortico-cortical connective network to inves-
tigated the graphic metrics of 3-hinges in this work, and stud-
ied how 3-hinges contrast with their 2-hinge counterparts.

Specifically, we adopted a home-made toolkit (Chen et al.
2017) to automatically extract gyral crest lines and detect all 3-
hinges locations on the entire cortical surface of an individual
brain. Then, the cortical surface was parcellated to dense
patches of equal area, and were used as nodes to estimate
structural cortico-cortical connections and networks. These
patches were labeled as 3-hinge ones, 2-hinge ones or sulcal
ones, according to their locations. We only focused on the
comparison between 3-hinges and 2-hinges in this work.
Graphic metrics were computed to investigate the difference
between the two folding patterns. All results based on struc-
tural network analyses lead to a novel hypothesis that 3-hinges
could be more like hubs than 2-hinges in cortico-cortical con-
nective networks, because of their significantly larger nodal
degrees, strength and betweenness. This hypothesis gains sup-
ports from human functional analyses (Jiang et al. 2015), in
which 3-hinges were involved in more global functional net-
works than 2-hinges. Moreover, 3-hinges tend to serve as
‘connector’ hubs between cortical communities rather than
‘provincial’ hubs within the communities, and they account
for a dominant proportion of nodes in the ‘backbone’ of the
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Fig. 1 One subject is selected from the Human Connectome Project (Van
Essen et al. 2013, HCP for short) dataset to show gyral hinges, fiber
density and cortical thickness. a White bubbles indicate the locations of
3-hinges. The white curves represent gyral crest lines. The surface is
color-coded with surface curvature; b Fiber termination density map.
Deterministic streamline fibers are estimated from dMRI data. Density

cortico-cortical network. These results based on structural net-
works are reproduced on macaque and chimpanzee brains,
while the roles of 3-hinges as hubs become more pronounced
from macaque brains to human brains.

In general, these hypotheses provide a new insight into the
relation between cortical convolutions, anatomical connec-
tions and brain functions, and could provide new clues to
future studies of the brain development, evolution and
diseases.

Materials and methods
Dataset description
Structural imaging data of human brains

In total, 64 human brains from the Q1 release of WU-Minn
Human Connectome Project (HCP) consortium (Van Essen
et al. 2013) were used. For T1-weighted structural MRI, the
imaging parameters are: TR =2400 ms, TE=2.14 ms, flip
angle =8 deg, image matrix =260 x 311 x 260 and resolu-
tion=0.7x 0.7 x 0.7 mm’.

Diffusion-weighted MRI (dMRI) data was collected with
spin-echo EPI sequence. The imaging parameters are: TR =
5520 ms, TE=89.5 ms, flip angle =78 deg, FOV =210 x
180 mmz, matrix = 168 x 144, resolution=1.25x1.25 x
1.25 mm?®, echo spacing = 0.78 ms. Particularly, a full dMRI
session includes 6 runs, representing 3 different gradient ta-
bles, with each table acquired once with right-to-left and left-
to-right phase encoding polarities, respectively. Each gradient
table includes approximately 90 diffusion weighting direc-
tions plus 6 b =0 s/mm” acquisitions interspersed throughout
each run. Diffusion weighted data consists of 3 shells of b=
1000, 2000, and 3000 s/mm? interspersed with an approxi-
mately equal number of acquisitions on each shell within each
run.
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is defined as the numbers of fibers passing through a unit area (1mm?) of
the surface; ¢ Cortical thickness map, retrieved from the HCP dataset. The
surfaces in a and b are reconstructed from the FA map of dMRI data. The
one in c¢ is grayordinate white matter surfaces in HCP datasets. Dashed
circles in b and ¢ highlight the locations of the same 3-hinges as those in a

Functional imaging data of human brains

Task fMRI data from Q1 release of WU-Minn Human
Connectome Project (HCP) consortium were used (Van
Essen et al. 2013). The acquisition parameters of task fMRI
data are as follows: 90 x 104 matrix, 72 slices, in-plane
FOV =208 x 180 mm>, 2.0 mm isotropic resolution and
1200 time points, TR =0.72 s, TE=33.1 ms, flip angle =
52 deg, BW =2290 Hz/Px. Dataset descriptions can be found
in Glasser et al. 2013. Task designs can be found in Barch
et al. 2013.

Structural imaging data of chimpanzee brains

In this study, MRI data from 16 chimpanzees are used. All the
chimpanzee subjects were members of a colony in the Yerkes
National Primate Research Center (YNPRC) at Emory
University in Atlanta, Georgia. All imaging studies were ap-
proved by the institutional animal care and use committee
(IACUC) of Emory University. The anatomical MRI scans
were performed on a Siemens 3 T Trio scanner with a standard
birdcage coil. Foam cushions and elastic straps were used to
minimize head motion.

T1-weighted MRI data were acquired with a 3D
magnetization-prepared rapid gradient echo (MPRAGE) se-
quence for all participants. Subjects scanned used the SS-
EPI (single-shot double spin-echo echo planar imaging) se-
quence. The scan protocol is as follows: TR = 2400 ms, TE =
4.13 ms, flip angle =8 deg, image matrix =256 x 256 x 192
and resolution = 0.8 x 0.8 x 0.8 mm?>, with 2 averages.

The parameters used for dMRI data acquisition are as fol-
lows: diffusion-weighting gradients applied in 60 directions
with a b-value of 1000 s/mnz*, TR/TE of 5900/84 ms, FOV of
129 x 230 mm?, matrix size of 72 x 128, resolution of 1.8 x
1.8 x 1.8 mm?, 41 slices with no gaps, covering the whole
brain. Six b = 0 s/mm® acquisitions were also acquired with
matching imaging parameters.
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Structural imaging data of macaque brains

MRI scans from 20 macaques were used. All the macaque
subjects were members of a colony at YNPRC. All MRI scans
were approved by IACUC of Emory University. The anatom-
ical MRI scans were performed on a Siemens 3 T Trio scanner
with a standard knee coil. To minimize head motion, foam
cushions and elastic straps were used during the scan.
Particularly, a specially designed holding device was used to
stabilize macaque’s head during scanning with 2 plastic
screws anchoring in the macaque’s ear canals tightly.

The T1-weighted MRI data was acquired with a 3D
MPRAGE sequence. The scan protocol is as follows: TR =
2500 ms, TE=3.49 ms, flip angle =8 deg, image matrix =
256 % 256 x 192 and resolution = 0.5 x 0.5 x 0.5 mnr>, with 3
averages.

The parameters used for AMRI acquisition are as follows:
diffusion-weighting gradients applied in 60 directions with a
b-value of 1000 s/mmz, TR/TE 0f6970/104 ms, FOVof 141 x
141 mm?, matrix size of 128 x 128, resolution of 1.1 x 1.1 x
1.1 mm’, 41 slices with no gaps, covering the whole brain.
Five b = 0 s/mm” acquisitions were acquired with matching
imaging parameters.

Data Preprocessing

Skull removal, motion correction and eddy current correction
in FSL (Andersson and Sotiropoulos 2016; Jenkinson et al.
2012) were performed on dMRI data. Next, the model-free
generalized Q-sampling imaging (GQI) method (Yeh et al.
2010) in DSI Studio (Yeh et al. 2013) was adopted to calculate
spin distribution function (SDF), an orientation distribution
function of diffusing spins. The deterministic streamline track-
ing algorithm (Yeh et al. 2013) in DSI Studio was used to
reconstruct 4 x 10* fiber tracts for each subject using the de-
fault fiber tracking parameters (max turning angle: 60°,
streamline length: 30 mm-300 mm, step length: 1 mm, quanti-
tative anisotropy threshold: 0.2). A white matter cortical sur-
face was reconstructed based on the tissue-segmentation result
from T1-weighted MRI data via Freesurfer (Dale et al. 1999;
Fischl et al. 1999a, 2002). To transpose the surface from T1-
weighted MRI space to dMRI space, we firstly used a cascade
of the linear registration method, FLIRT (Jenkinson et al.
2002), and the nonlinear registration method, FNIRT
(Andersson et al. 2010; Jenkinson et al. 2012), to register
T1-weighted MRI to the dMRI FA map. Then, the linear
transformation and the nonlinear warp field were applied to
the surfaces via Connectome Workbench.'

Human task fMRI data in the HCP dataset have been
preprocessed by the minimal preprocessing pipelines
(Glasser et al. 2013) upon their release. The preprocessed

! https://www.humanconnectome.org/software/connectome-workbench

fMRI signals have been mapped to the standard grayordinate
surface space for each subject. The grayordinate surface was
registered to the warped T1-weighted white matter surface
(which has been warped to dMRI space in the previous step)
via surface registration in Freesurfer (Fischl et al. 1999b), such
that all data modalities for each human individual were in the
same space. More details about the fMRI signal preprocessing
are referred to (Glasser et al. 2013; Jiang et al. 2015).

Identification of 3-hinges

To automatically identify the locations of 3-hinges, we
adopted our recently developed pipeline (Chen et al. 2017).
To be self-contained, we present a summary of this pipeline,
which includes the following four key steps (Fig. 2):

1) Gyral altitude mapping: The gyral altitude was defined
as the movement of vertices from their original locations
to the “mid-surface”, which is a mid-line that separates
gyri from sulci (Fischl et al. 1999a). We mapped gyral
altitudes to surface vertices. The vertices that are above
the “mid-surface” have positive altitudes, and have nega-
tive values, otherwise (Fig. 2a).

2) Gyral crest segmentation: The watershed algorithm
(Bertrand 2005) was applied to the gyral altitude map to
progressively segment the gyral crests (regions above a
predefined altitude level) from sulcal basins (regions be-
low the level). In brief, the watershed algorithm ensures
the successful detection of gyral crest that separates shal-
low water sources (sulcal basins) but is below the given
altitude level (Fig. 2b). More details of watershed algo-
rithm are referred to (Chen et al. 2017).

3) Construction of tree graphs: Firstly, we performed dis-
tance transform to the gyral crest regions. Each vertex was
assigned a distance value, which was defined as the
movement from the vertex of interest to the borders be-
tween gyral crest regions and sulcal basins. The vertex
that is further from the border has a larger distance value.
Next, we used a tree marching algorithm on this distance
map to construct a tree structure (Fig. 2¢ and d). The root
of the tree was located at the gyral crest centers that have
the maximum distance values, and the branches and
leaves were gradually connected to other gyral crest ver-
tices following the descending gradients of the distance
map till the crest borders were reached.

4) Extraction of gyral crest lines and 3-hinges: We pruned
the redundant branches and preserved those located in the
crest centers. To this end, we found the path between a
leaf vertex and its nearest bifurcation vertex and deleted
all vertices on this path when the path length was shorter
than the predefined length threshold. The remaining main
trunks were the gyral crest lines (the thicken tubes in Fig.
2d). By taking these crest lines as a gyral network, we

@ Springer


https://www.humanconnectome.org/software/connectome-workbench

2516

Brain Imaging and Behavior (2020) 14:2512-2529

/" Gyral Altitude

/" Tree Marching I

\_ Graph Nodes )

>
eral Crest & 3—hing9

p

Tree Marching

Fig. 2 a White matter cortical surface mapped by gyral altitude map. Red
regions have high altitude while blue regions have low altitude; b
segmentation of gyral crests (white) from sulcal basins (labeled by differ-
ent colors); ¢ construction of tree structures on gyral crests (black curves);
d an magnification view of the tree structures on gyral crests. Sulcal
basins are color-coded in blue. Gyral crests are mapped with gyral

defined vertices as gyral hinges when their degrees are
more than 3. Three-hinge gyri, which have three arms,
are of major interest in this work (red dots in Fig. 2e
highlight their locations), because four-hinges are rarely
seen.

Graphic metrics on structural connective networks

Due to the inter-individual variations in terms of either struc-
tural connective patterns or cortical convolution patterns, we
applied the following graphic analyses on each subject sepa-
rately rather than on a group-mean network. To construct a
structural connective network, nodes were defined first.
Currently, we focused on cortico-cortical connectivities, and
thus parcellated the cortical surface to 1000 patches, with 500
on each hemisphere (Fig. 2f). These patches are of grossly

@ Springer

altitudes. Thick black curves are the main trunks while the thin ones are
branches; e gyral crest lines, the main trunks (black curves), and gyral
hinges (red dots) on gyral crests; f the entire cortices are parcellated to
1000 patches of equal area (500 for each hemisphere), which are used as
graph nodes for structural connective matrix

equal area and were used as the nodes for the network. The
connective strength between two given patches are defined as
the number of the deterministic streamline fibers that pass
both of them (Van Den Heuvel and Sporns 2011). The weights
do not need cross-subject normalization because the total fiber
number is the same (4 x 10%) for all subjects.

It is noted that these cortical patches, or nodes, were labeled
by the cortical convolution patterns. A patch, more than 50%
of which is covered by sulcal basins (color regions in Fig. 2e),
is defined as a sulcal patch. The remaining patches were de-
fined as gyral patches. Among these gyral patches, 3-hinge
patches were defined as those touched by 3-hinges (red dots in
Fig. 2e), leaving the rest ones as 2-hinge patches.

On this connective network, we computed a variety of nod-
al metrics, including degree, strength, betweenness, efficien-
cy, clustering coefficient and participation coefficient, as well
as global metrics, such as s-core. All metrics were computed
via Brain Connectome Toolkit (https:/sites.google.com/site/
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betnet/). Let G = (V, E) denote the structural network, where V
is the set of N cortical patches/nodes and F is the set of weight-
ed edges. Its adjacency matrix is denoted by A, where the
element a;; is 1 when there is a connection between nodes i
and j. Let W denote the weight matrix where wy; is the con-
nective strength between nodes 7 and ;.

The degree of node 7 is defined as the numbers of nodes
connected to it. It is given by the following equation:

di =Y (1)
Strength is defined as:
si= X0 agwy (2)

Betweenness is defined as:
o
bi= Y (3)
s#i#t Ost
where oy, is the total number of the shortest paths from node s
to node . o, is the number of these paths that travel through
node i.
Efficiency is given by the following equation:

2 heN, ji (Wijwih |:pjh (N l)} )
di(di—1)

e — (4)
where p;;(V;) is the length of the shortest path between j and /
that contains only neighbors of i.

Clustering coefficient is defined as (Onnela et al. 2005):

2 . A\

¢ = mzj,k (Wiinkai> (5)
where the W;; was scaled by the largest weight in the network,
Wy = wy/max(wy), and Wy is the product of the scaled
weights on the edges of triangles attached to the i node.

Participation coefficient is defined based on a given partition
of a network into modules. An optimal partition structure is a
network subdivision that maximizes the number of within-
module edges and minimizes the number of between-module
edges. The network partition method used in this work is re-
ferred to (Newman 2006; Reichardt and Bornholdt, 2006). It is
noted that the partition resolution is regulated by a parameter .
It was set as the default value (y=1) such that a moderate
partition resolution and the number of modules were automati-
cally chosen. We used m to denote a module and M to denote the
set of modules. Participation coefficient of node i is given by:

i =1L (di(m) /d;)? (6)

where d(m) is the number of connections between node i and
those in module m. Participation coefficient is usually used as a

metric to measure if a node is densely connected within a mod-
ule (provincial hub) or between modules (connector hub).
Because there is not a universal threshold to differ connector
hubs from provincial ones (it was suggested to be 0.5 in Van
Den Heuvel and Sporns 2011, but 0.3 in Sporns et al. 2007), we
only posit that a node will be more like a connector hubs if it has
a higher p; value.

S-core decomposition The s-core of a weighted graph is its
subgraph where all its connections possess a summed weight
equal to or higher than s (Van Den Heuvel and Sporns 2011).
The subgraph was obtained by iteratively pruning the edges
whose weights are lower than s. Using this method, core level
s can be assigned to a node if it is preserved after the s-level
pruning.

Nodal strength decomposition This decomposition was per-
formed by deleting the nodes whose strength are less than s at
s-level. By this way, densely self-connected high-degree
nodes are detected with the increasing of s-level.

For both decomposition methods, we firstly identified the
sub-network at a given s-level by their own definition. Then,
we calculated the number of the preserved nodes that belong
to a given convolution type (3-hinge or 2-hinge) and comput-
ed the ratio between the number of a convolution type and the
number of all preserved nodes. By this way, ratios for 3-hinges
and 2-hinges were obtained for a given s-level, and ratio
curves for 3-hinges and 2-hinges were obtained by increasing
the s-level. The decomposition and ratio curve generation
were separately performed on each subject and group-mean
ratio curves (with the cross-subject standard deviations at each
s-level) were presented.

Task-based functional network decomposition

In general, we performed dictionary learning method and
sparse representation of grayordinate-based whole brain func-
tional signals, such that a collection of dictionary components
was obtained for each subject and each task data (Lv et al.
2014, 2015; Jiang et al. 2015). Suppose a grayordinate surface
has n vertices. All their tfMRI signals were aggregated into a
signal matrix X=[x,,..., x,] € R'™", where ¢t is the tfMRI
signal time points and » is the number of tfMRI signals.
This matrix was factorized into an over-complete dictionary
matrix D =[d,,..., d;] € R"“* and a sparse coefficient weight
matrix o = [ay,..., a,] € R¥*" via the online dictionary
learning algorithm (Mairal et al. 2010), where £ is the dictio-
nary component size. k was predefined as 400 in our work as
that in our previous works (Lv et al. 2014, 2015; Jiang et al.
2015). An original tfMRI signal x; is approximated as x;=
D x o;. In fact, each dictionary component d; is a time series
that represents the activity of the i functional network, and
the corresponding i’ row of a can be mapped to the
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grayordinate surface and represents the spatial pattern of this
functional work. It is noted that this method was executed on
the whole-brain fMRI signals, such that the obtained dictio-
nary components, or functional networks, reflect the brain
activity at a global scale.

Because the i” column of ¢ corresponds to the i vertex on
the cortical surface, the values in this vector represent the
degrees to which the i vertex is involved in the & functional
networks. We counted the number of non-zero elements in «;
(lax;llp) and used it as the number of functional networks that
the i vertex was involved in. A larger number of non-zero
elements for vertex 7 indicates the vertex is engaged with more
global functional networks.

Statistics

We investigated the differences between 3-hinges and 2-
hinges in all structural graphic metrics and functional metrics.
Because all metrics were separately computed for each sub-
ject, they were normalized within each subject via the z-score
transformation. The values for a metric were separated to the
3-hinge group and the 2-hinge group over all subjects within a
dataset. The #-test (two-sample) was performed to test if the
two groups had equal mean values (the significance threshold
of o =0.05, uncorrected). To test if the difference between the
two groups was produced by chance, we conducted permuta-
tion tests (Bassett et al. 2008). In a permutation test, a gyral
patch was randomly assigned to either the pseudo ‘3-hinge’
group or the 2-hinge’ group. The sizes of the two pseudo
groups were kept the same as the original ones in each subject.
The between-group difference for each metric was computed
on these pseudo groups. The between-group differences were
defined as: 3-hinge minus 2-hinge, if 3-hinges have a greater
mean than 2-hinges; 2-hinge minus 3-hinge, if 2-hinges have a
greater mean than 3-hinges. This permutation test was repeat-
ed for 1000 times to sample the null distribution (the null
hypothesis is that the observed h3 vs. h2 differences were
determined by chance) for a metric. Finally, a p value was
assigned to the metric by computing the proportion of the
permutation tests, whose between-group-difference values
were smaller than those on real brains (for scenarios where
3-hinges have a greater mean than 2-hinges), or greater than
those on real brains (for scenarios where 2-hinges have a
greater mean than 3-hinges). A significance threshold of o =
0.05 (uncorrected) was used.

To compare the metrics across species, another round of z-
score transformation was performed across subjects within
each species. The -tests were conducted for 3-hinges and 2-
hinges between human-chimpanzee, chimpanzee-macaque
and human-macaque pairs under the null hypotheses that they
have no cross-species difference in those metrics.

For the functional data of human subjects, we compared the
mean numbers of functional networks that 3-hinges and 2-
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hinges are involved in. The two-sample #-test was used to
investigate if the numbers are different between 3-hinges
and 2-hinges (the null hypothesis is that 3-hinges and 2-
hinges are involved in the same number of functional net-
works on average).

Results

Graphic metrics of 3-hinges in cortico-cortical
connective networks of human brains

Structural cortico-cortical connective networks

On average, 267.02 +28.12 3-hinges were detected on a hu-
man brain. Figure 3a gives an intuitive impression of the spa-
tial distribution of the nodal metrics of the structural network.
Locations of 3-hinge patches are highlighted by bubbles.
Numeric comparisons between 3-hinges and 2-hinges are re-
ported in Table 1. It is found that 3-hinges surpass 2-hinges in
degree, strength, betweenness and participation while being
surpassed by 2-hinges in efficiency and clustering coefficient.
The significance of the difference between the 43-h2 pair for
each metric is demonstrated by the low p value via the two-
sample #-test. It is noted that participation coefficient was com-
puted based on a network module partition. The number of
modules was automatically determined for each subject, re-
spectively. Therefore, the module numbers are slightly differ-
ent (10.42 +£2.31) across subjects. But the major modules are
consistent across subjects with regard to their spatial distribu-
tion (Fig. S1).

We conducted the permutation tests for each metric. The
p values were reported in the bottom row in Table 1. In gen-
eral, all p-values are below 0.05, suggesting the graphic metric
difference between 3-hinges and 2-hinges was hardly pro-
duced by chance.

In these results, 3-hinges surpass 2-hinges in degree,
strength and betweenness, suggesting that 3-hinges could be-
have relatively more like hubs than 2-hinges. On the other
hand, 3-hinges have lower efficiency and clustering coeffi-
cient. These results indicate that the neighboring nodes of 3-
hinges are not heavily connected to each other, making 3-
hinges possible higher-level mediators (not directly linked
mediators) of network modules. This hypothesis gains further
supports from the observation that 3-hinges have higher par-
ticipation values, suggesting that 3-hinges could be connector
hubs (inter-module) rather than provincial ones (intra-mod-
ule). Fig. S2 provides a more intuitive illustration for the com-
parison between 3-hinges and 2-hinges in participation
coefficients.

In addition, we investigated the role that 3-hinges play in a
network at a global scale via the s-core and the nodal strength
decomposition methods. Figure 3b presents the mean ratios of
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<« Fig. 3 a Graphic metrics of structural connective network mapped to
white matter cortical surface of one randomly selected human subject.
For each feature, red color indicates high value and white indicates low
value. The color bar for each map was individually tuned for better result
visualization. Yellow bubbles highlight the locations of 3-hinges.
Participation coefficients were computed based on 11 communities. b
Ratios of numbers of preserved 3-hinges and 2-hinges at s-core levels,
at which edges with strength less than s were deleted. ¢ Ratios of numbers
of preserved 3-hinges and 2-hinges at a nodal strength level, at which
nodes with strength less than s were deleted. The values were averaged
over subjects and the bars indicate the standard deviations. Arrow heads
highlight the crossings of the two curves. Cortical parcellations at the
resolution of 1000 patches were used to construct the structural connec-
tive networks

the 3-hinges and 2-hinges preserved at each s-core level,
which were averaged over subjects. The initial ratios (s-
core level=1) are the intact ratios of 3-hinges and 2-
hinges (sum of the two ratios is not equal to 1 because
sulcal patches are not shown). The ratio curve of 3-
hinges rises with the increase of s-core level. This trend
is accompanied by a slow decline of the 2-hinge curve,
letting 3-hinge ratio surpass it at higher levels (the black
arrow head). Such a crossing is found in 3-hinge and 2-
hinge ratio curves for the nodal strength decomposition
as well (Fig. 3c). In a word, higher-level network cores
tend to have more 3-hinges.

To test the validity of the result, we conducted a
1000-times permutation test by shuffling the node la-
bels. In each permutation test, the ratio curves were
produced based on the new node labels. We recorded
the times that the 3-hinge curve surpasses the 2-hinge
curve in these 1000 tests. These 1000 test results gave
the null distribution, in which the chance that 3-hinge
curve surpass the 2-hinge curve was far below 0.01 for
both decomposition methods, demonstrating the observa-
tion in Fig. 3b and ¢ was not produced by chance.

Validation from fMRI data analyses

These structure-based results in the previous section gain sup-
ports from functional analyses. For each cortical surface ver-
tex, we have its convolution pattern label as well as the num-
bers of functional networks that the vertex was involved in.
Therefore, we could quantitatively compare the functional
network involvement between 3-hinges and 2-hinges. The
mean functional network numbers (+ standard deviations)
for each convolution pattern averaged over cortices and sub-
jects are shown in the left section of Table 2. It is noted that
these analyses were separately performed on each task, such
that the metric values are at different scales and not directly
comparable across tasks. It is observed that 3-hinges are in-
volved in more networks that 2-hinges. The significance of the
difference was demonstrated by low p-values of #-tests report-
ed in the right section of Table 2. These results suggest that 3-
hinges might be more like mediators among more functional
networks in contrast to 2-hinges, as is consistent with the
implication from the structural results.

Reproducibility on macaque and chimpanzee brains

In this section, we present the comparison between 3-hinge
and 2-hinge with terms of graphic metrics on structural
cortico-cortical networks. On average, 156.94 +£29.00 and
120.65+ 15.64 3-hinges were detected on chimpanzee and
macaque brains (267.02 £28.12 on human brains). White
matter surfaces with identified 3-hinges on the three species
can be found in Fig. S3. We parcellated the cortical surface to
1000 cortical patches for the two species. The patches were
labeled as either ‘3-hinge’, ‘2-hinge’ or ‘sulcus’. The numbers
of the streamline fibers connecting among 3-hinges, 2-hinges
and the non-cortical regions (rnon for short) are reported in
Table 3. It is noted that the fiber numbers in this table were
corrected by the total areas of the connected cortical patches

Table 1 Graphic metrics

comparison among cortical DEG STR BET EFF CLU PAR
folding patterns at the resolution
of 1000 cortical patches on Avg. + Std. h3  0.67+120 0.70+130 044+151 0.09+0.81 0.07+0.77 0.20+0.96
human brains h2  026+0.93 020+094 0.12+097 0.11+£090 0.11£0.89 0.12+£0.98
Between-Group ~ h3 vs. h2 < 0.001 < 0.001 < 0.001 0.02 <0.001
p-values
< 0.001
Permutation Tests 0.029 0.040 0.05 <0.01 <0.01 <0.01

The first two rows: The mean values and standard deviations for each folding pattern. The values are averaged
over subjects and cortices. h3: 3-hinge and h2: 2-hinge. The third row: p-values of two sample #-tests for the
difference between folding patterns. The null hypothesis is that 3-hinges and 2-hinges have the same mean metric.
The bottom row: p-values of permutation tests. The null hypothesis is that the observed h3 vs. h2 differences
(either h3 >h2 or h3 <h2) were determined by chance. It is noted that the metrics were normalized via z-score

transformation within each subject

DEG degree, STR strength, BET betweenness, EFF efficiency, CLU clustering coefficiency, PAR participation
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Table 2  Left: The average numbers (+ standard deviations) of
functional networks that a cortical folding pattern (h3: 3-hinge and h2:
2-hinge) is involved in during the task performance; Right: P values of
two sample #-tests for the differences between the folding patterns in

terms of the numbers of functional networks.

Avg. £ Std. P-value

h3 h2 h3 vs. h2
EMO 83.20+8.83 81.98+13.71 <0.001
LAN 142.07+11.47 140.25+£21.47 < 0.001
MOT 129.23+£11.68 127.78 £20.07 <0.001
SOC 126.09+10.74 124.60+19.32 < 0.001
WM 178.42+13.09 176.15+£26.27 < 0.001
REL 107.99+£10.04 106.56+17.02 < 0.001
GAM 117.11£10.42 115.28 +£18.13 <0.001

Altogether, 400 functional networks were decomposed from all fMRI
signals within each task. The null hypothesis is that 3-hinges and 2-
hinges are involved in the same number of functional networks on aver-
age. The analyses were separately conducted on each task

EMO emotion, LAN language, MOT motor, SOC social, WM working
memory, REL relational, GAM gambling

and the total fiber number on an individual is 4 x 10%.
Therefore, the numbers in this table are equivalent to the
corrected connective strength among the three regions. It is
seen that the 3-hinges have the strongest connections to non-
cortical regions for all the three species. The 4#3-h2 connec-
tions are the strongest for all as well. The 43-A3, h3-h2 and h3-
non connection numbers increase from macaque to human.

Table 3  Average numbers of streamline fibers connecting non-cortical
regions (non) and the cortices of two cortical folding patterns: 3-hinges
(h3) and 2-hinges (h2)

h3 h2 non

Human

h3 7.49+0.78 11.59+0.75 2.14+043

h2 11.59+0.75 7.16+0.47 1.60+0.34

non 2.144+0.43 1.60+0.34 0.87+0.31
Chimpanzee

h3 4.47+1.30 8.14+1.67 2.51+0.80

h2 8.14+1.67 5.10£0.97 2.29+0.55

non 2.51+0.80 2.29+0.55 1.12+0.36
Macaque

h3 4.85+0.55 6.75+0.86 4.01+1.12

h2 6.75+0.86 3.28+0.95 3.28+0.93

non 4.01+1.12 3.28+0.83 291+1.22

The numbers were corrected by connected cortical areas and were aver-
aged over subjects within each species. The total number of streamline
fibers for each subject is 4 x 10*

In Fig. 4a, we present the spatial distribution of the nodal
metrics of the structural network by mapping the metrics to
white matter surfaces. Local maximums of these metrics are
frequently found in the locations where 3-hinges reside. These
observations were further confirmed by statistical analyses
shown in Fig. 4b, where the discrepancies between /43 and
h2 are significant (low p-values of the two-sample #-tests)
within the two species. There are two exceptions: betweenness
on macaque brains and clustering coefficient on chimpanzee
brains. Similar to experiments on human brains, random per-
mutation tests were also conducted. All p-values were below
0.05, confirming that the difference between 3-hinges and 2-
hinges on chimpanzee and macaque brains was not produced
by chance. The permutation tests were not performed on the
two exceptions mentioned above. It is noted that the 43-A2
contrast in efficiency and clustering coefficient between these
two species does not reproduce those on human. On these two
species, 3-hinges exhibit higher values in these two metrics,
suggesting that their 3-hinges have more direct connections to
densely self-connected modules.

We conducted a comparative study among the three
species to investigate that if the contrast between 3-
hinges and 2-hinges is a simple replication from macaque
brains to human brains or is different across species. It is
noted that the cross-subject z-score transformation was
performed for the metrics within each species. The mean
values (+ standard deviations) for 3-hinges and 2-hinges
averaged over subjects within each species are reported in
the 1st section of Table 4. We conducted #-tests (two-tail)
between species pairs for each of the convolution patterns
to see if the metrics were significantly different across
species. The p-values are reported in the 2nd section of
Table 4. The metric values decrease from human brains to
macaque brains for both 3-hinges and 2-hinges in degree,
strength, betweenness and participation, while increasing
in efficiency and clustering coefficient. The significance
of the cross-species difference was confirmed by low p-
values for most #-tests. Insignificant difference was mostly
found between chimpanzee and macaque (bold type).

We also performed analyses on network cores for the two
species. In general, it is found in Fig. 5 that the network core
recruits increasingly more 3-hinges at higher core levels on the
two species. However, unlike the result on human brains that
3-hinge number surpasses that of 2-hinge at higher core levels
(black arrow heads in Fig. 3b and c), the ratio curves don’t
cross each other on chimpanzee brains and macaque brains.
On chimpanzee brains, the two curves keep getting closer and
the 3-hinge ratio approaches 0.3 at the curve tails for both
decomposition methods (which is around 0.6 on human).
These two ratio curves, however, appear to be parallel lines
on macaque brains, and the 3-hinge ratio slowly approaches
0.2. The different trends of the ratio curves on the three species
suggest that more 3-hinges are involved in the high-level core
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of structural cortico-cortical connective networks on higher
species.

Discussion and conclusion

In this work, we subdivide cortical gyrus to 3-hinges and
ordinary gyri (2-hinges) according to their folding morpholo-
gy. The subdivision could possibly reflect and quantify the
intrinsic difference between these cortical folding patterns.
The roles different folding patterns play in the brain networks
are the major focus of this work.

In general, we found that 3-hinges possess higher degrees,
strengths and betweennesses than 2-hinges on human brains.
It has been suggested in previous studies that gyri could serve
as cortical hubs in contrast to sulci (Deng et al. 2014; Jiang
et al. 2015). The difference between 3-hinges and 2-hinges in
this work suggests that gyri could be sub-divided and there
could be a hierarchical organization within the gyral system.
The higher participation coefficients of 3-hinges, associated
with their higher degrees, strengths and betweennesses, sug-
gest that 3-hinges could be more like connector hubs between
cortical communities rather than provincial hubs with commu-
nities. Lower efficiency values and clustering coefficients of
3-hinges support this hypothesis by showing that the neigh-
boring nodes of 3-hinges are more sparsely connected. At a
more global scale, the core of the structural network could
include more 3-hinges than 2-hinges, and such a discrepancy
was found to grow with the increasing core-level. These
structure-based results were well supported by our task func-
tional MRI data analysis, in which we found that 3-hinges
were simultaneously involved in more global functional net-
works than 2-hinges.

These abovementioned local-scale differences between 3-
hinges and 2-hinges are reproduced on both chimpanzee
brains and macaque brains. However, 3-hinges on these two
species do not behave like connector hubs as pronounced as
those on human brains, due to their larger efficiency, cluster-
ing coefficient and lower proportions in higher-level cores.
The cross-species consistency and variability are discussed
later.

Relation between cortical folding, structure
and function

The relation between cortical convolution, anatomical con-
nections and brain function have been investigated for de-
cades (Connolly 1950.; Richman et al. 1975; Rakic 1984,
Van Essen 1997; Hilgetag and Barbas 2005). The roles of
different cortical folding patterns in cortico-cortical networks
have to be associated with their architectonics. In previous
studies that focused on gyrus-sulcus pairs, it has been sug-
gested that gyri differ from sulci in neuron number and
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dendrite morphology (Hilgetag and Barbas 2005). These
micro-scale differences could provide an intrinsic interpreta-
tion for the macro-scale difference between gyri and sulci. For
example, thicker cortices of gyri may be related to more neu-
rons in them (Hilgetag and Barbas 2005). Along this line, we
might posit that 3-hinges have more neurons and that the
distribution and morphology of dendrites and axons could
also be different between 3-hinges and ordinary gyri.

At a macro-scale, cortical convolution patterns were dem-
onstrated to be predictive of cortical regions of different cyto-
architectures (Fischl et al. 2007) in primary cortex. The con-
cept of structural ‘connectional fingerprint’ was proposed and
has been demonstrated to be unique for each cortical area and
underlies the associated ‘functional fingerprint’ (Passingham
et al. 2002). Based on these previous conclusions and our
findings, we could intuitively posit that the cortical folding
patterns are correlated to the brain functions. However, at
the resolution of gross brain areas (the leftmost panel in
Fig. 6), such as BAs, folding patterns seem to be too variable
to be competent for a function predictor (Fischl et al. 2007).
This was demonstrated by relatively poor performance by
using stereotaxic coordinate system (Talairach et al. 1967,
Talairach and Tournoux 1988) and cortical morphological de-
scriptors, such as the gyrification index (Zilles et al. 1997,
Schaer et al. 2008), as predictors of cortical areas of higher
brain functions. While the reliability of cross-subject analyses
is subject to the precision of brain alignment algorithms, a lack
of a cortical folding reference system could be another critical
reason for the poor performance. Without it, these cortical
morphological descriptors could only provide a gross mea-
surement for a large cortical patch.

In contrast to cortical-area-based analyses, the cortex was
usually divided to gyri and sulci. This division provides a
binary cortical folding reference system, based on which a
cortical area can be decomposed to two basic units (the
middle panel of Fig. 6). The effectiveness of this gyrus-
sulcus reference system was demonstrated by the different
cyto- and myelo- architectures between the two basic units
(Connolly 1950; Richman et al. 1975; Rakic 1984; Van
Essen 1997; Hilgetag and Barbas 2005). Also, there is a con-
sensus that different functional roles could be played by gyri
and sulci, though it is still controversial that how the patterns
of architectonics are different between gyri and sulci (Van
Essen 1997; Xu et al. 2010; Nie et al. 2012; Chen et al.
2013; Budde and Annese 2013; Zhang et al. 2014) and how
to infer neuronal and cortical functions from the different pat-
terns (Van Essen 1997; Deng et al. 2014; Jiang et al. 2015).
Therefore, a better understanding of how a cortical area is
organized within this gyrus-sulcus reference system might
help accurately define a cortical area on different individuals
and to make a comparison among them. This individualized
analysis might not be subject to brain alignment accuracy, and
thus might facilitate the cross-subject comparison, and further
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<« Fig. 4 a Graphic metrics of structural connective networks mapped to
white matter cortical surfaces of the two primates (macaque and
chimpanzee). Left hemispheres were used in this illustration, and right
hemispheres were found in Fig. S4. For each metric, red color indicates
high value and white indicates low value. The color bar for each map was
individually tuned for better result visualization. Thus, the color maps in
this figure are not comparable across species. For each species, one
subject is randomly selected as the illustrative example. Yellow bubbles
highlight the locations of 3-hinges. Cortical parcellations at the resolution
of 500 patches on each hemisphere were used to construct the structural
connective networks. b Mean nodal graphic metrics comparison among
convolution patterns within species. The metrics were normalized via z-
score transformation and the mean values were averaged over subjects. *
indicates p value of t-test is equal or smaller than 0.05. ** indicates p
value of #test is equal or smaller than 0.01. *** indicates p value of #test
is equal or smaller than 0.001. Abbreviations: M: macaque, C:
chimpanzee

enhance the reliability of the structure-function relation in-
ferred from them. However, the principle that how a cortical
area is organized by gyri and sulci is not clear by far. In our
previous studies (Deng et al. 2014; Jiang et al. 2015), gyri
were suggested to serve more like hubs than sulci in cortico-
cortical networks. This conclusion was drawn based on a
whole-brain-scale gyrus-sulcus contrast. But when the cortex
was parcellated, this gyrus-sulcus contrast was not always as
pronounced on one cortical region as the one on another
(Jiang et al. 2015). This observation suggests that one gyrus-
sulcus organization principle on a cortical region is not guar-
anteed to apply to another. Another possible reason is that the
gyrus-sulcus reference system might not be accurate and basic
enough. They can be further decomposed to more basic fold-
ing units (The rightmost panel in Fig. 6) with a finer

granularity. In many previous studies, sulcal pits, the locally
deepest regions on sulcal regions, were demonstrated to be
more consistent across subjects than other sulcal regions and
to provide an organizing framework for cortical folding
(Lohmann et al. 2007; Auzias et al. 2015; Im and Grant
2019). Similar observations were found in our gyrus-
centered studies including this work. The way that 3-hinges
are different from other gyri seems similar to that sulcal pits
are from other sulci. In fact, we have manually identified a
group of 3-hinges that possess cross-subject correspondences
(Li et al. 2017). These correspondences can even be
established across species (Li et al. 2017). Therefore, it is
reasonable to expect that 3-hinges provide an organizing
framework for the gyrus system (Chen et al. 2017), as what
was suggested for sulcal pits in Lohmann et al. 2007. In this
respect, we could posit that the gyrus-sulcus reference system
is sub-dividable to a quaternary system as illustrated in Fig. 6
(the rightmost panel). A hierarchy could thus be hypothesized
for cortical folding patterns, where sulcal pits and 3-hinges
demonstrate higher cross-subject consistency than the other
two units: ordinary sulci and ordinary gyri. In this hierarchy,
3-hinges have also been demonstrated in this work to serve
more like connector hubs while the ordinary gyri serve more
like provincial hubs, and it is expected that sulcal pits and
ordinary sulci find their different positions in the network
hierarchy as well. It is hoped that this quaternary system pro-
vides a much finer and more accurate reference, such that
more profound clues can be found for the principle of cortical
organizations and the structure-function relations. With no
doubt, a further sub-division on this quaternary system can

Table4  Section 1: The mean graphic metrics (+ standard deviations) of 3-hinges and 2-hinges; Section 2: P-values of two sample #-tests for the graphic

metric differences between species on each cortical folding pattern

DEG STR BET EFF CLU PAR
Section 1
h3 H 0.55+1.20 0.59+1.28 0.37+1.44 —0.06+0.83 —-0.05+0.77 0.18+0.97
C 0.46+1.26 0.53+1.43 0.34+135 0.19+0.98 0.04+0.89 0.10+0.96
M 0.14+0.98 0.18+1.14 0.07+0.91 021+1.10 0.15+1.04 0.05+0.99
h2 H 0.14+0.93 0.10+0.92 0.06+0.92 —-0.03£0.92 —0.01+0.89 0.12+0.98
C 0.07+1.02 0.07+1.02 0.06+1.02 0.06+1.03 0.03+1.01 0.02+0.98
M 0.08+1.04 0.09+1.12 0.05+1.04 0.09+1.05 0.06+1.03 —-0.02+1.00
Section 2
h3 Hvs. C 420%1073 0.036 0.45 7.70 % 107! 9.83x10°° 3.77x10°°
Hvs. M 154 %1072 3.11x10°2° 8.28x 1010 571%x107% 1.84x10°1 2.78x 1012
Cvs.M 1.99x 101 240x 10710 3.14x10°8 0.86 538x107° 339x% 102
h2 Hvs. C 482x10°¢ 0.05 0.89 1.90x 10" 1.51x107° 3.40%10°8
Hvs. M 1.70x 1073 0.83 0.80 2.69x 1071 6.42x107° 3.65% 10712
Cvs. M 0.80 0.34 0.84 0.29 0.26 4921072

The metrics were z-score transformed across subjects within each species.

Abbreviations: h3 3-hinge, h2 2-hinge, H human, C chimpanzee, M macaque, DEG degree, STR strength, BET betweenness, EFF efficiency, CLU
clustering coefficient, PAR participation
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Fig. 5 Network core studies on chimpanzee and macaque brains. Left:
Ratios of numbers of preserved 3-hinges and 2-hinges at an s-core level,
at which edges with strength less than s were deleted. Right: Ratios of

be performed and the resolution can definitely be pushed to
even finer levels.

Parsimonious principle of wiring cost in brain
development

Cortical folding patterns are the mixed results of multiple devel-
opmental processes, such as neuron migration, neuron prolifera-
tion, axonal projection and pruning. Therefore, gyro-sulcal pat-
terns’ anatomical and functional roles were usually associated
with gyro-sulcal patterns’ developmental mechanisms. For ex-
ample, in Van Essen 1997, by assuming axons are under tension,
they asserted that axons pull the cortical regions with denser
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numbers of preserved 3-hinges and 2-hinges at a nodal strength level, at
which nodes with strength less than s were deleted. The values were
averaged over subjects and the bars indicate the standard deviations

connections closer to each other, resulting in convex and concave
folding patterns. More importantly, by pulling the cortical regions
closer to each other, these shortened axons could increase the
information transit efficacy. This hypothesis suggested an ana-
tomical wiring diagram that was controlled by parsimonious
principle of wiring cost (Ramon y Cajal 1995; Kaiser and
Hilgetag 2004; Kaiser and Hilgetag 2006; Garcia-Lopez et al.
2010; Rubinov et al. 2015). Another group of studies found that
axons are radially distributed in the convex folds (gyri) while
circumferentially course along the deep boundaries of the con-
cave folds (sulci) (Xu et al. 2010; Nie et al. 2012; Budde and
Annese 2013; Chen et al. 2013; Zhang et al. 2014). This organi-
zation is seemingly irreconcilable with the parsimonious
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Fig. 6 The approaches of cortical folding analyses at different scales. The dashed frame highlights where this work belongs. Interpretations are found in

the texts
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principle of wiring cost, as the densely connected regions (gyri)
are far from each other. But the cortical areas are not connected
with equal chance. For example, small-world and rich-club fea-
tures have been discovered on the brain wiring diagram (a full
cover of review is found in Bullmore and Sporns 2012) to em-
phasize the extra importance of some particular regions, which are
usually defined as hubs with higher nodal degrees and comprise a
densely self-connected core in the network. In this work, 3-hinges
only take up a small portion of the gyral system, but possess an
unmatched large portion of the total structural connective strengths
(Figs. 3b and c, 5 and Fig.S5). This discrepancy is in line with the
organization principle in small-world and rich-club networks that
large network resources concentrate on only a small portion of
nodes (Harriger et al, 2012). Therefore, in this group of theories, it
is inferred that the information transit efficacy could be maximized
by optimizing the cortical network organization in a hierarchical
manner at a more global scale rather than by locally shrinking the
axon length between only two areas. Finally, with regard to our
hypothesized quaternary reference system (the rightmost panel in
Fig. 6), the spatially consistent distributions of sulcal pits across
individuals have already been reported to be present even at birth
and remain stable during the early development phase (Meng et al.
2014; Im and Grant 2019). 3-hinges, as folding patterns coupled
with sulcal pits, are expected to appear early and remain stable as
well. The brain seems to give priority to develop a minority of
functionally more important cortical regions.

Cross-species comparison and abnormality

In general, the cross-species difference is more significant for
3-hinges (Table 4) and is less significant for 2-hinges especial-
ly between chimpanzee and macaque. The higher significance
in 3-hinge might suggest that the differentiation on the higher-
order hubs (3-hinges, more like connector hubs) is becoming
pronounced across species, while the function of the second-
ary hubs (2-hinges, more like provincial hubs) could be sim-
ilar. The growth in absolute numbers of 3-hinges from ma-
caque to human implies the need for more information gath-
ering and distributing centers to deal with more advanced
tasks. The growth in 3-hinges’ graphic metrics from macaque
to human (Table 4, except efficiency and clustering
coefficient) implies the upgrading competence of 3-hinges
which could handle interactions of more sub-networks on
higher order species. For example, by comparing the regions
with peak graphic metric values across species in Figs. 3a and
4a (note that the maps are not comparable across species be-
cause of different value scales, but the spatial distribution of
peak-value regions are comparable), we can observe a pro-
gressive extension of peak values to temporal, and parietal
association cortical areas, which are the phylogenetically
late-developing areas and correspond to the human-specific
elaboration of cognitive functions (Goldman-Rakic 1988;
Kaas 2006; Rakic 2009; Smaers et al. 2011). The participation

@ Springer

coefficients of 3-hinges are higher than 2-hinges on all spe-
cies, suggesting that the roles of 3-hinges as connector hubs
could be preserved across species. However, the inverse h3-h2
contrast in efficiency and clustering coefficient was found
between macaque/chimpanzee and human. A possible inter-
pretation is that connector hubs on human brains could be
organized in a hierarchical manner. Some connector hubs
could be directly linked to modules such that they have higher
efficiency values and clustering coefficients. These connector
hubs could be the primary ones. For those having low effi-
ciency and clustering coefficient (that is, their direct neighbors
are sparsely connected), they could be secondary connector
hubs that directly link the primary connectors (primary con-
nector hubs could be sparsely connected within themselves).

Since brains within the same mammalian order (such as pri-
mates) become more convoluted as a function of mass, it is not
surprising that 3-hinges will be more common in humans than in
chimpanzees, and more common in chimpanzees than in ma-
caques. However, the different cortical areas do not uniformly
expand as a function of their size. Some regions, such as the
superior temporal gyrus, ventrolateral prefrontal cortex and ante-
rior cingulate cortex, expand far more steeply than, for example,
the inferior temporal and parahippocampal regions (e.g. Chaplin
etal. 2013). If the 3-hinges were connectivity hubs that correlate
with the degree of behavioral complexity, one would expect that
3-hinges would be more common in such regions which are
particularly distinctive in human brains. In fact, 3-hinges are
not uniformly distributed across the brains (Zhang et al. 2018).
For example, the frontal lobe of human has 37.78 £0.51% of
cortical areas but 38.32+2.98% of 3-hinges (Fig. S5). In con-
trast, the frontal lobe of macaque has 29.07 = 1.11% of cortical
areas but 28.92 +0.92% of 3-hinges. Such a discrepancy can be
found on all the other lobes and becomes larger from human to
macaque.

Finally, associating the anatomical and functional networks
with cortical folding patterns could also be helpful to study
brain abnormalities and lesions. Many brain diseases are ac-
companied by abnormal cortical folding patterns (Thompson
et al. 2004; Nordahl et al. 2007). If different folding patterns
play different roles in brain networks, the anatomic locations
of abnormalities and lesions will induce different levels of
brain disorders. For example, abnormalities or lesions on 3-
hinges could have a higher change to injure hubs, which could
induce malfunction of distributed areas rather than an isolated
one (Liu et al. 2008; Lynall et al. 2010; Fornito et al. 2015).

Limitations

The observation and implication of this work are largely based
on dMRI datasets. The accuracy of fiber orientation estimation
from dMRI at the interface of white matter and gray matter
could be biased by the curvedness of cortical surface, known
as ‘gyral bias’, making it difficult to track streamlines
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penetrating the boundaries between gray matters and white
matters at the sulcal regions. Therefore, we limit our interest
in the folding patterns within the gyral regions to circumvent
the “unfair’ and ‘biased’ comparative results. Even so, the
results could be biased due to other known limitations of
dMRI. For example, the low spatial resolution results in un-
certainty in voxels where fiber fanning, crossing and kissing
are pronounced. Spurious pathways could be estimated, be-
cause orientation models and tractography algorithms are sen-
sitive to parameters and noises. Also, it is incapable of identi-
fying the short-range axonal pathways such as those within
the cortex and those in superficial regions of white matters
(Reveley et al. 2015). Therefore, the results and hypotheses
in this work need evaluations by means of more ‘direct’ but
invasive techniques, such as histology and tract-tracing in an-
imal models. For instance, since the 3- and 2- hinges exist in
macaque brains, we could examine if different numbers of
labelled neurons after retrograde injections are observed in
these macroscopic structures. These nontrivial future en-
deavors will shed more light to tackle the aforementioned
imaging issues. Finally, to estimate functional networks, we
adopted our earlier home-made method (Jiang et al. 2015)
which is based on dictionary learning and sparse representa-
tion. This method is easy to be applied on other datasets. The
inferred functional networks are easy to interpret. However,
the model is shallow, making the inferred networks may not
be as faithful as those inferred from deep models. We believe
that many promising deep-learning-based methods (Cui et al.
2018; Zhao et al. 2018; Dong et al. 2019) deserve more
efforts.
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