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Abstract

More than a year since the appearance of Severe Acute Respiratory Syndrome Coronavirus

2 (SARS-CoV-2), many questions about the disease COVID-19 have been answered; how-

ever, many more remain poorly understood. Although the situation continues to evolve, it is

crucial to understand what factors may be driving transmission through different popula-

tions, both for potential future waves, as well as the implications for future pandemics. In this

report, we compiled a database of more than 28 potentially explanatory variables for each of

the 50 U.S. states through early May 2020. Using a combination of traditional statistical and

modern machine learning approaches, we identified those variables that were the most sta-

tistically significant, and, those that were the most important. These variables were chosen

to be fiduciaries of a range of possible drivers for COVID-19 deaths in the USA. We found

that population-weighted population density (PWPD), some “stay at home” metrics, monthly

temperature and precipitation, race/ethnicity, and chronic low-respiratory death rate, were

all statistically significant. Of these, PWPD and mobility metrics dominated. This suggests

that the biggest impact on COVID-19 deaths was, at least initially, a function of where you

lived, and not what you did. However, clearly, increasing social distancing has the net effect

of (at least temporarily) reducing the effective PWPD. Our results strongly support the idea

that the loosening of “lock-down” orders should be tailored to the local PWPD. In contrast to

these variables, while still statistically significant, race/ethnicity, health, and climate effects

could only account for a few percent of the variability in deaths. Where associations were

anticipated but were not found, we discuss how limitations in the parameters chosen may

mask a contribution that might otherwise be present.

Introduction

Following the first signs of its presence in December 2019 [1], COVID-19 has rapidly spread

across the world, impacting almost every country in its wake [2]. Now, more than a year later,

while many facets of transmission are better understood, many others remain poorly known

(e.g., [3–6]) Its impact has been markedly different in different locations, a consequence of fac-

tors that remain actively debated. We can categorize these factors as follows. First, imposed

societal interventions, in the form of social distancing measures (e.g., “shelter in place” orders
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[7], self-isolation [8], school closures [9], etc.). Second, demographic differences in the popula-

tion including age distribution [10], health [11], gender [12], and race [13] of the populations.

Third, climatic variability (e.g., temperature, precipitation, or humidity variations [14]), and

spatial heterogeneity in terms of the density of people that a person is typically exposed to [15].

Fourth, environmental variability such as pollution [16]. Fifth, virus connectivity factors, such

as the likelihood that the disease will be imported into an area from outside [17]. These are not

mutually exclusive categories, and, indeed, we would anticipate a number of confounding vari-

ables amongst them.

Our objective in this study is to assess which of these explanatory (independent) variables

are clearly important for predicting COVID-19 deaths, primarily to aid in the development of

mechanistic model refinements [18–22]. Mechanistic models, as opposed to statistical or

machine-learning models are typically developed by incorporating the minimum number of

underlying processes necessary to describe the observations sufficiently well to answer specific

questions. The types of questions being asked about COVID-19 include, but are not limited to:

What impact will interventions have on the trajectory of the disease? Will weather conditions

cause the disease to (at least temporarily) abate/increase as we approach the northern summer/

winter? Which locations are likely to suffer the most severe outcomes? Which populations will

likely fair better, and which will fair worse? A crucial step in answering these questions using

models, then, is to understand what factors appear to matter.

Methodology

Research design

We developed an analytical, observationally based study by assembling a dataset of parameters

that capture, at least in principle, factors likely to modulate the number of COVID-19 deaths.

The primary criteria for inclusion were that the data should broadly describe behaviour, age,

health, race, climate, and spatial demographics (population density), all of which have been

discussed as contributory factors for respiratory diseases. The data, however, were illustrative

rather than exhaustive. Potential datasets were excluded if not publicly or readily available.

We focus on the initial rise in cases and deaths from the beginning of March 2020 through

mid-May 2020. During this period, populations were essentially entirely susceptible to the dis-

ease, and complications arising from the effects or interactions of different factors would be

minimised. We perform several multiple-linear-regression (MLR) and machine learning (ML)

analyses on the data to identify the key explanatory variables that are likely driving the varia-

tions in the number of deaths per 100,000 for the 50 contiguous U.S. states (i.e., their statistical

significance). Additionally, we assess the degree to which these variables can explain the

observed deaths (i.e., their importance). Our approach for inclusion was liberal: Any dataset

that was readily and publicly available and, at least in principle related, was initially included

for analysis. However, we designed the study to be illustrative, rather than exhaustive. Thus,

where datasets were potentially relevant, but were likely accounted for by another variable,

they were excluded. The data tended to fall into two main categories: those that drove (or

reduced) transmission and those that impacted the health outcomes of infectious individuals.

We identified a range of variables that contributed to these two broad categories.

Data

Data were collected from a variety of sources, each chosen as a fiduciary of one of the factors

described above. They are summarised in Table 1). Briefly, the first six parameters (retail, gro-

cery, parks, transit, workplaces, and residential) were scraped from Google’s Mobility Reports

on April 20 [23], and represent the fractional change (expressed as a percentage) in people’s
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travel to these locations. Thus, a mean value of 11.38% in ‘residential’ represents the increase

in people remaining at home since the start of “shelter in place” orders. Similarly, a decrease of

46.58% in ‘retail’ reflects the drop in people going to retail locations. Many of the parameters

are self-explanatory, including: age, % 65 years and over [24], obesity rates [25], chronic lower

respiratory death rates [26], pollution indices [27], the date that a state of emergency was

declared [28], average relative annual and spring-time humidity, dew point, temperature, pre-

cipitation [29, 30], and UV index [31]. However, several require further explanation.

Population-weighted population density (PWPD, also known as population-weighted den-

sity, PWD) is, the average of each resident’s census tract density, effectively, the density at

which the average person lives. It is important to distinguish this from the average population

density for a location if there is any significant heterogeneity in population density. For exam-

ple, the population density of the entire U.S. is approximately 90 people per square mile. In

contrast, the population-weighted density is more than 5,000 people per square mile. These

data were derived from the WorldPop dataset [32].

Table 1. List of parameters used in multiple-regression analysis, together with their basic statistical properties. See text for detailed explanation of each parameter.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Retail 50 −46.580 6.081 −66 −50 −42.2 −36

Grocery 50 −17.380 7.982 −34 −23.8 −11 1

parks 50 16.400 42.524 −70 −6 29.8 134

Transit 50 −48.520 13.167 −76 −58 −37.5 −21

workplaces 50 −37.760 5.336 −55 −41.8 −35 −27

Residential 50 11.380 2.147 8 10 12 16

Age 50 38.616 2.328 31.000 37.325 39.600 44.900

Low indust. toxins 50 25.500 14.577 1 13.2 37.8 50

Low poll. health risk 50 25.500 14.577 1 13.2 37.8 50

Chron. low resp. death rate 50 42.790 10.520 20 34.9 48.7 64

�65 years old 50 16.506 1.926 11 15.7 17.5 21

Race param. 1 50 11.954 9.686 0.900 4.850 15.975 38.900

Race param. 2 50 5.580 8.046 1.100 2.325 5.775 56.800

Race param. 3 50 12.070 10.469 1.400 5.125 13.975 49.100

Race param. 4 50 76.164 12.881 24.300 67.825 85.000 94.300

Obesity rates 50 27.740 3.305 19.000 25.600 29.600 35.200

Av. rel. humidity 50 67.102 8.346 38.300 65.950 71.475 77.100

Av. dew point 50 41.710 9.224 26.500 34.925 46.750 65.200

Av. ann. temp. (C) 50 11.074 4.830 −3.000 7.325 14.800 21.500

Av. ann. precip. (mm) 50 941.820 371.752 241 622.5 1,216.2 1,618

State of emerg. dec. 50 −3.100 3.666 −13 −4.8 0 3

Av. spring temp. 50 10.550 4.941 −4.100 6.650 14.050 21.100

Av. spring precip. 50 82.840 34.067 20 56.8 104.5 151

Rel. hum. (morning) 50 76.280 8.593 43 73.2 81 90

rel. hum. (afternoon) 50 48.440 9.004 17 47 53.8 61

UV Index 50 7.780 2.376 1 7 9 12

Deaths/100k (ndeaths) 50 20.769 52.440 0.092 1.313 18.250 349.854

PWPD 50 3,298.370 4,113.740 694.900 1,356.450 3,561.875 28,161.500

Date of first death 50 18,341.040 6.465 18,331 18,337 18,346 18,365

https://doi.org/10.1371/journal.pone.0266330.t001
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The reported date of the first death in each state is used as a proxy for initial seeding of the

virus in each state, and, by extension, a proxy for the connectivity of the state to likely sources

of the disease (e.g., China, Europe, or other states).

Race parameters 1 through 4 are an attempt to identify any possible links with the underly-

ing races/ethnicities within each state [24]. Specifically, they are: (1) Percent Estimate-Race

alone or in combination with one or more other races-Black or African American; (2) Percent

Estimate-Race alone or in combination with one or more other races-Asian; (3) Percent Esti-

mate-Hispanic or Latino (of any race); and (4) Percent Estimate-One race-White [33].

Finally, our response (dependent) variable is the number of deaths per 100,000 [34]. All val-

ues reported here are correct through May 10 2020. This is, of course, an ever-changing value;

however, both the cumulative number of confirmed cases as well as the number of deaths per

100,000 for each state tended to maintain similar relative slopes (Fig 1), such that the results do

not depend sensitively on the precise date chosen to represent the number of deaths in each

state. In fact, the analysis was repeated for five different dates from April 25 through May 10

with no qualitative difference in the results, or their interpretation. It is, nevertheless, worth

noting several outliers. Washington, in particular, was the first state to report an appreciable

number of deaths in mid-March; however, its initial slope remained shallower than other

Fig 1. The variation of (Left) Cumulative number of confirmed cases per 100,000 for each state (colored arbitrarily to better separate each curve).

(Right) Cumulative number of deaths per 100,000 for each state. Data runs from 2020–03-06 through 2020–05-10.

https://doi.org/10.1371/journal.pone.0266330.g001
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states, and, by early April, became even flatter. The net effect of this is that in terms of relative

number of deaths, from early April to early May, it exchanged position with a dozen other

states. The relative positions of other states has also changed during April—May, 2020. In gen-

eral, however, the changes were likely driven by a particular event that changed the evolving

slope of the profile at some point. These typically occurred in the early portion of the outbreak,

and the relative positions of the states in May 2020 remained largely unaltered.

Models

Multiple regression models were analysed using several packages in R, primarily relying on

‘lm’ [35]. To identify the explanatory variables that provided the best performing model (i.e.,

one that lowered the prediction error), we used the ‘stepAIC’ function from the MASS package

[36]. Both forward selection and backward selection (i.e., backward elimination) were per-

formed [37]. In the former, initially, no predictors are included in the model, and the algo-

rithm iteratively adds the most contributory variables, stopping when the improvement is no

longer statistically significant.

These regression techniques, however, only identify the statistical significance of the vari-

ables. To estimate the relative importance of each explanatory variable in describing the vari-

ability in deaths, we applied a number of traditional statistical and more modern machine

learning (ML) approaches. Using multiple approaches is important for assessing the uncer-

tainty that should be ascribed to a particular ordering of the variables, since different tech-

niques rely on different metrics for importance. The techniques applied included: random

forest [38], Xgboost [39], relative importance [40], earth [41], step-wise regression [42], and

DALEX [43]. It is important to underscore that these techniques use different definitions of

what signifies“important”, and, thus, we do not expect agreement between the results. Never-

theless, where the results do agree is where we can be most confident that the explanatory vari-

able importance is significant, and where they do not, we must remain more cautious.

Results

When a multiple linear regression analysis was performed on the 28-parameter dataset, four

explanatory variables were found to be significant: retail, average annual precipitation, average

spring precipitation, and PWPD (S1 Table). Together, R2 for these variables was 0.973, and

thus, these variables are capable of explaining 97% of the variations in deaths/100,000 (ndeaths).
We then applied a heuristic recursive process of elimination to each of the parameters to iden-

tify those that, under a more focused analysis might raise to the point of significance. From

this, we identified five explanatory variables: retail, grocery, PWPD, average spring tempera-

ture and precipitation. Thus, annual precipitation was no longer deemed to be significant, but

grocery and average spring temperature now were (S2 Table).

Comparison of the five most significant variables with one another showed several illumi-

nating features (S1 Fig). First, the number of deaths per 100,000 were clustered below 100 per

100,000, with New York being a significant outlier. Second, unsurprisingly, retail and grocery

mobility metrics appear to be the most highly correlated of the explanatory variables. Third,

the best fit curve to the number of deaths per 100,000 and PWPD appears to (1) be linear, and

(2) display the strongest correlation with ndeaths.
An analysis of the residuals suggests that Hawaii, New Mexico, and Rhode Island (observa-

tions 11, 31, and 39) deviate most (S2 Fig (left)). The fitted line through the residuals suggest

the possibility that a non-linear relationship might be more appropriate; however, given the

relatively high R2 * 0.9, we suggest that this is not necessarily so. Comparing the standardised

residuals against theoretical quantiles suggests that the errors are approximately normally
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distributed, at least for most of the states. Notably, New York (32) and Hawaii (11) (and, to a

lesser extent, Rhode Island (39)) are outliers (S2 Fig (right)). To check for homoscedasticity,

that is, the assumption of equal variance, we can assess whether the residuals are spread equally

along the ranges of the predictors. The notable outliers are, once again, Hawaii (11), Rhode

Island (39), and New York (32). Although there is variability, with the exception of New York,

the standardised residuals are roughly equal to one and constant along the fitted values (S3 Fig

(left)).

Finally, considering the variation of the residuals against leverages, we can estimate to what

extent the outliers are influential in the regression analysis. The leverage of a particular obser-

vation (state) is related to how much its value on the predictor variable differs from the mean

of the predictor variable. We use Cook’s distance as a measure of the influence of an observa-

tion, with values lying in the upper-right or lower-right being indicative of unduly influential

observations. Unsurprisingly, New York (32) is clearly influential (S3 Fig (right)). Following

this, Hawaii (11), and to an even lesser extent, New Jersey are leveraging the results.

In summary, based on this exploratory analysis, the strongest explanatory variable for

deaths per 100,000 is PWPD (Fig 2). There is a clear trend for states with increasing PWPD to

Fig 2. The relationship between the number of deaths per 100,000 and PWPD. Each state is identified with a dot and the variability and smooth

profile are shown with the dark grey region and blue line, respectively.

https://doi.org/10.1371/journal.pone.0266330.g002
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have higher number of deaths. There is, however, substantial scatter away from the smooth

line through the data, at least in part due to the contribution(s) from some of the other explan-

atory variables (as well as potentially other equally, or more important variables not included).

For example, it is worth noting that, geographically, the states substantially below the line are

located at higher latitudes and away from either coast (N. and S. Dakota, Wyoming, Utah,

Nebraska, Nevada). On the other hand, many of the states substantially above the line are from

southern regions (Mississippi, Alabama, S. Carolina, Kentucky, Missouri, Louisiana). It could

also be argued that this demarcation is reflective of other factors, including political affiliation,

which may have modulated the timing and/or efficacy of the “shelter in place” orders. Finally,

we remark that Hawaii, and to a lesser extent (because of the log-log scale) Alaska, are unique

outliers in terms of unusually low deaths given their relative PWPD.

While the preceding analysis heuristically investigated the possible contribution of the

explanatory variables in describing the variations in ndeaths, we next apply more robust tech-

niques using a variety of algorithms to assess both statistical significance and importance. In

these approaches, explanatory variables are iteratively added or removed to identify the subset

of variables that produce the best performing model, that is, the model with the lowest predic-

tion error.

First, using R’s MASS package, we applied both forward selection, where variables were

added iteratively, until the improvement is no longer statistically significant, and backward

elimination, where variables are iteratively removed until the point is reached where all the

variables are statistically significant (S3 Table). Based on this analysis, 14 variables can account

for 97% of the variability in ndeaths. This is approximately the same as including all 28 variables,

and substantially higher than the 87.5% that we computed using our ad hoc approach of

searching through the variables. PWPD, race parameter 1, average annual temperature and

precipitation, average spring precipitation are the strongest contributors.

Using the Random Forest method to assess the importance of the variables, we found (in

order of importance): PWPD, retail, chronic low-respiratory death rate, residential, race

parameter 3, obesity rates, average spring temperature, average dew point, race parameter 1,

and date of first death were the most important (S4 Table). Comparing this list with the signifi-

cant variables identified earlier, suggests that any subset of significant and important explana-

tory variables would include at least PWPD, retail, chronic low-respiratory death rate, race

parameter 1, and date of first death.

Applying the Xgboost method for ranking explanatory variables in order of their impor-

tance identified the ‘retail’ mobility metric as the most important variable, followed by PWPD,

and then two more mobility metrics (workplaces and grocery). Race parameter 1, relative

humidity (afternoon), date of first death, and average spring temperature and dew point fol-

lowed. Finally, Chronic low-respiratory death rate was the remaining variable but only 1% as

important as the most important variable (S5 Table).

The Multivariate Adaptive Regression Splines (MARS) model can also be used to rank

explanatory variables. Unlike the random forest, it has been shown to be more susceptible to

unstable explanatory variables. Nevertheless, it is a flexible technique and is included here to

provide evidence for the sensitivity of our results to the technique implemented. PWPD, race

parameter 2, and retail captured more than 90% of the importance (S6 Table), with grocery

and average annual precipitation rounding out the top-five variables.

The step-wise regression method can also be combined with the Akaike Information crite-

ria (AIC) to identify the best model, that is, the best combination of parameters to explain the

output variable. Using this approach, in order of importance, PWPD, grocery, retail, average

spring temperature and precipitation were all found to be important (S7 Table).
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Finally, we consider the DALEX package, which is, in fact, a meta-package in the sense that

it can compare responses from different models to allow for direct comparison. Here, though,

we apply the DALEX machinery with the random forest technique and use the ‘explain’ and

‘variable_importance’ functions to quantify their relative importance (S8 Table). PWPD,

retail/workplaces, chronic low respiratory death rate, average relative humidity, grocery, and

race parameter 1 describe most of the observed variability in ndeaths. The degree to which these

variables contribute to the overall variations can also be visualised graphically (Fig 3). Thus, we

infer that the first four variables account for most of the observations. Of these, however, aver-

age relative humidity was not found to be statistically significant in any of our analyses. Thus,

while humidity was “important”, it was not “significant”.

Discussion

In this study, we have presented an illustrative, but not exhaustive multiple-regression analysis

of 28 explanatory variables, in an attempt to identify those parameters that can best predict

deaths per capita in U.S. states. Our results are not surprising in the sense that we would have

Fig 3. Relative importance of explanatory variables using the DALEX method. See text for more details.

https://doi.org/10.1371/journal.pone.0266330.g003
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anticipated that PWPD and lockdowns, in particular, would likely explain at least some of the

variations in deaths. It is also reassuring that our results support other studies highlighting the

association of race/ethnicity [44], climatic conditions [45], and population demographics [46]

with deaths. In fact, given the relative homogeneity of the U.S. population, it is somewhat

remarkable that small variations from state to state would result in measurable and statisti-

cally-significant results.

Our results suggest that interventions (e.g., social distancing) should be implemented on

local scales, not state or even county levels. They should be based on, or at least informed by

the PWPD in the area. As the initial disparity between deaths in, say, New York (urban) and

Wyoming (rural) underscored, it is reasonable to generate advice for one community that is

markedly different than for another community. While our analysis has focused on state-level

data, we anticipate that the inferences drawn would apply at even final spatial granularity. Of

course, broad policy decisions concerning COVID-19 strategies are multi-factorial and require

the consideration of a number of other issues, including economic impacts and the likelihood

of adherence by the population. Nevertheless, we believe that PWPD should be an important

component of any mitigation strategy.

Our initial dataset contained a number of other variables that were dropped from the for-

mal analysis, primarily because, although there might be an obvious association with deaths,

there was no conceivable driving mechanism (i.e., causal relationship). For example, we found

that the political affiliation of each state (as measured by the results of the 2016 election) was a

strong and statistically significant explanatory variable. In addition to this simply being a con-

founding variable for several others, such as PWPD (republican states tend to be more rural)

and the efficacy of lockdowns (democratic states typically implemented orders earlier and/or

more stringently), its variation serves no useful role in explaining the number of deaths. Never-

theless, we emphasise the point here to highlight the dangers in over-interpreting what, based

on the analysis presented here, can only be considered associations.

Our study is not without potentially significant limitations. First, our analysis focused on

the three-month period at the beginning of the pandemic. As such, given the significant

advances since then, in terms of behaviour modification, patient treatment, and vaccines, the

relative importance of these explanatory variables may have changed. Thus, strictly, our results

should be viewed as being most applicable during the emergence of a novel pathogen.

Second, the datasets analysed were illustrative rather than comprehensive. While other vari-

ables may have been more accurate, or contributed more to understanding the variation in

deaths, they were not available at the required population level at the time of analysis. For

example, underlying Cardiovascular disease (CVD) and diabetes mellitus (DM) are associated

with significantly worse outcome in COVID-19 patients [47, 48]. Thus, the lack of inclusion of

these co-morbid conditions is a notable limitation. In particular, it is quite possible that some

variables attempting to capture, say, the underlying health of the population, may be more

important than a variable attempting to capture an environmental condition, such as humid-

ity. And, in particular, for variables that do not contribute substantially, we cannot make gen-

eral statements about relative importance that, for example, ambient weather conditions play a

greater role than, say, health of the population. On the other hand, PWPD undoubtedly plays a

major role, and, other variables, like race and climate, do make significant contributions.

Third, the statistical models implemented here are relatively complex. While they have all

been rigorously tested and validated, they rely on different assumptions and approximations,

and thus, to a modest extent, arrived at slightly different results. However, while this could be

viewed as a limitation, we believe that to apply many of them to this problem serves to

strengthen the results. Where the same explanatory variables appear in roughly the same
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position through multiple techniques, we have added confidence that the results are robust.

Where not the case, this serves to provide an additional caveat to treat the results with caution.

Making the leap from associations to causal relationships can be accomplished by mathe-

matical models. Thus, we suggest that the results presented here can be further tested within

various types of mechanistic models. Indeed, the two major associations of PWPD and mobil-

ity metrics are, to varying degrees, already incorporated into models. Individual-based spatial

models, for example, can explicitly account for the population-weighted density of the popula-

tion as well as (at least parametrically) the mobility of people [49]. The significance of climate

(particularly temperature, precipitation, and/or humidity) can readily be incorporated as well

[20–22].

It is not surprising that PWPD was the most important explanatory variable. It also must be

recognised that this variable is related to each state’s social distancing orders, with the primary

difference that PWPD is generally immutable, whereas social distancing can and will change

over time. It may be tempting, particularly for vulnerable individuals to move to a region of

lower PWPD, as this will likely have a strong impact on their likelihood of dying from

COVID-19. It could be argued that this should be balanced with the likelihood of the quality of

healthcare being proportionately worse in more rural areas. However, based on the simple, but

clear relationship between the number of deaths per 100,000 and PWPD, this appears not to

be the case: Regions of lower PWPD experienced lower deaths per capita.

Although it is intuitively obvious that PWPD and ndeaths should be positively correlated in

terms of causality, increases in PWPD would primarily drive higher incidence, which would,

in turn, result in more deaths. However, an interesting question not addressed here is whether

the relationship between PWPD and deaths is linear? If a disproportionate number of more

vulnerable people live in higher-PWPD regions, this would result in a plot of ndeaths versus

PWPD turning upwards. There is some suggestion of this in our results (Fig 2); however, such

an inference is at best tentative and requires more detailed analysis, including additional data-

sets that are likely not yet available.

The explanatory variables analysed in this study can be categorised in a number of ways.

One important distinction that can be made are those variables that impact the transmission

of the virus from one individual to another (e.g., movement variables, such as ‘retail’ and ‘gro-

cery’, or environmental variables such as humidity, precipitation, or temperature) and those

that attempt to capture the relative vulnerability of the individual (e.g., age, race, and obesity

demographics). While the former directly impact the number of cases of COVID-19, which

then drive the number of deaths, the latter affect only the patient’s outcome once they have

contracted the virus.

It was somewhat surprising that no significance was found for any measures of age, chronic

disease, pollution, or some of the race parameters. In some cases, this is likely due to the fact

that the variability was just too small to drive a signal in the results. For example, while the

average obesity rate across the 50 states is 27.7%, the standard deviation is only 3.3%. In these

cases, we suggest that rather than there not being contribution, we were unable to identify it

because of the quality of the parameter. Indeed, several recent studies, which have focused spe-

cifically on a particular parameter, such as race or ethnicity, were able to identify it within

smaller populations with higher heterogeneity [50]. Additionally, where explanatory variables

are co-linear, the explanatory capability might be absorbed by another parameter.

Equally remarkable is that small differences in race/ethnicity amongst states were statisti-

cally significant, albeit only accounting for a small fraction in the variability of the deaths. This

suggests that these factors may be more important than those that were not found to be statisti-

cally significant here. Indeed a number of studies have uncovered the strong association

between race/ethnicity and COVID-related deaths (e.g., [51]).
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To better understand the role of these explanatory variables, we focused on the initial three

month period during the spring of 2020. Now, almost a year later, the situation has become

substantially more complex, with variables interacting with one another in subtle ways. In par-

ticular, when deaths rose substantially in certain regions, this drove the population to adapt its

behaviour through the application of better social distancing and/or mask use. This occurred

both locally where the increase in mortality occurred as well as remotely based on people’s rec-

ognition of it. Given the sequence of waves that have already occurred over the last twelve

months, the distribution of vaccines in the upcoming months, and the emergence of new vari-

ants, it is likely that understanding what are the primary factors driving COVID-19 deaths will

remain a key question for the foreseeable future.
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