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Graves’s disease and thyroiditis induce hyperthyroidism, the causes of which remain unclear, although they are involved with
genetic and environmental factors. We aimed to evaluate polygenetic variants for hyperthyroidism risk and their interaction with
metabolic parameters and nutritional intakes in an urban hospital-based cohort. A genome-wide association study (GWAS) of
participants with (cases; n� 842) and without (controls, n� 38,799) hyperthyroidism was used to identify and select genetic
variants. In clinical and lifestyle interaction with PRS, 312 participants cured of hyperthyroidism were excluded. Single nucleotide
polymorphisms (SNPs) associated with gene-gene interactions were selected by hyperthyroidism generalized multifactor di-
mensionality reduction. Polygenic risk scores (PRSs) were generated by summing the numbers of selected SNP risk alleles. )e
best gene-gene interaction model included tumor-necrosis factor (TNF)_rs1800610, mucin 22 (MUC22)_rs1304322089, tribbles
pseudokinase 2 (TRIB2)_rs1881145, cytotoxic T-lymphocyte-associated antigen 4 (CTLA4)_rs231775, lipoma-preferred partner
(LPP)_rs6780858, and human leukocyte antigen (HLA)-J_ rs767861647. )e PRS of the best model was positively associated with
hyperthyroidism risk by 1.939-fold (1.317–2.854) after adjusting for covariates. PRSs interacted with age, metabolic syndrome, and
dietary inflammatory index (DII), while hyperthyroidism risk interacted with energy, calcium, seaweed, milk, and coffee intake
(P< 0.05). )e PRS impact on hyperthyroidism risk was observed in younger (<55 years) participants and adults without
metabolic syndrome. PRSs were positively associated with hyperthyroidism risk in participants with low dietary intakes of energy
(OR� 2.74), calcium (OR� 2.84), seaweed (OR� 3.43), milk (OR� 2.91), coffee (OR� 2.44), and DII (OR� 3.45). In conclusion,
adults with high PRS involved in inflammation and immunity had a high hyperthyroidism risk exacerbated under low intakes of
energy, calcium, seaweed, milk, or coffee. )ese results can be applied to personalized nutrition in a clinical setting.

1. Introduction

Hyperthyroidism is a condition that involves excessive
productions of tetraiodothyronine (T4) and/or triiodo-
thyronine (T3) by the thyroid gland and low serum levels of
thyroid-stimulating hormone (0–0.4mU/L; TSH) [1].
Graves’ disease (an autoimmune disorder), Plummer’s
disease, and thyroiditis (thyroid gland inflammation)

accompany hyperthyroidism [2].)e prevalence of Graves’s
disease and thyroid inflammation is linked to ethnicity [3].
Graves’ disease prevalence is highest in Caucasians, fol-
lowed by Hispanics, Africans, and Asians, but thyroiditis’
prevalence follows the reverse order [4, 5]. )e overall
prevalence of hyperthyroidism was 0.5%, 0.7%, 1.2% in the
USA, Europe, and Asia, respectively, during 1996–2018. Its
global prevalence is higher in women than in men [4, 5]. In a
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cross-sectional Chinese study since 1995, the prevalence
of hyperthyroidism among people living in iodine suffi-
cient and insufficient areas were 1.2% and 1.0%, respec-
tively (P< 0.001) [1], indicating that excess iodine and
tetraiodothyronine intakes are involved in the induction
of hyperthyroidism [1]. However, few studies have
demonstrated an association between dietary intake and
hyperthyroidism.

Hyperthyroidism contributes to digestive, cardiac,
neural, and reproductive disorders [1]. Personal histories of
certain chronic diseases, such as type 1 diabetes, adrenal
insufficiency, and pernicious anemia, also act as risk factors
of hyperthyroidism [5]. Furthermore, hyperthyroidism is
associated with thyroid cancer, but it remains controversial.
In the KoGES, the participants with either hyperthyroidism
or hypothyroidism are positively associated with thyroid
cancer risk [6]. Although thyroid cancer is linked to hy-
perthyroidism and hypothyroidism, their etiology is dif-
ferent, and their genetic association and interaction with
lifestyles are different from thyroid cancer [6].

Hyperthyroidism has a high genetic predisposition of
70–80%, which was higher than environmental factors in
twin studies [5, 7]. Previously reported studies have indi-
cated that hyperthyroidism risk is associated with genetic
variants of immunocompetent genes and inflammation-
related genes associated with its etiology [7]. Genetic vari-
ants conferring hyperthyroidism risk include the human
leukocyte antigen (HLA) complex and its gene family,
composed of the HLA-DRB1, HLA-DQA1, HLA-DQB1
genes [7]. In Korean children, HLA genetic variants are also
associated with Graves’ disease and Hashimoto’s disease [8].
More specifically, genetic risk factors of Graves’ disease
accompany having the risk alleles of HLA-DR3, a cluster of
differentiation 152 (CD152 or CTLA4), protein tyrosine
phosphatase nonreceptor type 22 (PTPN22), CD40, inter-
leukin (IL)-2 receptor alpha chain (IL2RA), IL-23 receptor
(IL23R), and Fc receptor-like 3 (FCRL3) [7]. Some ethnic
differences in genetic predisposition have been demon-
strated by meta-analysis [9, 10]. )e tumor necrosis factor-
alpha (TNF-α) rs1800629 polymorphism was reported to
exhibit a 1.97-fold association with hyperthyroidism (95%
confidence intervals� 1.27–3.06, P � 0.002) in 2,790 Graves’
disease patients and 3,472 healthy controls, but subgroup
analysis revealed a genetic impact on Europeans and not in
Asians [11]. A meta-analysis demonstrates that TNF-α at
308G/A and IL-6 at 174G/C polymorphisms exhibit in-
creased hyperthyroidism risk in Caucasians. However,
Asians show different genetic polymorphisms for hyper-
thyroidism risk: IL-1α at 889 C/T, IL-1β at 511C/T, IL-6 at
174G/C, IL-6 at 572G/C, and IL-10 at 1,082 A/G poly-
morphisms [10].

Although genetic impacts and lifestyles are known to
influence the risk of hyperthyroidism, no study has yet
addressed the effects of their interactions. )is study tested
the hypothesis that polygenetic variants involved in in-
flammation and immunity are associated with hyperthy-
roidism risk and interact with metabolic parameters and
nutritional intakes. )is hypothesis was evaluated in adult
participants aged >40 of a hospital-based urban cohort from

2004–2013, a part of the Korean Genome and Epidemiology
Study (KoGES).

2. Materials and Methods

2.1. Participants and Hyperthyroidism Criteria. Korean
middle-aged and elderly adults (age >40 years, n� 58,645)
voluntarily participated in the KoGES study during
2004–2013, which was organized by the Korean Center for
Disease and Control and approved by the Institutional
Review Boards of the Korean National Institute of Health
(KBP-2015-055) and Hoseo University (1041231-150811-
HR-034-01). All participants provided informed consent in
writing.

Participants who were previously diagnosed with hy-
perthyroidism by a physician were considered as cases
(hyperthyroidism), while the rest were designated as con-
trols. Hyperthyroidism is involved in Graves’ disease, sub-
acute thyroiditis, silent thyroiditis, and autonomous
functional thyroid nodules, but the disease related to hy-
perthyroidism was not specified in the KoGES. However,
18,716 participants had not been examined for diagnosis of
hyperthyroidism, and 288 participants did not answer the
hyperthyroidism diagnosis question. )ese 19,004 partici-
pants were eliminated from the analysis. After these ex-
clusions, 39,641 participants (842 cases and 38,799 controls)
constituted for genetic-related analysis in the present study
cohort. Among the participants with hyperthyroidism
history, 312, 276, and 254 participants (37.0, 32.8, and
30.2% among the participants having hyperthyroidism)
were completely cured, taking medication, and no
treatment, respectively. All 842 participants with hyper-
thyroidism history were included in the genetic analysis
since the genetics were not changed regardless of treat-
ment and complete remission. However, the 312 partic-
ipants with complete remission were not included in the
statistical analysis of clinical and lifestyle parameters,
including nutrient intake, since lifestyles interacted with
hyperthyroidism.

2.2.GeneralCharacteristics andAnthropometric andBiochemical
Measurements. General personal data, including age, edu-
cation, income, smoking history, alcohol consumption, and
physical exercise, were surveyed with a health interview [12].
Education and income level were divided into three groups
as previously described [13]. Smoking status was categorized
into current smoker, past smoker, and never-smoker,
according to more than 100 cigarettes last six months [13].
Alcohol consumption was calculated by frequency and
drinking amounts at a time (g/day), and the participants
were categorized into nondrinker (0), mild drinker (0–20),
and moderate drinker (>20) (Table 1) [13].

All participants had over 12–16 h fasting for food and
drink, and the anthropometry and biochemical measure-
ment proceeded. A skilled technician measured each par-
ticipant’s body weight, height, and waist circumferences
according to a standardized procedure [14]. Body mass
index (BMI) was calculated by dividing weight in kilograms
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by height inmeters squared. Plasma and serum samples were
collected for biochemical analysis [14]. Serum total cho-
lesterol, HDL, triglyceride, and plasm glucose concentra-
tions were assessed using aHitachi 7600 Automatic Analyzer
(Hitachi, Tokyo, Japan). White blood cell (WBC) counts
were obtained using EDTA-treated blood. Blood pressures
were measured on right arms at heart height in a sitting
position three times, and average values were used for blood
pressure.

2.3. Daily Nutrient Intake and Dietary Pattern Analysis.
Usual dietary intake during the last year was estimated using
a semiquantitative food frequency questionnaire (SQFFQ)
developed and validated by the committee of KoGES. An
SQFFQ validated for KOGES was used [15]. 56,934 par-
ticipants completed this questionnaire, which requested
consumption information regarding frequencies and
amounts of 106 food items with assigned serving sizes. )e
intake of 23 nutrients were estimated using a Computer-
Aided Nutritional Analysis Program 3.0 developed by the
Korean Nutrition Society [15].

)e 106 food items were categorized into 29 food groups
used as independent variables in a factor analysis to classify
dietary patterns. )e number of factors was determined
using eigenvalues of >1.5 in principle component analysis,
and the orthogonal rotation procedure (Varimax) was ap-
plied to determine dietary patterns [16]. Dietary factor-
loading values of ≥0.40 were accepted as an indication of
significant contributions to dietary patterns.

2.4. Dietary Inflammatory Index (DII). )e DII was com-
piled utilizing the dietary inflammatory weightings of foods
and nutrients (energy, 32 nutrients, 4 food products, 4
spices, and caffeine). Literature-based dietary inflammatory
weightings were used [17]. Since intake of spices was not
included in the SQFFQ, garlic, ginger, saffron, and turmeric
intakes were excluded from DII calculations, which were
performed by multiplying the dietary inflammatory weights
of the 38 individual dietary components by their daily in-
takes and dividing the sum of these food items by 100.

2.5. Quality Control of Genotyping. Genetic variant data were
received from the Center for Genome Science at the Korea
National Institute ofHealth. GenomicDNAwas separated from
whole blood and genotyped using a Korean Chip (Affymetrix,
Santa Clara, CA). )is chip included known disease-related
single nucleotide polymorphisms (SNPs) and was developed to
study associations between Korean genetic variants and diseases
[18]. Bayesian Robust Linear Modeling combined with the
Mahalanobis Distance Genotyping Algorithm was used to as-
sess genotype accuracy [19]. )e accepted DNA samples
conformed with the following criteria: genotyping accuracy
(≥98%), missing genotype call rates (<4%), repeated hetero-
zygosity (<30%), or no gender biases. Genetic variants were also
required to satisfy HWE inclusion criteria (P> 0.05) [15].

2.6. Generation of the Best Model for Gene-Gene Interactions
by Generalized Multifactor Dimensionality Reduction
(GMDR). Figure 1 illustrates the method used to determine

Table 1: Nutrient intake and dietary patterns of the participants according to hyperthyroidism.

No-hyperthyroidism (n� 38,799) Hyperthyroidism (n� 530) Adjusted OR (95% CI)1

Energy intake (<EER (%)) 95.9± 0.162 97.2± 1.07 1.088 (0.941 1.257)
CHO intake (<65 En%) 71.6± 0.04 72.3± 0.24∗∗∗ 1.382 (1.108–1.723)
Protein intake (<15 En%) 13.4± 0.01 13.2± 0.09 0.909 (0.760–1.087)
Fat intake (<20 En%) 14.0± 0.03 13.5± 0.182∗∗ 0.811 (0.638–1.030)
Fiber intake (<5 g) 5.62± 0.01 5.75± 0.08 1.072 (0.846–1.222)
Ca intake (<500mg/d) 441± 1.15 445± 7.74 1.169 (1.005–1.358)
Na intake (2300mg/d) 1384± 3.53 1401± 2.39 1.095 (0.939–1.278)
Seaweed intake (<2.6 g/day) 1.94± 0.01 1.99± 0.07 1.172 (0.995–1.375)
V–C intake (<100mg/d) 103± 0.33 107± 2.26 1.061 (0.908–1.239)
Dietary inflammation index (<10.0) 1919± 7.52 1973± 51 1.053 (0.886–1.252)
Traditional-balanced diet4 25295 (65.2)3 372 (70.2) 1.144 (0.969–1.351)
Western-style diet4 26215 (67.6) 309 (58.4)∗∗ 0.818 (0.699–0.957)
Rice-based diet4 19989 (51.5) 258 (48.6) 0.958 (0.824–1.115)
Coffee intake (number (%))
Low (<3C/week) 14,014 (36.1) 222 (41.8)∗∗ 1
Medium (3–10C/week) 24,414 (62.9) 306 (57.7) 0.901 (0.777–1.045)
High (≥10C/week) 375 (0.97) 3 (0.59) 0.626 (0.231–1.697)
Alcohol intake (number, (%))
No 21288 (54.9) 373 (70.4)∗∗∗ 1
Mild drink (0–20 g) 858 (2.21) 12 (2.26) 0.761 (0.467–1.240)
Moderate drink (≥20 g) 16657 (42.9) 145 (27.3) 0.749 (0.631–0.891)
Exercise5 (yes; number, (%)) 21,173(54.8) 292 (55.1) 1.019 (0.882–1.177)
1 Adjusted odds ratio (ORs) after adjusting for covariates including age, gender, residence areas, initial menstruation age, menopause, pregnancy experience,
income, education, energy intake, smoking status, physical activity, WBC counts, alcohol intake, autoimmune diseases, including asthma, rheumatoid
arthritis, and allergy, seaweed intake, and survey year using logistic regression models. )e values represent adjusted means± standard errors2 for continuous
variables or number (percentage) of the categorical variables3. )e cutoff points: 5 <75th percentile intake of each dietary pattern and 5 physical exercises with
moderate activity (3 times a week).∗ Significant difference from the no-hyperthyroidism group (control) at P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001.
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polygenetic risk scores (PRSs) for the hyperthyroidism risk.
1. Participants were dichotomized into cases (n� 842) and
controls (n� 38,799). A genome-wide association study
(GWAS) using PLINK version 2.0 (http://pngu.mgh.
harvard.edu/∼purcell/plink) was used to identify genetic
variants associated with hyperthyroidism risk, and genetic
variants were accepted under the P< 0.00001.2,587 genetic
variants were accepted, and the corresponding gene names
were identified using scandb.org. )e 863 genetic variants
without corresponding gene names were removed. Genes
corresponding to the selected SNPs for hyperthyroidism risk
were screened for “inflammation” and “thyroid”. )e 38
SNPs selected were subsequently checked for linkage dis-
equilibrium (LD) with selected genetic variants in the same
chromosomes using LocusZoom (http://genome.sph.umich.
edu/wiki/LocusZoom _Standalone). )ose with strong LDs
were removed since they provided similar information
concerning the risk of hyperthyroidism. Finally, ten po-
tential genetic variants were accepted for constructing the
best model.

)e best gene-gene interaction model for hyperthy-
roidism risk was evaluated by trained balanced accuracy
(TRBA), test balance accuracy (TEBA), and crossvalidation
consistency (CVC) using GMDR analysis [17]. )e best
gene-gene interaction model was chosen in the GMDR test

by the sign rank test of TRBA and TEBA values with co-
variate adjustments for age, gender, residence area, educa-
tion, family income, and BMI. )e statistical significance in
the sign test was determined with a P value <0.05. CVC was
checked by 10-fold crossvalidation since the sample size
exceeded 1000 [17]. )e risk allele of each best model SNP
was counted as 1, and PRSs were calculated as the sum of the
risk allele scores of each SNP in the best model [20]. For
example, if the C allele was associated with a higher risk of
hyperthyroidism, TT, CT, and CC were assigned 0, 1, and 2.
Best models with 6 or 7 SNPs were categorized as (0–3, 4–6,
and ≥7) and (0–4, 5–7, and ≥8), respectively. Each group was
designated as the low, medium, and high PRS group.

2.7. Statistical Analyses. Statistical analyses were conducted
using Plink and SAS version 9.3 (SAS Institute, Cary, NC,
USA). A descriptive statistics for categorical variables (e.g.,
gender and lifestyle) were calculated based on frequency
distributions by three PRS groups. Chi-squared tests were
used for assessing frequency distributions of categorical
variables. Adjusted means and standard errors were cal-
culated for continuous variables based on the presence or
absence of hyperthyroidism. Statistical differences between
case and control groups were conducted using the analysis of

To make genotyping of 58,645 participants aged 40-79 years with Korean Chip
in City cohorts of KoGES

To select SNPs related with hyperthyroidism by logistic regression in case
(hyperthyroidism diagnosis; n=842) and control (without experience of

hyperthyroidism; n=38,799) groups

To select 2,587 SNPs to be involved in hyperthyroidism selected from the GWAS
at P<0.00001.

To find the gene name of the selected 863 SNPs in scandb.org and select SNPs

To select 38 genetic variants related to genes in immunity that are potential
mechanisms to induce hyperthyroidism by genemania.org

To conduct linkage disequilibrium (LD) analyses in the same chromosome of
the selected SNPs for GMDR and choose 10 SNPs with r2<0.4 in LD analysis

To selection the best model for gene-gene interaction involved in
hyperthyroidism by TRBA, TEBA, and CVC in the models from GMDR

To construct the polygenetic risk scores (PRS) from genetic variants of the best
model

To categorized 3 groups by the tertiles of the polygenetic risk scores of the
best model for gene-gene interaction

To analyze the association of hyperthyroidism and PRS of the best model
and gene-lifestyle interaction (n=38,487; control: n=37,957; hyperthyroidism: n=530)

Removed 19,004
subjects who did
not answer for

hyperthyroidism
diagnosis.

Removed 312
subjects who

cured
hyperthyroidism

for lifestyle
interactions

Figure 1: Flow chart to generate polygenetic risk score system influencing hyperthyroidism risk.
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covariance (ANCOVA) after adjusting for covariates. Ad-
justed ORs and 95% confidence intervals for hyperthy-
roidism according to the three groups of PRSs were
determined by multiple regression analysis after covariate
adjustment. Participants were separated into high and low
dietary intake groups to investigate interactions among PRS
and dietary intake parameters. Two-way ANCOVA with
main effects and an interaction term was used to investigate
interactions between PRS and lifestyle parameters after
adjusting for covariates. P values< 0.05 were considered to
be statistically significant.

3. Results

3.1. General, Anthropometry, and Biochemical Characteristics
ofParticipantswithHyperthyroidism. )e adjustedmean age
of hyperthyroidism (n� 530) was higher than that of con-
trols (n� 38,799), but age was not associated with hyper-
thyroidism risk (Table 2). Covariates included gender, age,
area of residence, surveyed year, body mass index (BMI),
smoking, alcohol, education, job, income, energy intake,
arthritis, and dermatitis medicine intake. )e average age of
hyperthyroidism diagnosis was 47.7 years. Women had a 3-
fold higher risk of hyperthyroidism than men (Table 2).
Adjusted means of BMI and serum total cholesterol con-
centrations were small but significantly lower for cases than
controls (Table 2). No significant association was found
between metabolic syndrome (MetS) or its components and
hyperthyroidism risk. )yroid cancer had a much higher
prevalence among cases than controls, and hyperthyroidism
risk was 2.9-fold higher in participants with thyroid cancer.
Adjusted mean serum high-sensitivity C-reactive protein
(hs-CRP) concentration was greater in cases than controls,
but inflammation index, white blood cell (WBC) count, and
serum hs-CRP concentrations were similar (Table 2). Dif-
ferences in the education or income status between cases and
controls were not significant, and education and income
status exhibited no significant associations with hyperthy-
roidism risk after the adjustment for covariates (gender, age,
residence area, surveyed year, BMI, smoking, alcohol, ed-
ucation, job, income, energy intake, arthritis, and dermatitis
medicine intake) (Table 2).

3.2. Lifestyles and Nutrient Intakes. Since nutrient intake
differences were analyzed between hyperthyroidism and
control, the participants who had complete remission for
hyperthyroidism on the survey day were excluded for nu-
trient analysis (hyperthyroidism group: n� 530; control
group: n� 38,799). After adjusting for designated covariates,
energy intakes were similar in the hyperthyroidism and
control groups (Table 1). Carbohydrate intake was higher,
and fat intake was lower in the hyperthyroidism group, and
significant intergroup differences were not observed for
protein, fiber, Ca, or Na intakes (Table 1). Seaweed and
vitamin C intakes and dietary inflammatory index (DII)
were also not significantly different between the control and
hyperthyroidism groups. Korean balanced dietary (KBD)
and rice-based diet (RBD) categorized by principal

component analysis did not differ between the two groups
(Table 1). KBD included beans, potatoes, kimchi, vegetables,
fish, chicken, milk, fruits, and tea. Western-style diet (WSD)
was composed of eggs, processed meat, noodles, soups, and
RBD, mainly rice (Supplemental Table 1). However, par-
ticipants with a high WSD intake had a lower prevalence of
hyperthyroidism than controls (Table 1); and the risk of
hyperthyroidism was 0.818-fold lower for participants with a
high WSD intake (Table 1). Alcohol and coffee intakes
differed significantly between the case and control groups,
but no significant association with hyperthyroidism was
evident (Table 1). Furthermore, daily regular exercise and
alcohol consumption were not significantly associated with
hyperthyroidism risk after covariate adjustments (Table 2).

3.3. Genetic Variants Associated with Hyperthyroidism Risk
and Gene-Gene Interactions between the Genetic Variants by
GMDR. For genetic variants associated with hyperthy-
roidism risk by a genome-wide association study (GWAS),
we selected genetic variants exhibiting gene-gene interac-
tions using GMDR. Ten genetic variants involved in auto-
immunity and inflammation were utilized in the GMDR
analysis. )e genetic characteristics of the 10 SNPs are
shown in Table 3. Seven SNPs were positively (OR>1) and
three were negatively associated with hyperthyroidism risk
(0<OR<1). Seven SNPs were located in chromosome 6
(6p21) and were involved in inflammation and autoim-
munity (Table 3). For all SNPs, the P value of the Har-
dy–Weinberg equilibrium (HWE) was >0.05, indicating all
met the HWE criterion (P> 0.05). )ese SNPs were not
associated with thyroid cancer.

After conducting GMDR, the best gene-gene interaction
models included 6 and 7 genetic variants. )e best model
with 6 SNPs included microRNA 36891 (MIR3681), cyto-
toxic T-lymphocyte-associated antigen 4 (CTLA4), lipoma-
preferred partner (LPP), mucin 22 (MUC22), tumor necrosis
factor (TNF), and major histocompatibility complex, class I,
J (Pseudogene; HLA-J) after adjusting for age and gender
(adjustment 1) or age, gender, survey year, residence area,
and BMI (adjustment 2, Table 4). )e best 7-SNP model
included the 6 SNPs in the 6-SNP model plus testis-
expressed basic protein 1 (TSBP1). )ese 6- and 7-SNP
models had trained balanced accuracy (TRBA) of 0.5888 and
0.6172, and a test balance accuracy (TEBA) of 0.5221 and
0.5193, respectively, after adjusting for age, gender, seaweed
intake, and BMI (adjustment 2, P< 0.001). Crossvalidation
consistency (CVC) for both models was 10/10 (Table 4).
)ese results indicated that the 6- and 7-SNP models
exhibited gene-gene interactions that influenced the genetic
risk of hyperthyroidism.

3.4. Association between Polygenetic Risk Scores (PRSs) and
HyperthyroidismRisk. )e PRS was constructed from the 6-
or 7-SNP model among the GMDR models. PRSs were
categorized into three groups (low, medium, and high PRS).
In the 6- and 7-SNP models, a high PRS increased hyper-
thyroidism risk by 1.62- and 1.94-fold, respectively, com-
pared with a low PRS (Figure 2). )e 6- and 7-SNP models
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were subjected to two adjustments to include different
covariates. Adjustment 1 included age, gender, residence
area, survey year, BMI, education, job, and income as
covariates, and adjustment 2 included age, gender, residence
area, survey year, smoking, alcohol, education, job, income,
energy, activity, hypertension, milk, percent fat intake,
percent carbohydrate percent intake, and arthritis and
dermatitis medicine intakes. Because the 7-SNPmodel had a
higher adjusted odds ratio (ORs) for hyperthyroidism risk
than the 6-SNP model, it was used for further analysis.
Notably, no significant association was observed between
MetS or its components and PRS calculated using the 6- or

7-SNP models (data not shown), indicating that PRS ob-
tained using the 6- and 7-SNP models were not uniquely
associated with hyperthyroidism.

3.5. Genetic Interactions of Lifestyles with Hyperthyroidism
Risk. )e interaction between age and PRS from the 7-SNP
model influenced hyperthyroidism risk. A high PRS indi-
cated a much greater risk of hyperthyroidism than a low PRS
in participants aged <55 years but not in participants aged
≥55 years (Table 5). )e prevalence of hyperthyroidism was
much greater in participants <55 years old with a high PRS

Table 3: Characteristics of the ten genetic variants of genes in hyperthyroidism used for the generalized multifactor dimensionality
reduction analysis.

Chr1 SNP2 Position Mi3 Ma4 OR5 P value for ORs6 MAF7 P value for HWE8 Gene Functional
consequence

2 rs1881145 12634278 T A 0.90 (0.85–0.96) 7.48.E-04 0.3495 0.8488 TRIB2 Intron
2 rs231775 204732714 A G 0.88 (0.82–0.94) 5.54.E-05 0.2938 0.7959 CTLA4 Intron
3 rs6780858 188132110 G A 0.90 (0.85–0.96) 6.01.E-04 0.365 0.5449 LPP Intron
6 rs1304322089 30990958 T C 1.18 (1.10–1.26) 5.08.E-06 0.1805 0.4865 MUC22 Intron
6 rs1800610 31543827 A G 1.21 (1.13–1.30) 9.51.E-08 0.1921 0.6802 TNF Intron
6 rs767861647 29976789 C T 1.13 (1.06–1.20) 1.02.E-04 0.3008 0.486 HLA-J Intron
6 rs3117138 32306970 C A 1.28 (1.18–1.39) 4.69.E-09 0.1163 0.4574 TSBP1 Intron
6 rs79142022 32806673 C T 1.56 (1.29–1.88) 4.06.E-06 0.0162 0.06767 TAP2 Upstream
6 rs78117616 33603142 C G 1.60 (1.29–2.0) 2.69.E-05 0.0121 0.601 ITPR3 Intron
8 rs7002063 31803534 A G 1.15 (1.08–1.22) 1.41E-05 0.270 0.516 NRG1 Upstream
1 Chromosome; 2 single nucleotide polymorphism; 3 minor alleles; 4 major alleles; 5 odds ratio (OR) and 95% confidence intervals; 6 P value for OR after
adjusting for age, gender, residence area, survey year, body mass index, daily energy intake, education, and income; 7 minor allele frequency; and 8

Hardy–Weinberg equilibrium. TRIB2, tribbles pseudokinase 2; CTLA4, cytotoxic T-lymphocyte-associated antigen 4; LPP, lipoma-preferred partner;
MUC22, mucin 22; TNF, tumor necrosis factor; HLA-J, human leukocyte antigen, class J; TSBP1, testis-expressed basic protein 1; TAP2, transporter 2, ATP
binding cassette subfamily B member; ITPR3, inositol 1,4,5-trisphosphate receptor type 3; and NRG1, neuregulin 1.

Table 2: Socioeconomic and metabolic characteristics of the participants according to hyperthyroidism.

No hyperthyroidism (n� 38,799) Hyperthyroidism (n� 530) Adjusted ORs (95% CI)15

Age1 (years) 53.7± 0.04 54.6± 0.25∗∗∗ 1.243 (0.967–1.599)
Age during diagnosis2 (years) — 47.7± 0.89
Gender (men: N, (%)) 13,653 (35.2) 70 (13.2)∗∗∗ 3.011(2.253–4.023)
Metabolic syndrome (N, (%)) 5,471 (14.1) 72 (13.6) 0.919 (0.733–1.152)
BMI5 (kg/m2)5 23.9± 0.01 23.4± 0.10∗∗ 0.776 (0.658–0.911)
Waist circumferences6 80.5± 0.04 80.0± 0.27 0.980 (0.813–1.171)
Plasma total cholesterol7 (mg/dL) 198± 0.19 193± 1.27∗ 0.866 (0.728–1.015)
Plasma HDL8 (mg/dL) 54.5± 0.07 54.0± 0.45 1.004 (0.856–1.178)
Plasma triglyceride9 (mg/dL) 126± 0.43 123± 2.84 0.918 (0.775–1.085)
Hypertension10 (N, (%)) 9,506 (24.5) 125 (23.6) 1.029 (0.860–1.239)
Type 2 diabetes11 (N, (%)) 9,968 (25.7) 202 (24.0) 1.107 (0.931–1.324)
)yroid cancer (N, (%)) 321 (0.85) 41 (7.8)∗∗∗ 2.915 (1.905–4.467)
WBC counts12(109/L) 5.71± 0.01 5.67± 0.05 0.898 (0.771–1.036)
Plasma hs-CRP13 (ng/mL) 0.14± 0.002 0.17± 0.02∗ 0.879 (0.563–1.37)
Education14 (number, (%))
<High school 6,945 (17.9) 110 (20.5) 1
High school, college 8,574(22.1) 110 (20.5) 0.863 (0.681–1.094)
College and more 23,279 (60.0) 310 (58.5) 0.863 (0.681 1.094)
)e values represent adjusted means± standard errors or number (percentage) of the subjects.)e cutoff points of the reference were as follows: <55 years for
age; 50 years for hyperthyroidism diagnosed age; <15 years old for initial menstruation age; <50 years old for menopause age; < 25 kg/m2 body mass index
(BMI); < 90 cm for men and 85 cm for women waist circumferences; <230mg/dL plasma total cholesterol concentrations; >40mg/dL for men and 50mg/dL
for women plasma HDL cholesterol; <150mg/dL plasma triglyceride concentrations; <140mmHg SBP, 90mmHg DBP plus hypertension medication;
<126ml/dL fasting serum glucose plus diabetic drug intake; <4×109/L white blood cell (WBC) counts; <0.5mg/dL serum high-sensitivity C-reactive protein
(hs-CRP) concentrations; high school graduation; adjusted odds ratio (ORs) and 95% confidence intervals (CI) after adjusting for covariates, including age,
gender, residence areas, initial menstruation age, menopause, pregnancy experience, income, education, energy intake, seaweed intake, smoking status,
physical activity, WBC counts, alcohol intake, autoimmune diseases including asthma, rheumatoid arthritis, and allergy, and survey year.
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than a low PRS (Supplemental Fig. S1A). However, no in-
teraction was observed between gender and PRS (P � 0.31).
Interestingly, PRS interacted with hyperthyroidism risk
(P � 0.017): PRS was positively associated with hyperthy-
roidism risk only in the participants without MetS
(OR� 2.28, P< 0.001; Table 5) but not in the participants
with MS (Table 5). )e hyperthyroidism frequencies were
much higher in the high PRS than the low PRS, only in the
participants without MetS, but there was no difference in
hyperthyroidism incidence among the PRS groups in the
participants with MetS (Supplemental Fig. S1B). )ese re-
sults suggest that MetS offsets the genetic impact on hy-
perthyroidism risk. )e BMI and PRS did not interact to
influence hyperthyroidism risk (Table 5).

)e interaction between energy intake and PRS affected
hyperthyroidism risk (P � 0.008; Table 5). Among partici-
pants with a low energy intake, the prevalence of hyper-
thyroidism was much higher in those with a high PRS than a
low PRS, but no significant energy intake×PRS interaction
was observed among participants (Supplemental Fig. S1C).
Furthermore, no interactions were found for carbohydrate
(P � 0.448), protein (P � 0.429), fat (P � 0.097), or fiber
(P � 0.707) intakes. However, daily Ca intake interacted
with PRS (P � 0.013). Among participants, a high PRS was
positively associated with hyperthyroidism risk only in those
with a low Ca intake (Supplemental Fig. S1D). On the other
hand, food, fruit, vegetable, and alcohol intakes did not
interact with PRS (Table 5), but interestingly, seaweed
(P � 0.020), milk (P< 0.0001), and coffee (P � 0.019) in-
takes did interact with PRS (Table 5). )e participants with a
low PRS had a much higher prevalence of hyperthyroidism
than those with a high PRS and low intake of milk, seaweed,
or coffee (Supplemental Fig. S1E–Fig. S1G). DII scores were
also found to interact with PRS to influence hyperthyroidism

Table 4: Generalized multifactor dimensionality reduction (GMDR) of genetic variant-genetic variant interaction of genes related to
inflammation and immunity for hyperthyroidism risk.

GMDR Adjusted for sex and age Adjusted for sex, age, seaweed,
and BMI

Model TRBA1 TEBA2 P value3 CVC5 TRBA TEBA P value4 CVC
TNF_rs1800610 0.5243 0.5206 10 (0.0010) 9/10 0.5249 0.5211 10 (0.0010) 9/10
MUC22_rs1304322089 plus model 1 0.5314 0.5264 10 (0.0010) 6/10 0.5317 0.5213 10 (0.0010) 4/10
MIR3681_rs1881145 plus model 2 0.5388 0.5224 9 (0.0107) 7/10 0.5391 0.5185 9 (0.0107) 4/10
MIR3681_rs1881145 CTLA4_rs231775 LPP_rs6780858
HLA-J_rs767861647 0.5465 0.5137 9 (0.0107) 3/10 0.5473 0.5186 9 (0.0107) 4/10

TNF_rs1800610 plus model 4 0.5622 0.5181 9 (0.0107) 8/10 0.5624 0.5205 9 (0.0107) 8/10
CTLA4_rs231775 LPP_rs6780858 HLA-J_rs767861647 plus
model 3 0.5880 0.5205 9 (0.0107) 10/10 0.5888 0.5221 10 (0.0010) 10/

10

TSBP1_rs3117138 plus model 6 0.6164 0.5168 9 (0.0107) 10/10 0.6172 0.5193 9 (0.0107) 10/
10

NRG1_rs7002063 plus model 7 0.6454 0.5211 8 (0.0547) 10/10 0.6462 0.5221 10 (0.0010) 10/
10

TSBP1_rs3117138 ITPR3_rs78117616 plus model 7 0.6515 0.5158 8 (0.0547) 7/10 0.6522 0.5193 9 (0.0107) 6/10

TAP2_rs79142022 plus model 9 0.6550 0.5176 9 (0.0107) 10/10 0.6558 0.5228 9 (0.0107) 10/
10

1 Trained balanced accuracy; 2 test balance accuracy; 3,4 P value for the significance of GMDRmodel by sign test. 3 without and 4 with adjusting for covariates; 5

crossvalidation consistency; and BMI, body mass index.
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Figure 2: Adjusted odds ratio (ORs) and 95% confidence intervals
(CIs) of the PRSs of 5- and 6-SNPmodels generated assessing gene-
gene interactions associated with hyperthyroidism risk. )e best
GMDR models with 6 SNPs and 7 SNPs were calculated by the
summation of the number of risk alleles of six and seven SNPs, and
the calculated PRSs were divided into three categories (0–3, 4–6,
and ≥7) and (0–4, 5–7, and ≥8), respectively, as the low PRS,
medium PRS, and high PRS groups. )e adjusted OR was analyzed
by logistic regression with the covariates including age, gender,
residence areas, initial menstruation age, menopause, pregnancy
experience, income, education, energy intake, seaweed intake,
smoking status, physical activity, WBC counts, alcohol intake,
autoimmune diseases, and survey year.)e reference group was the
low PRS in logistic regression. Red and blue boxes indicated the
adjusted ORs for five SNPs and six SNPs, respectively, and the lines
through red and blue boxes indicated 95% CIs.
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risk (P � 0.0499). Among participants with low DII scores,
the prevalence of hyperthyroidism was much higher in those
with a high PRS than a low PRS, but no significant difference
was observed among participants with high or low DII
scores (≥75th percentile; Supplemental Fig. S1H). Daily

regular exercise and smoking status showed no interaction
with PRS (Table 5).

A KBD pattern included the consumption of beans,
potatoes, kimchi, green and white vegetables, mushrooms,
fatty and white fish, seaweeds, fruits, and pickles (loading

Table 5: Adjusted odds ratio and 95% confidence intervals for hyperthyroidism by the PRS with 7 SNPs after covariate adjustments
according to age, gender, metabolic syndrome, and nutrient intake.

Low PRS (N� 15,403) Medium PRS (N� 20,929) High PRS (N� 2,997) Gene-nutrient interaction P value
Less aged people1 1 1.434 (1.152–1.786) 2.850 (1.771–4.588) 0.0366More aged people 1.135 (0.572–2.255) 1.135 (0.572–2.255)
Men 1 1.172 (0.773–1.778) 2.856 (1.187–6.871) 0.3095Women 1.276 (1.080–1.507) 1.811 (1.176–2.787)
Without MetS 1 1.338 (1.130–1.583) 2.278 (1.530–3.391) 0.0165With MetS 1 0.882 (0.590–1.319) 0.352 (0.048–2.590)
Low BMI2 1 1.345 (1.121–1.613) 2.170 (1.402–3.359) 0.1745High BMI 1.046 (0.777–1.409) 1.389 (0.596–3.236)
Low energy intake3 1 1.199 (0.975–1.474) 2.740 (1.742–4.310) 0.0084High energy intake 1 1.350 (0.997–1.719) 1.027 (0.474–2.229)
Low CHO4

1 1.561 (1.174–2.077) 2.573 (1.376–4.813) 0.4478High CHO 1.153 (0.958–1.387) 1.720 (1.048–2.823)
Low protein5 1 1.144 (0.926–1.414) 1.983 (1.168–3.370) 0.4287High protein 1.415 (1.126–1.778) 1.960 (1.111–3.456)
Low fat6 1 1.114 (0.924–1.343) 2.021 (1.271–3.215) 0.0972High fat 1.639 (1.240–2.167) 1.885 (0.932–3.815)
Low fiber7 1 1.261 (1.057–1.505) 2.126 (1.388–3.255) 0.7071High fiber 1.418 (0.559–3.593) 1.265 (0.915–1.749)
Low Ca8 1 1.192 (0.960–1.480) 2.835 (1.764–4.555) 0.0131High Ca 1.333 (0.999–1.715) 1.115 (0.561–2.218)
Low seaweed9 1 1.276 (0.939–1.733) 3.433 (1.881–6.265) 0.0201High seaweed 1.262 (1.081–1.473) 1.956 (1.328–2.880)
Low vegetables10 1 1.302 (1.090–1.555) 2.195 (1.432–3.365) 0.7468High vegetables 1.133 (0.826–1.554) 1.252 (0.496–3.160)
Low fruits11 1 1.211 (1.011–1.451) 2.186 (1.415–3.377) 0.2953High fruits 1.425 (1.052–1.930) 1.412 (0.602–3.313)
Low milk12 1 1.221 (1.008–1.479) 2.908 (1.923–4.396) <0.0001High milk 1.346 (1.034–1.752) 0.343 (0.084–1.401)
Low DII13 1 1.381 (1.018–1.873) 3.451 (1.823–6.533) 0.0499High DII 1.225 (0.998–1.456) 1.514 (0.925–2.477)
Low coffee14 1 1.053 (0.829–1.336) 2.443 (1.421–4.201) 0.0189High coffee 1.431 (1.167–1.756) 1.615 (0.925–2.823)
Low alcohol15 1 1.291 (1.075–1.550) 1.681 (1.024–2.758) 0.3348High alcohol 1.184 (0.884–1.585) 2.567 (1.375–4.791)
Nonsmoking 1 1.305 (1.104–1.541) 1.836 (1.193–2.825) 0.1947Former + current smoking 1.020 (0.668–1.558) 2.700 (1.120–6.513)
No exercise16 1 1.361 (1.082–1.712) 2.025 (1.127–3.641) 0.6968Exercise 1.198 (0.972–1.477) 1.893 (1.131–3.169)
Low KBD17

1 1.262 (1.081–1.473) 1.956 (1.328–2.880) 0.7043High KBD 1.216 (1.006–1.469) 1.960 (1.220–3.147)
Low WSD17

1 1.227 (1.056–1.426) 1.830 (1.254–2.673) 0.8925High WSD 1.234 (1.030–1.477) 1.774 (1.107–2.842)
Low RBD17

1 1.202 (0.998–1.493) 1.806 (1.208–2.650) 0.0638High RBD 1.117 (0.930–1.341) 1.558 (0.951–2.552)
Values represent the odds ratio and 95% confidence intervals. PRS with 7 SNPs was divided into three categories (0–4, 5–7, and ≥8) by tertiles as the low, medium,
and high PRS groups of the best model of GMDR. )e cutoff points were as follows: 1 <55 years old, 2 <25 kg/m2 BMI, 3 <estimated energy intake, 4 < 70%
carbohydrate (CHO) intake, 5< 13% protein intake, 6< 15% fat intake, 7< 5 g/d fiber intake, 8< 500mg/d Ca intake, 9 <2.65 g/day seaweed intake, 10< 160 g/d
vegetable intake, 11< 82 g/d fruits intake, 12< 150ml/d milk, 13< 10.0 scores of dietary inflammation index (DII), 14< 3 cup/week coffee intake, 15< 20 g/d alcohol
intake, 16<moderate exercise 30min/d for 3 times/week, and 17 <75th percentile of each dietary pattern. Multiple logistic regression models include the
corresponding main effects, interaction terms of SNPs and main effects (energy and nutrient intake), and potential confounders such as age, gender, residence
areas, initial menstruation age, menopause, pregnancy experience, income, education, energy intake, seaweed intake, smoking status, physical activity, WBC
count, alcohol intake, autoimmune diseases including asthma and allergy, hyperthyroid treatments, and survey year. Multiple logistic regression models include
the corresponding main effects, interaction terms of SNPs and main effects (energy and nutrient intake), and potential confounders. Reference was the low-PRS.
KBD, Korean balanced diet intake; WSD, Western-style diet intake; and RBD, rice-based diet intake.
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≥0.4). Participants with a WSD pattern preferentially con-
sumed meat, noodles, soups, and fast foods, and those with
an RBD pattern consumed mainly rice-based dishes (Sup-
plemental Table 1). KBD, WSD, and RBD patterns showed
no interaction with PRS for hyperthyroidism risk (Table 5).

4. Discussion

Hyperthyroidism is associated with a genetic predisposition
in >70% of cases, more than observed in any other metabolic
disease [5]. Hyperthyroidism is a polygenetic disease and is
prevalent in genetic variants related to the immune system
and inflammation. For example, genetic variants of TNF-α,
IL-1, IL-6, and IL-10 have been reported to increase the risk
of hyperthyroidism [9, 11]. However, the risks of hyper-
thyroidism posed by lifestyles, such as food intake, have not
been well-studied, though it has been established that sea-
weed intake is positively associated with hyperthyroidism
risk when the thyroid gland cannot adapt to excess iodine
intake [21]. However, the relation between seaweed con-
sumption and the risk of hyperthyroidism remains unclear
[22], and the influence of interactions among genetic var-
iants and dietary and lifestyle factors on hyperthyroidism
risk have not been examined. We hypothesized that poly-
genetic variants of genes involved in inflammation and
immunity are associated with hyperthyroidism risk and
interacted withmetabolic parameters and nutritional intakes
to modulate the risk of hyperthyroidism. )is hypothesis
was evaluated in 39,641 individuals aged >40 (847 had
hyperthyroidism) who participated in the urban hospital-
based cohort (2004–2013). )e present study is the first
study to demonstrate that PRSs derived from genes asso-
ciated with inflammation and immunity interact with MetS
parameters and food intake to modulate the risk of
hyperthyroidism.

)e most prevalent causes of hyperthyroidism in Korea
in decreasing order are Graves’ disease (82.7%), subacute
thyroiditis (13.3%), painless thyroiditis (3.5%), and toxic
adenoma (0.5%) [23]. )erefore, most hyperthyroidism
might be related to Graves’ disease in the present study. )e
primary cause of hyperthyroidism was Graves’ disease, an
autoimmune disease associated with high levels of anti-
bodies to the TSH receptor and manifesting as low serum
levels of TSH, stimulating the thyroid gland to produce T3
and T4 [23]. )yroiditis is related to viral attack or antibody
production to thyroid antigen via CD4 )1 response, which
results in progressive destruction of the thyroid gland [24].
)us, autoimmune responses are the potential cause of
hyperthyroidism. Autoimmune diseases such as allergies,
arthritis, and asthma were used as covariates in the present
study.

Some genetic variants that increase the risk of hyper-
thyroidism have been reported to be related to immunity and
inflammation. TRIB2 rs1881145 has been associated with
Graves’ disease in a Chinese study [25]. Furthermore, the
CTLA4 gene has a critical immunomodulatory function in
maintaining peripheral self-tolerance, and the CTLA4 gene
variants +49 A/G and CT 60 A/G were found to be associated
with Graves’ disease in a Kashmiri population [26]. )e

present study also showed that CTLA4 rs231775 is associated
with hyperthyroidism. A few studies have investigated HLA-J
and established that its expression is elevated in breast cancer
biopsies and that this is associated with the overexpression of
estrogen receptor 1 (ESR1), which has immunosuppressive
activities [27]. In addition, the overexpression of HLA-J after
neoadjuvant chemotherapy has been reported to be associated
with reduced survival rates in breast cancer [27], which
suggests altered immune evasion caused by HLA-J
rs767861647 mutation might be involved in breast cancer
progression. Furthermore, several genes, including TNF,
mucin 22 (MUC22), testis-expressed basic protein 1 (TSBP1),
transporter 2, ATP binding cassette subfamily B member
(TAP2), and inositol 1,4,5-trisphosphate receptor type 3
(ITPR3) located near the HLA-J gene in chromosome 6 were
found to be related to hyperthyroidism risk in the present
study. TAP2 is involved in defective major histocompatibility
complex (MHC) class I expression and antigen presentation
in autoimmune diseases, such as celiac disease and type 1
diabetes [28]. TNF has been previously reported to be related
to hyperthyroidism. In patients with Graves’ disease, serum
TNF receptor protein levels were positively correlated with
serum T3 and T4 concentrations and were negatively cor-
related with serum TSH concentrations [29]. Anti-TNF
therapy reduces free T4 concentrations in Graves’ disease
patients [30]. )erefore, the genes selected in the present
study showed the potential to increase hyperthyroidism risk
by modulating immunity and inflammation.

Negative feedback regulates thyroid hormone secretion
through hypothalamus⟶anterior pituitary gland⟶thy-
roid gland axis, and thyrotropin-releasing hormone secreted
by the hypothalamus stimulates a TSH release from the
anterior pituitary and stimulates thyroid hormone release
[31]. TSH is the main stimulator of thyroid hormone se-
cretion, as determined by measuring thyroid hormone’s
blood concentrations [31], a primary regulatory hormone of
energy metabolism. Furthermore, serum TSH concentra-
tions are reportedly associated with weight gain and MetS
[32]. Although thyroid dysfunction commonly enhances
MetS risk [31, 33], most investigations of the relationship
between thyroid dysfunction and MetS have focused on
hypothyroidism. Subclinical and clinical hypothyroidisms
have been demonstrated to be associated with MetS risk and
increased insulin resistance [34], and hyperthyroidism has
also been reported to increase the risk of insulin resistance
and hyperglycemia [34]. However, we did not find an as-
sociation between hyperthyroidism and MetS risk or any
component of MetS in Korean adults aged >40. Nonetheless,
the present study demonstrates that patients with hyper-
thyroidism are at higher risk of thyroid cancer (OR� 2.91)
and that 7.8% of thyroid cancer patients had hyperthy-
roidism, which concurs with previous results, which re-
ported 1.6–21.1% of thyroid cancer patients have
hyperthyroidism [35]. )ese results caution that clinicians
should be aware of the risk of thyroid cancer in hyper-
thyroidism patients.

)e present study showed that genetic variants involved
in immunity and inflammation interact with dietary intake
to modulate the risk of hyperthyroidism. Although dietary
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intake itself was not associated with hyperthyroidism risk,
energy, Ca, milk, coffee, and seaweed intakes interacted
with PRS and influenced hyperthyroidism risk. More
specifically, only participants with a high PRS that con-
sumed low amounts of energy, Ca, milk, coffee, and sea-
weed had a higher risk of hyperthyroidism. Furthermore,
participants with a low DII and a high PRS were at higher
risk of hyperthyroidism than those with a low PRS. In a
previous study, inflammation and oxidative stress are as-
sociated with thyroid dysfunction [36]. However, studies
on relationships between lifestyle-related variables and
hyperthyroidism risk are limited [37], as are studies on
relationships between diet and hyperthyroidism, other than
for seaweeds and iodine.

)yroid hormone contains iodine, and the relationship
between iodine intake and hyperthyroidism has been well-
studied. However, unlike hypothyroidism, the association
between iodine intake and hyperthyroidism remains
equivocal. Koukkou et al. concluded that excessive iodine
intake might contribute to excessive thyroid hormone
synthesis and release, inducing autonomic thyroid function
and increasing the risk of iodine-induced hyperthyroidism
in those living in abundant iodine areas [37]. Bajuk et al.
have reported that high iodine intake reduced the incidence
of iodine-induced hyperthyroidism in Slovakians (P< 0.001)
[38]. Park et al. have demonstrated that excessive iodine
intake did not affect hyperthyroidism in a Korean cohort
[39]. In a longitudinal study, low iodine intake tended to
increase the risk of hyperthyroidism in adults at a young age,
despite subsequent sufficient iodine intake [40]. )ese re-
sults suggest that excessive iodine intake does not stimulate
hyperthyroidism and that iodine restriction diets may
negatively affect the management of hyperthyroidism. In the
current study, seaweed intakes were similar in cases and
controls, but participants with a high PRS and low seaweed
intake had a higher rate of hyperthyroidism than those with
a low PRS in low seaweed intake, though the same was not
observed for high seaweed intake. )ese observations sug-
gest that high iodine intake (>2.65 g seaweed/day) does not
increase hyperthyroidism risk, especially in individuals with
a high PRS.

)e present study has several limitations that warrant
consideration. First, the study was conducted using a
case-control design, and, thus, we cannot comment on
the causality of the effects observed. Second, the history of
hyperthyroidism diagnosed by physicians was used to set
hyperthyroidism criteria, and some control subjects
might not be diagnosed yet, although they may have
hyperthyroidism. )ird, since the diagnosis of hyper-
thyroidism risk was used as a case criterion, thyroid
disease types, such as Graves’ disease and thyroiditis,
were not specified. Fourth, serum T3 and T4 concen-
trations were not measured. Last, food intakes may have
been inaccurate because they were quantified with
semiquantitative food frequency questionnaire (SQFFQ)
responses, which are known to have limitations in de-
termining usual food intakes. Nevertheless, the SQFFQ
used for this study was designed and validated for KoGES.
)e usual food intake was measured during the previous

year, and the dietary intake was not directly related to
hyperthyroidism risk.

5. Conclusion

Women with thyroid cancer history were at about a 3-fold
risk of hyperthyroidism than men and those with no thyroid
cancer experience. Carbohydrate intake was positively as-
sociated with hyperthyroidism risk, whereas WSD and al-
cohol intake were negatively associated. Inflammation and
immunity-related genetic variants exhibited SNP-SNP as-
sociations with hyperthyroidism risk. Furthermore, the PRS
was found to interact with age, MetS, and dietary intake.
)ese results suggest that hyperthyroidism is associated with
genetic factors that impact inflammation and immunity and
that lower intakes of energy, Ca, seaweed, milk, and coffee
intake are related to increasing hyperthyroidism risk. After
conducting randomized clinical trials or prospective studies,
these results can be applied to personalized nutrition to
prevent or alleviate hyperthyroidism risk.
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