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ABSTRACT Genotyping-by-sequencing (GBS) approaches provide low-cost, high-density genotype information. However, GBS has
unique technical considerations, including a substantial amount of missing data and a nonuniform distribution of sequence reads. The
goal of this study was to characterize technical variation using this method and to develop methods to optimize read depth to obtain
desired marker coverage. To empirically assess the distribution of fragments produced using GBS, �8.69 Gb of GBS data were
generated on the Zea mays reference inbred B73, utilizing ApeKI for genome reduction and single-end reads between 75 and 81
bp in length. We observed wide variation in sequence coverage across sites. Approximately 76% of potentially observable cut site-
adjacent sequence fragments had no sequencing reads whereas a portion had substantially greater read depth than expected, up to
2369 times the expected mean. The methods described in this article facilitate determination of sequencing depth in the context of
empirically defined read depth to achieve desired marker density for genetic mapping studies.

HIGH-density genotypic information on large numbers of
individuals is crucial for quantitative trait locus (QTL)

mapping and association analysis. Cost efficiency is an im-
portant component in generating genotypic data. Previous
genotyping methods include markers such as microsatellites,
amplified fragment length polymorphisms (AFLPs), and re-
striction fragment length polymorphisms, among others. The
relatively high cost and limited marker density of these
methods led to the use of single-nucleotide polymorphisms
(SNPs) as the current preferred genotyping system. As such,
a large number of array-based SNP genotyping platforms are
currently available (reviewed by Fan et al. 2006) as well as
targeted or whole-genome sequencing-based technologies.

Sequencing-based approaches to SNP allele calling in-
clude whole-genome sequencing (Hillier et al. 2008), exome
capture (Ng et al. 2009), RNA sequencing (Hansey et al.

2012), methylated DNA sequencing (Brunner et al. 2009),
and restriction enzyme (RE) digestion (reviewed by Davey
et al. 2011). RE-based approaches include restriction-site
associated DNA sequencing (RAD-seq) (Baird et al. 2008),
complexity reduction of polymorphic sequences (CRoPS)
(Van Orsouw et al. 2007), and genotyping-by-sequencing
(GBS) (Elshire et al. 2011). All of these methods represent
efficient and cost-effective approaches to produce genetic
information, but differ in their implementation. For instance,
RAD-seq and GBS both involve sequencing DNA fragments
adjacent to RE cut sites, yet while RAD-seq involves sequenc-
ing these fragments to high coverage, the focus of GBS is to
sequence with low target coverage. Alternatively, CRoPS is
based on sequencing DNA fragments that were originally gen-
erated as AFLP markers. In this study, we utilized the GBS
protocol of Elshire et al. (2011) with minor modifications.

In brief, GBS utilizes RE digestion to preferentially target
sites in low-copy genomic regions, minimizing reads in
repetitive sequences that are abundant in maize (Schnable
et al. 2009) and that produce ambiguous SNP information.
ApeKI is a RE frequently used for GBS in maize because it cuts
retrotransposons infrequently and is partially methylation
sensitive, thereby preferentially generating fragments from
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low-copy genic regions (Elshire et al. 2011), but additional
enzymes can also be used for GBS. Cost efficiency is
achieved by multiplexing barcoded individuals (Baird et al.
2008; Elshire et al. 2011). Analysis pipelines rely on mapping
the resulting fragments to a reference genome, if available.
Otherwise, linkage relationships can be used to genetically
map sequenced DNA in organisms without a sequenced ref-
erence genome. Recently, numerous researchers have success-
fully employed RE-based genotyping protocols to develop
maps and/or map QTL in such species (Amores et al. 2011;
Chutimanitsakun et al. 2011; Pfender et al. 2011; Baxter et al.
2011; Poland et al. 2012).

Although all of the sequencing-based genotyping strate-
gies are capable of generating substantial amounts of
data in a cost-efficient manner, peculiarities of the genome
structure can limit the utility of the data. For instance,
features such as the presence of repetitive DNA make the
unique alignment of sequence reads difficult or impossible.
This is particularly problematic in plant species because of the
high proportion of repeats frequently present (Treangen and
Salzberg 2011). Similarly, repetitive DNA that is not accounted
for in reference genomes may allow repetitive sequences to be
aligned uniquely and therefore cause false polymorphisms to
be identified. Finally, differences in guanine–cytosine (GC)
content and other potential sources of sequencing biases can
leave important genomic regions under- or overrepresented
(Minoche et al. 2011).

Addressing this, theoretical work has been done to de-
termine the expected sequence coverage obtained from these
technologies (Lander and Waterman 1988; Wendl 2006).
Also, studies investigating desirable marker coverage for ge-
notype–phenotype associations in the context of classical gen-
otyping technologies have been performed (Piepho 2000).
Herein, we describe theoretical and empirical considerations
of using GBS (Elshire et al. 2011) for genetic analysis, with the
goal of determining reasonable marker expectations and cor-
responding resource investments. GBS was conducted on the
maize reference inbred, B73, using replicated DNA samples,
barcodes, and independent sequencing lanes to gather empir-
ical information. We then compared the theoretical coverage
distribution to the actual distribution that was obtained
through GBS. Next, we developed a theoretical tool to deter-
mine the appropriate marker number for QTL mapping in bi-
parental populations, as well as assessed the marker number
required for association mapping in diverse inbred populations.
Finally, we provided recommendations for the target number
of raw sequence reads that should be generated to attain an
effective density of markers. Although our results pertain to
GBS in maize, simple adjustments make our techniques poten-
tially applicable to a wide variety of protocols and species.

Materials and Methods

Library construction, sequencing, and read mapping

DNA was isolated from pooled leaf tissue from 5–10 seed-
lings of the reference inbred line B73. Genomic DNA was

extracted using a modified CTAB method (Saghai-Maroof
et al. 1984). Multiple DNA extractions from B73 tissue were
performed. Next, extracted DNA was barcoded and pooled
following the procedure described by Elshire et al. (2011),
with an additional gel-based size selection step to enrich for
fragments of intermediate size. The size selection was in-
corporated because Illumina reports that to optimize cluster
formation the ideal fragment size range for single-end librar-
ies is 150–300 bp (http://www.illumina.com/support/faqs.
ilmn). Additionally, the size selection step allows for further
reduction of the effective genome size. Sequencing was con-
ducted using Illumina TruSeq SBS 36-bp kits, versions 3–5,
on eight lanes of the Illumina Genome analyzer II (GAII)
(Illumina, San Diego) at the University of Wisconsin Bio-
technology Center (Madison, WI). For each library, 48 bar-
coded samples were pooled. The eight lanes of sequences
were generated over multiple sequencing runs that were run
to variable read lengths. For each lane of sequence, read
quality was evaluated based on the Illumina purity filter,
percentage of low-quality reads, and distribution of Phred-
like scores at each cycle. Lanes that had a lower quartile
Phred-like score ,20 prior to base 40 were not included
in this analysis. Individual reads from sequencing lanes that
passed this quality control (four lanes of 75-bp reads, one
lane of 76-bp reads, and three lanes of 81-bp reads) were
then cleaned using the FASTX toolkit (http://hannonlab.
cshl.edu/fastx_toolkit/index.html) with the fastx_clipper
program, requiring a minimum length of 20 bp after clip-
ping. After running fastx_clipper with both adapter sequen-
ces across the eight lanes, 84% of the reads were retained
with a minimum of 80% retention from one of the lanes.
Sequences from each lane that passed this filtering were
parsed to remove the barcode sequences, using a custom
Perl script requiring a perfect match to the barcode and
the ApeKI cut site (i.e., GC[A/T]GC). Cleaned reads were
mapped to the maize B73 version 2 pseudomolecules
(AGPv2; http://ftp.maizesequence.org/) (Schnable et al.
2009), using Bowtie version 0.12.7 (Langmead et al.
2009), allowing up to two mismatches and requiring a single
best alignment to nuclear DNA.

Computational digestion and analysis

A custom Perl script was used to identify all ApeKI cut sites,
irrespective of methylation state, in the maize B73 version 2
pseudomolecules (AGPv2; http://ftp.maizesequence.org/)
(Schnable et al. 2009) and the expected fragment sizes in-
cluding the GC[A/T]G overhangs were determined. GC con-
tent for a 50-bp window up- and downstream of the cut sites
excluding the GC[A/T]GC sequence was determined using
a custom Perl script. All subsequent analyses were per-
formed using standard functions implemented within R ver-
sion 2.13 (R Development Core Team 2011).

QTL mapping

QTL mapping was performed for two data sets. In the first,
previously published data from 283 individuals of the maize
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intermated B73 · Mo17 (IBM) population was analyzed
(Eichten et al. 2011). The phenotype under study was plant
height, and the total set of markers included 1340 simple
sequence repeats (SSRs). These markers were not generated
using GBS, but the data set was chosen because the total
number of SSRs and relative spacing of the markers approx-
imate what could be expected per individual from a low-
coverage deployment of GBS. First, QTL mapping was con-
ducted with the full data set, using composite-interval
mapping with the software program R/qtl (Broman et al.
2003). The analysis included five covariates selected using
forward selection, and the LOD threshold was determined
according to a Bonferroni-corrected 0.05 significance level.
The total set of identified QTL was recorded. Next, randomly
chosen marker subsets were used for QTL mapping. Subset
sizes ranged from 100 markers to 1300 markers, in incre-
ments of 100. For each marker subset size, QTL mapping
was repeated 1000 times with randomly selected marker
subsets of the specified size. The proportion of QTL in the
total set that were identified in each run was recorded. Fi-
nally, the power of mapping with additional markers was
evaluated based on the mean proportion of expected QTL
that were identified at each marker subset size.

The second experiment involved a simulation study
representing a nonintermated maize recombinant inbred
(RI) population with 250 individuals. Ten QTL of equal
effect were simulated, one on each chromosome, with an
overall heritability of 0.5. A set of 11,917 markers was
simulated, corresponding to what could be expected from
a higher-coverage deployment of GBS. QTL mapping was
conducted in the same manner as for the plant height data
described above, except in this case the true underlying QTL
were known based on the simulation. Mapping was con-
ducted at marker subset sizes ranging from 100 to 1000, by
100, and then from 2000 to 11,917, by 1000. Again, the
power of additional markers was evaluated based on the
mean proportion of known QTL that were identified at each
marker subset size.

Determining appropriate target coverage for
mapping purposes

A bootstrapping scheme was developed to determine the
genotyping resources required to obtain reads from a spec-
ified number of distinct RE fragments for an individual DNA
sample. First, the set of all B73 fragments that were
successfully aligned to the B73 reference genome was
considered representative of the comprehensive set of all
sites with the potential of being both sequenced and aligned.
Next, increasing numbers of fragments were sampled from
this set, with replacement. The probability of sampling each
fragment was made proportional to the number of times it
was actually observed. Next, the number of additional
unique fragment reads that were obtained at each round
of sampling was counted to estimate how many total reads
are required to obtain a desired number of distinct frag-
ments per individual.

Results

Repeated sequencing of the maize inbred line B73

In total, we generated .118 million GBS sequence reads
from the reference inbred B73 to determine the distribution
of reads throughout the genome. These reads corresponded
to �8.69 Gb of B73 sequence data before adapter and bar-
code clipping. There are �3.9 million ApeKI sites in the B73
reference genome and our sequencing approach had the
potential to capture up to 77 bp on either side of each cut
site (up to 81 bp per read minus the 4- to 8-bp barcode). It is
expected, consequently, that this sequencing should provide
�14.3· coverage of the ApeKI target space, assuming no size
selection ½8; 690; 000; 000=ð3; 936; 260 · 77 ·2Þ ¼ 14:3�.
However, due to our additional step of size selection and
technical bias for smaller fragments by the Illumina proce-
dure, the expected coverage per observable position was
substantially greater. Because gel-based size selection can-
not perfectly isolate fragments of a particular size, we em-
pirically estimated the experimentally optimal fragment size
by observing that 95% of the observed sequencing reads
resulted from ApeKI fragments between 70 and 318 bp in
length (here, we define ApeKI fragments as DNA segments
between ApeKI cut sites). Since there are �1.4 million opti-
mally sized ApeKI fragments predicted from the B73 refer-
ence genome, our sequencing provided an expected
coverage of �40.1· over the ApeKI reduced and size se-
lected space ½8; 690; 000; 000=ð1; 406; 269· 77 · 2Þ ¼ 40:1�.

Using an informatics pipeline that allowed up to two
mismatches in a read to map to the reference, we found that
43.9% of the B73 fragment reads had a single best alignment
to the reference, 46.7% could be aligned to multiple
positions, and 9.3% could not be aligned to the reference at
all. The B73 fragments that did not align to the reference
likely resulted from the requirement imposed of two or fewer
mismatches for a read to be mapped, in the context of the
relatively high error rate of the Illumina techonology used
(Luo et al. 2012). Recent advances in Illumina sequencers,
such as HiSeq, have reduced error rates relative to previous
technologies which will improve the proportion of reads map-
ped. More permissive alignment algorithms may also reduce
the proportion of fragments that cannot be aligned, but could
increase spurious alignments in complex genomes such as
maize. From the 3,936,260 potential ApeKI cut sites identified
in the reference genome, only 35.7% (1,406,269) were
expected to generate at least one fragment in the optimal size
range of 70–318 bp. It was found that 27.4% (384,887) of
these cut sites had at least one sequence read on at least one
side of the cut site with a unique alignment, although some
were sequenced many more times. Additionally, we obtained
174,954 uniquely aligned reads from ApeKI fragments that
were larger or smaller than the 70- to 318-bp range (Figure
1). Finally, we were able to uniquely align reads from 52,123
sites that were not predicted to be ApeKI-site adjacent based
on requiring a perfect cut site sequence in the reference ge-
nome. These unpredicted cut sites could be the result of errors
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in the reference, ,100% restriction accuracy of ApeKI, or
differences between our B73 source and that used to produce
the reference sequence.

The number of reads from each fragment is expected to
follow a Poisson distribution (Lander and Waterman 1988);
however, the empirical data did not follow such expectation
(Figure 2). Additionally, the median number of reads per
sequence fragment was zero, which was substantially less
than expected (�40). The likely cause for this deviation is
that many of the sequence fragments were observed thou-
sands of times more than expected (up to 95,014 reads from
a single end of an ApeKI fragment). At the same time, a dis-
proportionately large number (1,021,382 or 72.6%) of the
predicted ApeKI fragments of size 70–318 bp had no ob-
served sequencing reads from either end (Figure 2).

Analysis of the overrepresented fragments relative to the
B73 organelle reference genome revealed that a subset of
these fragments were also present in DNA from organelles.
Hence, they correspond to historical insertions of organellar
DNA into the nuclear genome, an occurrence that has been
documented previously (Lough et al. 2008). Other overrep-
resented fragments are likely due to repeats in the maize
genome that include ApeKI cut sites that were collapsed into
a single, nonrepetitive segment in the reference sequence. In
these instances, the repeated fragments were mapped
uniquely because the reference genome does not capture
their repetitive nature. Highly overrepresented sites (.500
reads per site, corresponding to nearly a 0% probability
based on the expected distribution) represented 0.5% of
the sequenced ApeKI sites, but accounted for 41.7% of the
total reads.

To further investigate the reason for the highly over-
represented sites, potential biases due to fragment GC
content were explored. High or low content of GC within
a fragment can affect read depth using Illumina sequencing
technologies (Minoche et al. 2011). Technological advances
have reduced this bias over time, but nevertheless, fragments
extremely high or low in GC content are likely to be under-
represented. We assessed the GC content in windows of 50 bp
adjacent to cut sites. The mean level of GC for these windows
across B73 was 53.9% with a range of 0–100% (Figure 3A). It
was observed that sites with GC content between 40 and 50%
were more frequently sequenced using Illumina GAII. When
GC content was outside of a seemingly ideal 10–70% range,
the mean number of times that sites were sequenced de-
creased from 12.8 to 0.46 (Figure 3B). But, regions with such
high or low GC content accounted for ,7% of all optimally
sized sequencing fragments in B73. Therefore, GC content
bias could explain some of the rarely observed sites but such
bias does not account for the highly overrepresented sites.

The skewed distribution of sequencing reads we observed
in B73 is not unique to this inbred line. Across three RI
populations and an association panel (totaling �1500 di-
verse inbred lines), for which we performed a comparable
GBS protocol, many of the same positions that were over-
represented through sequencing B73 also had dispropor-
tionately high coverage across the set of diverse lines
(data not shown).

Marker number for QTL mapping

It is desirable to optimize marker density to maximize the
efficient application of genotyping technologies. For the

Figure 1 Distribution of the length of B73 ApeKI fragments expected
based on an analysis of the reference genome and experimentally ob-
served from �8.69 Gb of B73 DNA sequence reads.

Figure 2 Observed and theoretical frequency distributions of the number
of times that optimally sized B73 ApeKI fragments were sequenced. Note
the break in the vertical axis. “Sites” refers to DNA segments from either
end of an ApeKI fragment. The number of reads per site is expected to
follow a Poisson distribution with mean equal to the average coverage.
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purpose of QTL mapping in biparental populations, marker
density can be optimized by first recognizing that adding
markers to stretches of the genome that correspond to the
same parental genotype does not provide additional in-
formation. On the other hand, when markers flank a re-
combination event, additional markers in the region will
increase resolution of the recombination position. Still, if the
recombination event is not in the region where a true QTL
lies, there is no practical use for increased marker density in
this region. Thus, the probability of having both a QTL and
a recombination event occur between two markers should
be minimized (Figure 4).

Consider an individual with c chromosomes, n evenly
spaced markers, r recombination events, and q QTL. A lower
limit, p0, on the probability of both a recombination event
and a QTL not occurring in a region with unknown parental
genotype (i.e., between two markers) is given by

p0 ¼ ðn2rþ cÞq
ðnþ cÞq : (1)

To derive (1), consider the available markers as dividing the
target DNA into n + c bins, which are the spaces between
two markers or between a marker and a chromosome end.
The numerator of (1) is the number of ways the QTL can be

placed into these bins such that they are not in a bin where
a recombination event occurred, while the denominator of
(1) is the total number of ways that QTL can be placed into
bins. An implicit assumption is that the probability of a QTL
being located in any of the bins is equal, which is met when
markers are evenly spaced. Although GBS markers are not
perfectly evenly spaced, there is no large-scale clustering of
ApeKI cut sites throughout the genome. More specifically, no
one chromosome or chromosomal region has an abnormally
high or low concentration of cut sites. This means that even
spacing is a reasonable approximation on a genome-wide
basis. Also, this estimation provides a lower limit because
(1) assumes that every recombination event occurs in
a unique bin—if there happen to be multiple recombination
events in any single bin, the numerator will be slightly in-
creased. To obtain the number of markers (n) that will pro-
vide an expected proportion of p0 individuals without any
particular QTL flanked by markers of alternate parent gen-
otypes, one may solve the above formula for n, with q = 1,
which is given by

n ¼ r2 cð12 p0Þ
12 p0

: (2)

Equation 2 was verified based on two QTL mapping
experiments. The first experiment consisted of previously
published data on plant height in the IBM population
(Eichten et al. 2011), while the second was based on simu-
lations for a nonintermated RI population of 250 individu-
als. In both cases, the optimal number of markers suggested
by (2) was within 200 of the observed marker number that
provided a maximally powerful test (Figure 5). Further-
more, this confirms that the assumption of even spacing is
robust against minor violations, as the IBM markers used
were not evenly spaced. Interestingly, the simulated QTL
mapping experiment data depicted a slight decrease in
power with an unnecessarily dense set of markers. This is
likely attributable to the Bonferroni correction for LOD
threshold that was implemented.

Marker number for mapping with recombinant inbred
and association populations

RI populations are commonly used for QTL mapping. Appli-
cation of Equation 2 requires knowledge of the genome-wide
recombination rate (r) and the number of chromosomes (c).
In the maize IBM RI population, for example, the average
number of effective recombination events per individual is
57 (Fu et al. 2006). Since the IBM population was intermated
four times before selfing (Lee et al. 2002), this value can be
scaled to nonintermated standard RI populations by first mul-
tiplying by the reciprocal of the genetic map expansion factor
incurred during the development of the IBM population and
then by the expansion factor incurred during the development
of a standard RI population. Respectively using the expansion
factors j/2 + (2i 2 1)/2i and (2i+1 2 1)/2i, for lines that have

Figure 3 Distribution of GC content and coverage of optimally sized (70–
318 bp) sites. (A) The proportion of optimally sized sequencing fragments
with the specified GC content (computationally determined by analysis of
the reference genome). (B) Mean number of reads for optimally sized B73
sequencing fragments with given GC content. Extremely high or low GC
content negatively affected read number per site, but the majority of
fragments are in the intermediate GC range.
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been inbred for i generations after being intermated for j
generations (Teuscher et al. 2006), on average, there are
�38 recombination events per individual in a nonintermated
maize RI population.

Application of (2) to the IBM RI population given that r=
57 and c = 10, and allowing an expected p0 = 95% of
individuals without uncertain genotype at each QTL, we de-
termined that the marker goal across the genome is n =
1130. For a standard RI population, applying (2) with the
same parameters except that r = 38 results in the genome-
wide marker goal being 750. We emphasize that these
marker number requirements represent the minimum num-
ber of markers needed to produce an expected 95% of indi-
viduals with known genotypes at any particular QTL.

It is important to note that in RI populations, the genotyped
markers need not be the same for each individual. In the case
where several of the markers typed on each individual are

distinct, as occurs in GBS, imputing markers that were not
observed is the appropriate action. In the case of hundreds of
individuals, each with mostly different markers typed, this will
lead to a large proportion of imputed markers for the
population. However, as long as the number of markers that
were observed for each individual meets the values described
above, mapping will have near the maximum power possible
for the particular population under study. Moreover, although
imputing between observed markers allows comparisons to be
made between individuals with observed genotypes at differ-
ent markers, it cannot increase mapping resolution (Figure 4).
Therefore, a distinction must be made between the total num-
ber of GBS markers generated and a value that we deem the
“effective number of markers.” The effective number of
markers for an individual is the number of markers with ob-
served genotypes. Thus, a RI line typed at n markers but with
unobserved genotypes at p markers before imputation has an
effective marker number with respect to resolution of n, not
of n + p.

Also, the marker number suggested by (2) should be
viewed as a minimum number of effective markers for
mapping purposes. Additional markers will provide only
minimal increased power to detect QTL, but they will reduce
the proportion of individuals with uncertain parental gen-
otypes due to recombination events near the QTL to fewer
than the expected value of 1 2 p0. It is important to highlight
that based on the estimation that maize contains�39,500 genes
(AGPv2; http://ftp.maizesequence.org/) (Schnable et al. 2009),
the marker numbers suggested here will generate maps that
have, on average, �35 genes between markers in the IBM
population and �53 genes between adjacent markers in non-
intermated RI populations. However, improving QTL mapping
resolution requires not just additional markers but also an
increase in recombination events, which can be achieved only
with an altered population structure or size.

Figure 4 An example of genotypes for three hypothetical RI lines, A, B,
and C. Red circles correspond to observed marker genotypes from one of
the parental lines, blue circles correspond to observed maker genotypes
from the other parent, and open circles correspond to missing marker
information. Red and blue shading illustrates that between two markers
of the same parental genotype, genotypes can be inferred with great
accuracy, even in the case of a missing marker genotype. However, gen-
otypes between markers of alternate parental types remain unknown.
The green arrowheads show the location of a “true” quantitative trait
locus (QTL). Note that line C has unknown genotype at the QTL and
therefore does not add power to a statistical test for QTL identification
(although this individual would be particularly useful for downstream fine
mapping). Equations 1 and 2 provide the number of markers needed for
the probability of occurrence of case C to be minimized.

Figure 5 Validation of marker
number estimate. Two quantita-
tive trait loci (QTL) mapping stud-
ies were performed to validate
Equation 2, which estimates the
number of markers required to
maximize the power of a biparen-
tal QTL mapping study based on
the number of chromosomes and
level of recombination in a popu-
lation. Depicted in both A and B
is the mean proportion of QTL
identified from 1000 replicated
mapping experiments at each
marker subset level. (A) For the
intermated B73 · Mo17 (IBM) RI
population, the maximum num-
ber of QTL that could be identi-
fied was three, which was the

number identified from mapping with the full data set. (B) For the simulated RI population, which was not intermated before inbred development,
the maximum number of QTL that could be identified was all 10 QTL simulated. In each plot, the red line depicts the number of markers suggested by
Equation 2. For experimental data from the IBM RI population, as well as data from a simulated nonintermated RI population, Equation 2 closely
approximates the ideal marker number for maximal QTL identification.
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Similar to QTL mapping with a RI population, the goal of
association mapping using a diverse set of inbred lines is to
associate genotypes with phenotypes. However, these meth-
ods differ in that RI populations have a simpler structure of
relatedness generated by the expected recombination of
regions originated from the two parents of the population,
whereas a more complex structure is present in a diverse
population. Similarly, greater levels of linkage disequilib-
rium (LD) are expected to be present in RI populations
compared to diverse populations. Therefore, it is well
established that more markers are required for association
mapping to capture markers within historical blocks of LD
compared to structured biparental populations. In maize, for
instance, it has been suggested that association mapping
should be conducted with SNP markers spaced every 100–
200 bp (Tenaillon et al. 2001). In other species, the required
density of SNP markers for effective association mapping is
dependent upon the level of historical LD.

Determination of read depth required to achieve
desirable marker density based on an empirical
distribution of read coverage per marker position

The number of unique fragment reads that should be
expected for a given total number of fragment reads was
quantified to determine the optimal depth at which
sequencing should be performed to achieve a desirable
marker coverage based on an empirically determined
distribution of reads. The quantification is based on a resam-
pling of the data we generated from the maize reference
inbred B73. The approach utilized is likely to provide a slight
bias toward B73 fragments. For other lines or species, the
proportion of reads that can be aligned to the reference
genome is likely to vary. An adjustment for the proportion of
fragments that can be aligned is needed for this method to
be globally applicable to other maize lines, and a repetition
of the process will apply for other species.

To quantify optimal target depth in a RI population, the
number of unique fragments required per individual will
vary with target marker number and average SNP density
between the parents. But, given a target number of unique
fragments per individual, a recommendation for the total
number of reads that should be obtained for each sample is
provided (Figure 6). Based on resampling-observed B73
fragments, the expected number of unique fragments se-
quenced for a given number of total fragments sequenced
incorporates the uneven coverage distribution. The focus is
on unique fragments because these have the potential to
contribute additional information. However, if the sequenc-
ing technology used is error prone, repetitive sequencing of
sites may be required, and the approach utilized here can be
modified to evaluate the expected number of fragments se-
quenced a specified number of times for a given total num-
ber of fragments sequenced.

As described above, diverse association panels require
substantially more markers than do RI lines for effective
mapping. With millions of ApeKI sites in maize, GBS based

on that RE seemingly has the potential to generate marker
densities near the target. However, based on the uneven
coverage of sites that we observed, GBS would have to be
performed with substantially greater depth than calculated
simply by reads divided by target sites to obtain information
at the majority of the desired sites. For instance, from the
�8.69 Gb of B73 data generated in our study from 118
million reads, only 559,841 unique ApeKI fragments of the
1.4 million expected to pass our size selection step were
successfully sequenced and aligned. It appears that the ad-
ditional �840,000 fragments had an extremely low proba-
bility of being captured through sequencing. Given this, and
the fact that LD decays over a span of only a few hundred
base pairs in maize (Tenaillon et al. 2001), relying on down-
stream LD-based imputation for those sites that were missed
is expected to be relatively ineffective. Instead, a reasonable
approach is to minimize the amount of missing data by se-
quencing fewer sites at a higher target coverage, taking into
account the variable sequencing depth that will be observed.
Our resampling analysis suggests that using ApeKI-based
GBS in maize, genotyping with a target of 23, 41, or 80
million reads is expected to result in missing data at
�30%, 20%, or 10% of sites, respectively, for a given indi-
vidual (Figure 6). Determination of the appropriate target
number of sequence reads in different species or by the use
of alternative sequencing-based genotyping methods can be
achieved by first sequencing a representative individual at
high coverage and subsequently performing empirical
resampling to identify the point of adequate coverage as
suggested here.

Discussion

We have shown that the coverage of different sites through-
out the maize genome as captured through the ApeKI-based
GBS protocol is highly variable, although the reasons for the
extreme variability are only partially understood. Therefore,
sequencing approaches that succeed even when coverage is
variable, or approaches that reduce the uneven coverage,
are necessary. Alternative sequencing approaches for geno-
typing individuals are abundant, including GBS with differ-
ent or multiple enzymes (Poland et al. 2012), RAD-seq
(Baird et al. 2008), and CRoPS (Van Orsouw et al. 2007).
In situations where highly variable levels of coverage are
still observed, the strategy proposed here first operates on
a single individual (B73 in this case) to be sequenced exten-
sively. The variability of site coverage in this individual will
approximate the variability yet to be generated from later
individuals. From the full set of sequenced fragments
obtained from the first individual, including repeated frag-
ments, random computer-based subsamples are drawn, with
replacement. These are evaluated for the amount of addi-
tional sites observed as subsample size increases. The sub-
sample size that provides enough site information for the
desired marker number or level of missing data dictates
the coverage that should be targeted.
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Carrying out this strategy in maize suggested, for
example, that acquiring 300,000 unique fragments per
individual can be obtained by sequencing �3.6 million total
fragments per individual (Figure 6). But because of the vari-
able coverage distribution, doubling the number of acquired
unique fragments to 600,000 requires a more than ninefold
increase in total fragments sequenced, to �27.9 million.
Moreover, our results show that to minimize the level of
missing data across individuals even more sequencing per
individual is required (Figure 6). However, these target se-
quencing levels will vary and potentially be reduced in spe-
cies with less repetitive genomes.

Although the sequencing coverage required to generate
a dense marker set seems daunting, we have demonstrated
that a substantial marker density is not required, or even
useful, for the purpose of QTL mapping in RI populations.
For this type of population structure, desirable marker
coverage is given by Equation 2. Representative populations
suggest that the number of markers for efficient QTL mapping
in biparental populations is on the order of hundreds to
thousands. Substantially larger numbers of markers would be
necessary, however, when association mapping is being
conducted in a diverse population.

In summary, performing GBS on the maize inbred line
B73 produced a highly skewed coverage of genomic
positions, which is only partially accounted for by GC bias
and duplicated positions. The result of the uneven coverage

distribution is that no information is available at the majority
of positions for which information was initially expected. Still,
our findings suggest that even at relatively low coverage, GBS
can produce enough information for powerful QTL mapping
in biparental populations. However, obtaining dense geno-
typing resolution for downstream fine mapping will require
increased target coverage per individual. Using the method
for association studies in maize, for example, will require
genotyping at substantially greater target coverage. There-
fore, researchers must be aware that in complex genomes,
using simple approximations and standard distributions to
determine target coverage vastly underestimates the sequence
depth required to generate adequate data for complex
analyses. Before large-scale sequencing commences, em-
pirical enumerations of target coverage that account for
potentially complicated genome compositions will lead to
more complete and useful data sets relative to study goals.
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