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Abstract: The push for non-thermal food processing methods has emerged due to the challenges
associated with thermal food processing methods, for instance, high operational costs and alteration
of food nutrient components. Non-thermal food processing involves methods where the food
materials receive microbiological inactivation without or with little direct application of heat. Besides
being well established in scientific literature, research into non-thermal food processing technologies
are constantly on the rise as applied to a wide range of food products. Due to such remarkable
progress by scientists and researchers, there is need for continuous synthesis of relevant scientific
literature for the benefit of all actors in the agro-food value chain, most importantly the food
processors, and to supplement existing information. This review, therefore, aimed to provide a
technological update on some selected non-thermal food processing methods specifically focused on
their operational mechanisms, their effectiveness in preserving various kinds of foods, as revealed
by their pros (merits) and cons (demerits). Specifically, pulsed electric field, pulsed light, ultraviolet
radiation, high-pressure processing, non-thermal (cold) plasma, ozone treatment, ionizing radiation,
and ultrasound were considered. What defines these techniques, their ability to exhibit limited
changes in the sensory attributes of food, retain the food nutrient contents, ensure food safety, extend
shelf-life, and being eco-friendly were highlighted. Rationalizing the process mechanisms about
these specific non-thermal technologies alongside consumer education can help raise awareness prior
to any design considerations, improvement of cost-effectiveness, and scaling-up their capacity for
industrial-level applications.
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1. Introduction

One of the major purposes of food processing technologies, from the very early to
its later types over the years, has been to guarantee the safety of foodstuffs, as well as
prolong their shelf-life. However, a diversity of changes have taken place as the many
food processing technologies advanced and evolved, especially those within the agro-
food industry/sector [1–4]. Indeed, all have happened largely because of the evolving
nature of consumer demands for foods that are fresh, nutritious and with increased shelf
life [1–4]. Since consumers are the key players in the agro-food chain, their demands over
the years have been a key push factor to other players in the agro-food chain, such as food
technologists, in devising processes that ensure such demands are met.

For many years, the primary methods for treatments for the microbiological stabiliza-
tion and the preservation of the sensory and nutritional properties of food products have
largely been those associated with heat, which unfortunately has adversely affected both
the nutrient contents and sensory characteristics of foods [5,6]. Although one of the key
aims of the heat processing technologies has been to reduce food spoilage and pathogenic
microorganisms, they have in many situations resulted in many undesirable and unwanted
modifications in food texture, appearance, sensory aspects, nutrients content, and the
concentration of thermo-sensitive bioactive compounds. Therefore, the destruction of
food nutritional components and the consumer demand for foods with desirable sensory
qualities have remained the two key drivers towards innovation of the non-destructive
food technologies [4,7]. Such food technologies are designed in such a way that while they
ensure microbial inactivation, the foods still retain their sensory aspects [8,9].

Non-thermal food processing simply refers to methods where the food materials
receive microbiological inactivation without the direct application of heat [3,4,8]. Such
technologies, largely combined with hurdle technology to replace those conventional
thermal food processing ones, are increasingly viewed as either emerging, novel or new
food processing methods [4,10]. Such novel technologies have included pulse electric
fields (PEF), high-pressure processing (HPP) [6], ozone treatment [11–13], pulsed light, non-
thermal plasma/cold plasma (NTP) and ultrasound technology [14,15]. The technologies
can be grouped into two major groups: physical processes (pulse electric field, high
pressure processing, ultraviolet radiation, pulsed light, ultrasound and ionizing radiation)
and chemical processes (ozone treatment, and cold plasma).

Besides being well established in scientific literature, research into non-thermal food
processing technologies are constantly on the rise, as applied to a wide range of food
products. Due to such remarkable progress by scientists and researchers, there is need for
continuous synthesis of relevant scientific literature, for the benefit of all actors in the agro-
food supply chain, most importantly, the food processors, and to supplement the existing
information. This review, therefore, aimed to provide a technological update on some
selected non-thermal food processing methods specifically focused on their operational
mechanisms, their effectiveness in preserving various kinds of foods, as revealed by their
pros (merits) and cons (demerits). To compose this review paper, articles written in English
and published between 2016 and 2021 (specific to those available 2021 as at the time of
preparing this review) were retrieved from recognized scientific literature search engines
(Science Direct, Scopus, Web of Knowledge and Google Scholar) using the key words “pulse
electric field,” “pulsed light,” “ultraviolet light,” “high-pressure processing,” “non-thermal
plasma,” “cold plasma,” “irradiation,” “ionizing irradiation,” and “ultrasound.” Other
useful references have been added where deemed appropriate to strengthen the discussion
of this synthesized update. The schematic representation of non-thermal food processing
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technologies specific to the overview strategy employed in composing this review is as
shown in Figure 1.
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Figure 1. Schematic representation of non-thermal food processing technologies synthesized (which
include: pulsed electric field (PEF), pulsed light (PL), ultraviolet radiation (UV), ionizing irradiation
(IOR), high-pressure processing (HPP), ozone treatment, cold plasma (non-thermal plasma), and
ultrasound technology) with the overview strategy (which include: mechanisms/principles of action,
and the associated merits, and restrictions).

2. Action Mechanisms/Principles Associated with the Selected Non-Thermal Food
Processing Technologies
2.1. Physical Treatments

The physical treatments to be discussed in this section include pulse electric field, high-
pressure processing, ultraviolet light, pulsed light, ultrasound as well as ionizing radiation.

2.1.1. Pulsed Electric Field (PEF)

Pulsed electric field (PEF), as it is usually called, is among the recent food processing
strategies, where an electric field is utilized in place of heat. In this technique, short and
high voltage pulses (usually one with an intensity that falls between ten to eighty kilovolts
per centimeter and lasting for flashes of seconds) are directed via two electrodes towards
the intended foodstuff [15–17]. Typically, a pulsed electric field scheme comprises a control
and monitoring system, pulse initiator, a source of high electrical power, an assembly room
for treatment, a cooling scheme that checks the heat increase, and raw and treated product
compartments [8,18] (Figure 2). Usually, a negligible amount of heat, at most 40 ◦C, is
given out in a typical PEF operation [8,19].

In principle, PEF operates with two fundamental processes, namely electroporation
and electrical breakdown, which synergistically help to actualize the pathogenic destruc-
tion [9,20]. Usually, a 10–80 kV/cm intensity voltage that lasts for microseconds is applied,
which results in the desired electric field responsible for the microbial inactivation. The
presence of charged particles facilitates the flow of electrical energy generated to all parts
of the food [2,21–23]. In addition, PEF can be utilized for the preservative treatment of
fluid foods, such as juices [2]. To start with, electroporation results in the formation of
holes on the cell wall and inner cell film of the pathogen in order to promote microbial
inactivation [2,24]. When the process is combined with an electrical breakdown, the semi-
permeable membrane of the pathogen is weakened. This situation momentarily results in
the leakage of the cell’s cytoplasmic contents. This synergistic effect causes an irreversible
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death of the microbial cell [22,25]. The efficiency of a PEF treatment is based on several
aspects including field strength or intensity, the rate of conductivity of the food media, its
pH, the nature of pathogen involved, the temperature applied during the process, the time
interval, pulse, energy applied and polarization [8,22,25,26]. PEF has mostly been applied
for the treatment of foods such as apple, orange, tomato, carrot juices, apple sauce, salad
dressing, pea soup, eggs [18], milk, and milk products [27]. In the fruits and vegetable
industry, PEF has been applied for the enhancement of the physicochemical, rheological,
and antioxidant aspects of juices [27].
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As a novel technology, pulsed electric field has also shown significant control of
microbes in different foodstuffs [28,29]. In a study by McAuley et al. [29], raw milk with
constant flow rate of 2.4 L/min was PEF-processed at 30 kV/cm and 63 ◦C to achieve
a microbial stability similar to that obtained by thermal pasteurization at 72 ◦C for 15 s.
In another study, moderate intensity PEF conditions (E = 2.7 kV/cm and pulse width
of 15–1000 µs) showed great potential in activating microbes for the processing of fruit
juices [30]. Moreover, PEF proved significant in the microbial stabilization of wine com-
pared to the action provided by SO2 in malolactic fermentation of wine [31]. A study by
Pallar’es et al. [32] showed the significant effect of a hurdle combination of PEF and HPP
in alleviating aflatoxins in grape juice. With both technologies, reduction of 14–29% was
attained and an even greater reduction of 84% and 72 for aflatoxin G1 and aflatoxin B2,
respectively. Such findings reveal the potential of PEF in microbial inactivation and could
be of great value to not only the food processors, but also the consumers in ensuring
product safety.

2.1.2. High-Pressure Processing (HPP)

Over a century ago, Bert H. Hite pioneered the high-pressure processing (HPP) technol-
ogy on food. HPP treatment typically involved applying pressures that reached 600 MPa [33].
However, considering works of Heinz and Buckow [34] and Mújica-Paz et al. [35], of
paramount significance in a HPP process is the pressure range of 100–800 MPa and temper-
ature as low as <20 ◦C applied together, with the time of exposure of the foodstuff usually
seconds to minutes. Besides preventing food spoilage bacteria, unnecessary damage to the
foodstuff can at the same time be prevented [36]. It is understood that the ultra-pressures in
HPP systems could alter the anatomy of the bacteriological cells as well as thwart the enzy-
matic functions, which could result in the weakening and eventual death of the (foodborne)
pathogen [37,38].
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The action of HPP on food constituents not only adheres to the Le Chatelier’s principle
(structural reactions and changes favored by pressure resulting to a decrease in volume),
but also to the isostatic principle (equal transmission of pressure to all parts of the liquid
foods) [8,9,39,40]. Due to the compression caused by air and water, the insignificant changes
in appearance [41,42] and proteins’ structure [41,43] that take place in the foodstuffs are
usually irreparable. During food processing, the applied high pressure is transmitted
equally to all parts of the food matrix. This is conducted through the given items in a
uniform way independent of the geometry; so fast that the pressure is transferred to the
medium (Figure 3) [36].
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In addition to operating at normal temperature conditions, HPP can increase the
foods’ shelf-life, and at the same time, prevent them from any detrimental changes on their
nutritional and sensory aspects [9,17,38]. HPP has also been used for processing liquid
foodstuffs, for instance, juices [2,17,38,44–46]. This technique is known to be applied in the
treatment of foods whose water activity exceeds 0.8 [47]. Most specifically, fruits, meats,
vegetables, milk and their products [48], juices, beverages, seafood, and fish [49] are known
to be among the major groups processed using HPP.

HPP technology can be specifically applied in multi pulse HPP technology, involving
the application of repeated short high-pressure treatment for several cycles. In a study by
Szczepańska et al. [50], multi-pulsed pressure (300 MPa × 3 pulses) resulted in significant
inactivation of polyphenoloxidase enzymes (57%) compared to a 31% inactivation of perox-
idase enzyme by static HPP pressure (600 MPa). As also supported by Marszałek et al. [51],
it is therefore quite economical to use multi-pulse at low pressures than to the conventional
HPP. The significant effect of HPP against microbes has been demonstrated in different
kinds of foods. In a study by Usaga et al. [52], it was shown that HPP conditions of
600 MPa for 3 min would inactivate E. coli, S. enterica and L. monocytogenes in beverages and
juices. Additionally, ham subject to 450–600 MPa HPP conditions for 5–10 min and kept for
60 days at 4–12 ◦C would inactivate L. monocytogenes [53]. Interestingly, HPP conditions of
593.96 MPa for 233 s decreased significantly S. aureus and B. cereus in human milk, thus
providing a reliable alternative to pasteurization in human milk banks [54]. Moreover,
samples of fruit and vegetable smoothies subjected to HPP conditions of 630 MPa for
6 min in a temperature of 20 ◦C showed counts below detectable levels when kept at
25 ◦C for 26 days [55]. In other studies, HPP successfully combined in hurdle technology
with other antimicrobial strategies such chitosan-based films (600 MPa for 8 min) against
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L. monocytogenes in ham [56] and with allyl isothiocyanate and acetic acid (250–350 MPa)
against Salmonella in raw ground chicken meat to ensure a bactericidal effect [57,58].

2.1.3. Ultrasound Technology

As a non-thermal food protection method, ultrasound involves pressure waves with a
frequency range that falls between 20 and 100 kHz [2,59]. Alternatively, it can be categorized
as a minimum- or maximum-intensity sonication [4,59] or according to their frequency
ranges as power ultrasound (16–100 kHz), high-frequency ultrasound (100 kHz−1 MHz)
and diagnostic ultrasound (1–10 MHz) [9,60]. To deal with bacteria, the ultrasound process
operates under a fundamental principle referred to as ‘sonication’ [2,9,59,61,62]. In simple
terms, sonication means “to fragment by ultrasonic vibration,” which involves the creation,
development, and breakdown of minute-sized foams (bubbles) inside a solution that is
aqueous [9]. The bubbles generating through the restive activity of mechanical waves
arise due to solicitations by intense energy. The breakdown of the bubbles creates the
adverse confined pressure (approximately 1000 atm) and temperature (approximately
5000 K) conditions that cause conformational changes to the target microorganisms [41,63].
Under such localized conditions created by the sonication process, free radicals are formed
from the breakdown of water molecules (Figure 4). Such free radicals (hydroxyl and
hydrogen) lethally affect the microbes by destroying their cell walls, cell membranes, and
liposomes, as well as genetic material. This subsequently results in cell disintegration and
death [4,9,64,65]. In recent developments, a newer approach referred to as direct contact
ultrasound has been implemented. This does not involve the application of fluid media
(liquids or gas), but has the foodstuff placed directly on a special vessel for transduction.
Under this system, the treatment effect is brought about by acoustic vibrations, which
facilitate the distribution of energy and mass by the sponge effect. The sponge effect, also
termed as mechanical stress, refers to the successive compressions and expansions of the
food material like a sponge due to the effect of acoustic vibrations on a solid matrix. The
effect mostly occurs when ultrasound is applied in dry conditions [66].
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Ultrasound technology has also been used in the elimination of microbes from foods.
Balthazar et al. [67] demonstrated that ultrasound conditions of 78–104 Watts in 6 min
and a pulse duration of 4 s eliminated contaminant bacteria in semi-skimmed sheep milk
while maintaining desired levels of lactic acid bacteria. In another study, high intensity
ultrasound (0.3–3.0 kJ/cm3) was applied to chocolate milk and found effective against total
aerobic counts by reducing 3.56 ± 0.02 logarithmic cycles as compared to conventional
pasteurization (72 ◦C/15 s). In addition to that, the non-thermal process preserved the
physicochemical, bioactive and nutritional components of the beverage [68]. In a study
by Liao et al. [69], the treatment of foods with non-thermal plasma before ultrasound was
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found effective against S. aureas rather than the other way round. This was due to the fact
that while non-thermal plasma provided the reactive oxygen species, ultrasound ensured
they were injected into the microbe’s cells rapidly resulting to its death. It is thought that if
ultrasound was applied first the microbe could have developed and enhanced oxidative
response against the subsequent non-thermal plasma process. To sum it up, although many
studies have proven ultrasound as a potential non-thermal technology against microbial
contamination in foods, further research is required to determine how its efficiency can
be improved through the combination with other technologies as hurdle. This should go
hand in hand with ensuring that the physicochemical properties of foods are preserved.

2.1.4. Pulsed Light (PL)

This is among the contemporary food processing techniques in the current century that
is applied in food industries. PL usually involves a comprehensive array of pulses, short
but highly energized from the white light’s broadband; the latter being known to contain
infrared, visible and ultraviolet light. Comparatively, PL has a thousand times strength
greater than the normal UV light which is quite continuous [2,15,70,71]. Additionally,
an array of highest power pulsed light can be formed in a very short period using the
wavelengths of pulsed ultraviolet light (PUV) at the range of 200–1000 nm [15,72]. In the
schematic diagram of a PL chamber is shown in Figure 5 [73], it should be noted that the
Xenon flash lamp possesses an emission spectrum ranging from ultraviolet to infrared
light. Nonetheless, of the PL band, besides being economical, UV light has been identified
as the most lethal spectrum against pathogens [2,74]. In the presence of PL light, the food
allergens’ conformation undergoes alterations, giving rise to the clumping of proteins. PL
is also useful for microbial inactivation, affecting the microbial structures [15,72], followed
by thwarting of the cytoplasmic membrane, cessation of biocatalysis and finally destruction
of the genetic material [2,75]. PL can be used in the treatment of liquid foods and for those
foods that have simple exterior conformations. Specific examples of foods processed by PL
include fish, vegetables, fruits, and meat [73].
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Similar to other non-thermal food processing technologies, pulsed light (PL) also has
potential in the inactivation or elimination of microbes in foods. Romaine lettuce with
thickness 0.00254–0.00762 cm subjected to direct and in-package treatment of pulsed light
(1.05 J/cm2 s) resulted in 2.18 ± 0.25 to 2.68 ± 0.37 log CFU/g reductions of E. coli [76].
In a similar study, PL treatments of 8.2–12.5 J/cm2 on the surface of lettuce were effective
by inactivating the bacterial load (S. enteritidis, E. coli, S. aureus and L. monocytogenes) [77].
Moreover, PL treatments of 0.35 J/cm2–3.6 J/cm2 exhibited significant 3–4 log reductions
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of L. inocua on sausages and about 1 log reduction in both boiled ham and chicken cold
cuts. While the microbial reduction was maintained for over twelve days of 5 ◦C chilled
storage, there were no detrimental impacts observed on the sensory attributes observed as
compared to the slight deviations in high PL treatments [78]. It is worth knowing that PL
can be used alongside other novel technologies as a hurdle in the inactivation of microbes
on the surfaces of foods. For instance, in a study to assess the combination effect of PL and
citric acid treatment against aflatoxins in peanuts, an outstanding reduction of 98.2% was
achieved, a reduction that could not be obtained were the processes used singly [79].

2.1.5. Ultraviolet (UV) Radiation

UV radiation (treatment) has been recently used as a non-heat technique for decon-
tamination, improving both the shelf-life and safety of foodstuffs [9,80]. UV radiation is
a form of energy considered to be non-ionizing radiation having in general germicidal
properties at wavelengths in the range of 200–280 nm (usually termed UV-C). Generally,
UV light falls in the range of 100 to about 400 nm and the range can be further catego-
rized into UV-A (315–400 nm), UV-B (280–315 nm), UV-C (200–280 nm) and UV- Vacuum
(100–200 nm) [81]. In principle, the UV radiation operates by destroying the genetic con-
stituent of the pathogen to prevent division, multiplication and subsequently hinder its
propagation [9,82]. Usually, different kinds of food products require different doses of UV
radiation (termed as UV-inactivation dose measured in mJ/cm2) to inactivate different
kinds of pathogens. For instance bacteria, yeast, fungus, protozoa and algae require a
UV-inactivation dose of 1–10, 2–8, 20–200, 100–150 and 300–400 mJ/cm2, respectively,
denoting that algae is the most resistant, as it requires the highest dose as compared to
other pathogenic microbes [81,83]. Thus, the effectiveness of the UV radiation depends
on several factors, for instance, the source and dose of the UV radiation, the duration by
which the product is exposed, the nature of the foodstuff, the alignment of the apparatus,
and the nature of the microbe [84].

Various studies have indicated the potential of UV light (UV-C) in preventing pathogens,
with the UV light wavelength between 100–280 nm considered as germicidal. Walnuts
inoculated with Salmonella and subjected to a UV light treatment at 8 cm for 45 s resulted to
a maximum log reduction of 3.18 CFU/g. This proved an essential replacement for the non-
preferred chemical and thermal treatment methods, as the physicochemical characteristics
of the walnuts were not affected [85]. In another study, UV-C treatment of raw milk
resulted to a 2 and 3 log decrease in the total mesophilic aerobic bacteria and yeast-mold
count, respectively. Moreover, there was observed a 2–3 log reductions of the inoculated
Salmonella, L. monocytogenes, S. aureas and E. coli under UV-treatment. However, to achieve
a more effective reduction in bacterial load, this study indicated that UV light should not
be used as a stand-alone strategy, but integrated with other technologies [86]. Additionally,
in another study, a UV-C treatment of 127.2 mJ/cm2 for 30 s was found to be effective in
reducing the bacterial load of raw salmon. This occurred due to the higher doses of UV-C,
which would bring about unwanted changes in the sensory characteristics [87]. Although
these findings show the significance of UV-C in microbial stabilization, it is, however,
necessary that further research is conducted to determine what other technology can be
used alongside UV-C as a hurdle to ensure that during microbial inactivation and that both
the physicochemical and sensory properties of the foods under treatment are preserved.

2.1.6. Ionizing Radiation (IOR)

Generally, ionizing radiation involves the application of gamma, electron beam/X-ray
to decrease microbial contamination as well as inhibition of enzymatic activities in agro-
food products [88]. Typically, the charged ions get formed when photons interact with
the food molecules. These, in turn, undergo a series of changes and emerge as super-
reactive free radicals, which not only react among themselves, but also with the uncharged
molecules [4,36]. It is important to note that there are three technological approaches by
which the mechanism of ionizing radiation operates in food processing. Firstly, there is
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the generation of gamma ray emission via radioactive cobalt-60 or cesium-137 with high
penetrating power; secondly, X-rays that are generated at energy level not exceeding 5 MeV
(high penetration) and thirdly; the emission of high energy electron beams via accelerators
that operate not beyond the energy of 10 MeV (low penetration) [4,89]. In addition to that,
there are three well-known concepts associated with ionizing radiation, which include
radicidation, radappertization and radurization. Specifically, radicidation is said to be
achieved when a lesser dosage of between 1 and 10 kGy becomes enough to destroy
pathogenic/spoilage microbial entities. Radappeartization, on the other hand, signals when
higher dosage above 10 kGy becomes sufficient to sterilize, for example, meat and seafood
products, as well as the decontamination of seasonings and spices. However, radurization
differs completely because it happens when extremely high dosage is applied, with the
specific aim to extend shelf-life of a given food product. The process of irradiation of food
products requires a lot of caution, explaining why the Food and Agriculture Organization
(FAO) of the United Nations, the International Atomic Energy Agency (IAEA), the World
Health Organization (WHO) of the United Nations, as well as the Scientific 212 Committee
on Food of the European Commission (EC) have considered ionizing radiation with a
dosage up to 10 kGy applied to foods as acceptable, safe and nutritionally adequate [90].
Besides, the lethality of the process can be shown when either the genetic material of the
pathogen gets destroyed because of cell death owed to inhibition of DNA synthesis, or the
cell splits through the generation of reactive water molecules such as hydrogen (H+) and
hydroxyl (OH−) radicals. It is believed that during these processes, the physicochemical
properties of foods remain unaffected. The effectiveness of ionizing radiation can be
determined by the absence/presence of oxygen, its nature/types, composition of medium,
food density/thickness, as well as the absorbed ionizing irradiation dose [4,91].

2.2. Chemical Treatments

The chemical treatments that will be discussed in this section include ozone process-
ing/treatments, as well as cold plasma (non-thermal plasma).

2.2.1. Ozone Treatment

Increasingly, ozone is becoming important in food processing, contributed by it be-
ing a GRAS (Generally Recognized as Safe) chemical with US FDA approval, as well as
an antimicrobial additive for direct contact with foods [92,93]. Besides it being formed
photochemically in the stratosphere, ozone has strong reactivity given its molecular struc-
ture [94,95]. In particular, the molecular configuration of ozone arises from the nature of
combined sp2 and 2p2 orbitals, which brings about the dual 9-molecular orbitals represent-
ing a hybrid based on four possible structures [96,97]. Normally, temperature inversely
relates to ozone solubility in water, meaning that ozone solubility decreases as temperature
increases [13,98].

The antimicrobial efficacy of ozone is broad in water and wastewater [13]. In the
inactivation of microbes, ozone primarily acts by destroying the microbial protein structure
carrying the genetic material; that is, its membrane, capsid, or envelope. This is known to be
followed by a drastic reduction and cessation in the microbial ability to propagate and infect,
due to further secondary integral disinfection and inactivation by ozone on the infectious
pieces of genetic material resulting from the cell lysis [99]. Kim et al. [100] further clarifies
that while the primary target of the destructive effect of ozone for bacteria is the cell surface;
the primary site of ozone attack is known to be the double bonds of unsaturated lipids in
the cell envelope. Ozone attack leads to an alteration in cell permeability that subsequently
results to splitting of the microbial cell. Moreover, ozone acts by decreasing cell viability,
flocculation of cellular proteins, degradation of intracellular proteins and interference with
the respiratory system resulting to death due to the oxidation of sulfhydryl groups. For
the case of viruses, ozone breaks down the phage coat, damage the RNA and alter the
protein coat’s polypeptide chains. Ozone being highly reactive, penetrable and resulting
to spontaneous decomposition has usually resulted to effective microbial inactivation in
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short contact times and relatively low concentrations. Generating ozone at a commercial
scale within the food industry could be by one of the two procedures: (a) photochemical
by passing an oxygen-containing gas through either a source of ultraviolet (UV) radiation;
and (b) corona discharge (CD), which involves high-energy electrical field. Other less
commercial mainstream methods to make ozone include electrolysis, radiochemical and
the reaction of elemental phosphorus with water [13,101]. For instance, in the case of the
electrochemical generation of ozone, there are several biocidal reactive oxygen species that
can be produced. This also makes the ozone concentration to be largely dependent on the
type of the electrode and the amperage [102]. A schematic diagram for set-up of ozone
generator highlighting corona discharge instrument is shown in Figure 6. It can be seen
that the pathway by which oxygen will be produced is controlled to ensure that the ozone
is adequately generated; with provisions always made to trap the excess ozone [103].
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It is important to reiterate that there are two major ways to measure the concentration
of ozone in water include (a) colorimetric test kits; and (b) electronic meters. Measuring
ozone concentration in food processing applications is needed to ensure disinfection.
This ensures that ozone properly inactivates/kills the microbial entities [13,101]. As a
result, ozone treatment has found wide applications in the food industry, like surface
decontamination of fruits and vegetables, drinking water disinfection and wastewater
treatment, meat, and seafood processing [13,96,104–107]. Indeed, the efficacy of ozone
to reduce microbial levels applies not only to fresh produce within the domains of food
preservation and packaging [108,109], but also to fumigant for insect/fungal control in
grain storage [110,111].

2.2.2. Cold Plasma (Non-Thermal Plasma)

Matter exists in three major states, namely: solid, liquid, and gaseous states. Interest-
ingly, the scientific world has emerged with the fourth state, referred to as plasma [112,113].
Plasma state is attained when any gas (combined or single) is excited with high electric
field strength such that it exceeds the ionization potential to change its state to the ionized
form [114]. As a semi-neutrally ionized gas, cold plasma involves the combination of ions,
UV photons, electrons, reactive species and charged elements [4,115–117]. The reactive
species that constitute plasma state include those generated by oxygen (e.g., O3), nitrogen
(e.g., NO2), and water (e.g., H2O2) [9,118]. Oxygen generated reactive species provide the
most lethal effect against microbial cells, subjecting them to such conditions that destroy
their structural components culminating in death [9,15,117,119–121].
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Cold plasma can act against microbes by destruction of the constituents of the
microbe’s cells including their DNA [4,9,122,123]. Several methods used to develop
plasma include radio frequency plasma, dielectric barrier discharges, the gliding arc dis-
charge [113,124]; and microwave and corona discharges [9,125]. A schematic depiction of
three typical electrical discharges for generating the non-thermal plasma with typical sizes
indicated and discharge appearance is shown in Figure 7. Moreover, there are a number
of factors that can influence the effectiveness of non-thermal plasma against microbes.
There include the exposure method, management time, nature or kind of foodstuff, the
properties of the intended organism’s cell membrane, the locality of the microbe, voltage
used, and the kind of electrode used [9,126]. Besides identifying how cold plasma affects
the molecular level of foods, the interaction of the plasma reactive species with foodstuffs
are far from being elucidated, providing an opportunity for further research [127].
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A number of studies have been done to determine the effect of cold plasma technology
against microbes. A study by Balthazar et al. [67] on the effect of cold plasma treatment
on milk showed significant results in inactivating total aerobic mesophilic bacteria and
coliforms obtained through an application of 78–104 watts in 4–8 min in pulse duration
of 4 s on the milk samples. In another study, corona discharge plasma jet generated
by 20 kilovolts and 1.5 amperes under atmospheric pressure conditions was effective
against aerobic bacteria, yeasts and molds in brown rice; maintaining the sensory and
biochemical attributes [129]. A similar study investigated the potential of cold plasma
against the microbiological contaminants of wheat grains whereby samples were subjected
to a 0–20 min exposure to direct and indirect plasma in a contained reactor dielectric barrier
discharge system. The process was found effective against the pathogens inoculated on the
surface of the wheat grain [130]. Moreover, other studies on the antimicrobial effectiveness
of cold plasma technology in packaged ready to eat foods such as in chicken meat [131]
and in beef [132] have indicated that apart from the controlling effect against microbes
such as E. coli, S. typhi and L. monocytogenes; cold plasma had no detrimental effects on the
sensory and biochemical aspects of the packaged foods.

3. Merits Associated with the Selected Non-Thermal Food Processing Techniques

The notion that non-thermal food processing techniques would exhibit less or no
changes in the sensory attributes of food does not necessarily apply across all non-thermal
food processes. Additionally, some of them are efficient with respect to energy consumption
and time utilization, and others provide assurance for the freshness, safety improvement,
and an increased shelf-life of foodstuffs compared to the conventional methods that utilize
heat [133]. In the following section, the advantages/merits associated with the selected
non-thermal food processing covered in this study have been discussed.
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3.1. Physical Treatments
3.1.1. Pulsed Electric Field (PEF)

PEF, which exhibits a higher application in the processing of liquid foodstuffs com-
pared to solids [22], is known to retain nutrients (heat-sensitive foods), sensory char-
acteristics, promote durability and ensure the foodstuffs are safe. Besides utilizing as
low amounts of energy as possible, PEF is considered an environmentally friendly and
highly energy-efficient technique, different from the conventional heat processing meth-
ods [22,134]. Bhattacharjee, Saxena, and Dutta [8] reported that PEF, alongside its bacterio-
logical effects against microbes, performed better compared to other non-thermal methods
in processing watermelon juice, with the retention of high amounts of anthocyanins after
treatment. Furthermore, Hernández-Hernández, Moreno-Vilet, Villanueva-Rodríguez [4],
and Barba et al. [26] demonstrated PEF with several other benefits compared to the tradi-
tional (heat) processing methods for juice treatment, which included decreases in energy
costs, processing time, and degradative effects of heat-sensitive food components, as well
as facilitating increased transmission of mass.

Bhat et al. [135] showed that PEF enhanced the salty taste in food products by ma-
nipulating the dispersion of salt and distribution of sodium, subsequently improving
chewability. This suggested that PEF is useful in the production of better lowered-sodium
meats. A recent investigation by Alles et al. [136] into the bio-refinery of insects with PEF
showed low levels of PEF (<3 kV/cm; 5 kJ/kg) would not result in insect mortality, but
would bring about reductions in oil droplet size in the insect biomass. The application
of PEF can have other such effects as modulating mineral contents, extracting oils and
assisting in the drying processes in foods. Another recent study by Shorstkii et al. [137]
investigated the optimization of PEF assisted drying process of black soldier fly larvae.
These researchers showed that with respective drying temperature and specific PEF energy
input ranges between 81 and 84 ◦C, as well as 11.2 and 13.1 kJ/kg, a specific an optimal
processing window for larvae drying can emerge. From this, the PEF energy affected
consumption of drying energy much less, but more by drying temperature. Moreover,
the use of PEF can enhance the extraction of bioactive compounds from food by-products.
Huge amounts of total soluble solids content were obtained after a PEF treatment of 10
and 15 kJ/kg of cranberry bush purée, denoting significant improvement in extractability
of bioactive compounds. Additionally, there was an increased retention of bioactive com-
pounds; total phenolic content of ~10–14% and total flavonoid content of ~6–8% after PEF
treatment of 3 kV/cm; 5–15 kJ/kg [138].

3.1.2. High-Pressure Processing (HPP)

HPP technology is applied in processing foodstuffs that are either solid or liquid [26].
Since the technology involves less-to-no utilization of food preserving agents [4,139],
relatively low amounts of energy, and can reuse the transmission and pressurization fluid
(water) with zero-emission of wastes [47,140,141], it can be considered as one among
the eco-friendly types of non-thermal food processing techniques compared to thermal
pasteurization [142]. Moreover, HPP can retain the taste of food, its nutrient composition
and elongate its shelf-life. Thus, the spoilage rate can be decreased, which can help raise the
economic value of the food commodity [15,143,144]. A study by Rode and Rotabakk [145]
demonstrated how HPP extended the shelf-life of codfish to at least forty-nine days. HPP
can help in the shucking of aquatic products, maintaining the integrity of the flesh with a
meat recovery rate of up to 100% [144,146].

The vitamin C content in an HPP-treated fruit juice resembled that of refrigerated
fresh juice. This suggested the HPP process negligibly influenced the bioactive elements of
foods [8]. However, health-promoting features of foods, which are of greater importance,
through HPP could have its bioavailability augmented; not only the phytochemical, but
also the food trace elements. Furthermore, HPP could help retain the good fats, lower salt
consumption, and decrease the allergen development and toxin generation capacity of
foods [26,147]. HPP has been shown to possess high ability to extract or recover high-added
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value antioxidant bioactive compounds from food materials, for example winery wastes
and by products. For instance, HPP has shown significant potential to significantly increase
the total as well as individual anthocyanin content, compared with the conventional
extraction methods [26]. Additionally, when matched against the conventional methods
that employ the use of heat, the hydrostatic pressure effects exerted by HPP have been
considered independent of the product magnitude, and geometrical alignment [147]. Once
the operational pressure has been attained, however, there is usually no extra energy
needed to uphold the pressure. Compared to the conventional heat-utilizing technologies,
HPP does not require supplementary energy to cool the food product beyond the estimated
treatment period [47].

3.1.3. Ultrasound Technology

The advantages of ultrasound technology include the use of a highly reduced treat-
ment time for handling foods, the use of a minimal amount of energy, and greater material
input and output [4,148]. Moreover, it has attracted more preference, as it is considered
safe and environmentally friendly [15]. Additionally, the technique is considered quite
feasible, as it is simple and economically cheap compared to the conventional heat pro-
cessing methods [9,149]. In a study by Guimarães et al. [150], it was interestingly found
that ultrasound resulted in shorter processing time and increased probiotic viability when
applied on probiotic-made dairy products. In the dairy products with low lactose content,
ultrasound at high intensity brought about higher oligosaccharides concentration, lower
acetic and propionic acid content (less undesirable taste) and reduced constituent ingre-
dients (less-to-no need of prebiotic addition or beta-galactosidase inclusion). It was also
revealed that, in dairy products such as cheese, high-intensity ultrasound could decrease
ripening time, but would accelerate proteolysis, which would bring about better nutritional
(bioactive peptides), sensorial and textural properties. Ojha et al. [151] reviewed ultrasound
technology for food fermentation applications and showed that at low frequency between
20–50 kHz, both cell permeability and mass transfer could be improved to result to better
process efficiency and production rates. Ultrasound at low frequency would also stimulate
the prevalence of probiotics (living “friendly” bacteria largely popular as food supplement).
The mechanism is such that there would be accelerated lactose hydrolysis and transgalac-
tosylation of bifidobacteria in milk, and at the same time, decline in fermentation time by
up to 30 min, and all these would largely depend on the probiotic strain. Additionally, the
authors showed ultrasound could be used to eliminate microbial entities that would hinder
the food fermentation processes.

3.1.4. Pulsed Light (PL)

PL serves as a rapid disinfection food processing technology. In addition, it exhibits
much less damage to the nutritional content of foodstuffs that it has been applied to [90].
PL is also shown to ensure microbial inactivation while at the same time retaining the
foodstuff’s sensory characteristic with fewer losses in terms of quality [152]. The technol-
ogy boasts a huge advantage compared to UV radiation by exhibiting an outstandingly
short time energy transmission [152,153]. Furthermore, besides the fact that PL exhibits a
substantial reduction of bacteria in an exceptionally short time; it has huge adaptability, and
is eco-friendly [152,154]. Consequently, after PL application, the threat due to food-inherent
disease-causing microorganisms is decreased; the shelf-life of foods increased as well as a
promised enhanced economic return especially during the transportation period [152,155].
In addition to that, PL has demonstrated promising results in the prevention of contamina-
tion of packaged products; the treatment is known to be applied even when the food is
within the packages [156].

3.1.5. Ultraviolet (UV) Radiation

Research has shown that when UV radiation is used for the processing of fruit juices
(e.g., watermelon juice), its nutrient contents are better preserved. It has mild effects on
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the amounts of phenolic compounds, Vitamin C, lycopene, and antioxidant capabilities [8].
Additionally, the lethality effects of UV radiation against microbes are higher compared
to the conventional chemical agents, for example, hydrogen peroxide and chlorine [9,80].
Moreover, UV radiation is easy to utilize (user friendly) and cost-efficient [8,157], has
minimal effects on the quality of foods as it enhances sensory features such as taste for
certain foods, prevents recontamination as it can be applied in already packed food prod-
ucts, is environmentally friendly, can be used not only for liquid foods, but also for solid
ones, its processing time described as shorter, and it also exhibits outstanding permeation
capabilities to foodstuffs [4,36].

3.1.6. Ionizing Irradiation (IOR)

It is among the non-thermal preservation methods with minimum effect on the quality,
taste, appearance, and texture of foods. Ionizing radiation acceptability elevates as the
consumer desire for minimally processed and yet safe food increases [158]. The effective-
ness of ionizing radiation is not only against destroying microbial entities and inhibiting
pathogenic/spoilage bacteria; but also inhibiting insects, mites, and pests [89]. The applica-
tion of ionizing radiation has been shown as an alternative technique to detoxify aflatoxin
present in foodstuffs. The ionizing radiation has been shown to help maintain the freshness
in freshly consumed food products such as salmon without significantly affecting their
sensory qualities as color, odor, taste, and texture. The ionizing radiation has been shown
capable of destroying the pathogenic and spoilage microorganisms for example Listeria
monocytogenes and Vibrio parahaemolyticus [159].

The processing time of ionizing radiation is reasonably less, considered as eco-friendly
as well as leaving no chemicals/residue [90]. Ionizing radiation technology is currently
chosen as an alternative to chemicals and heat application when it comes to pathogen
control. Ionizing radiation is not only capable of breaking the phosphodiester and hydrogen
bonds in DNA strands, causing inhibition of microbial growth, but also able to reach
the irradiated pores that cannot be achieved by other sterilization methods [160,161].
Besides, ionizing radiation technology increases shelf life without altering the texture
and firmness of foods like mushrooms and cheese [162]. Besides, the dosage of ionizing
irradiation applied for food preservation is usually lower and of no harm to humans upon
consumption of irradiated foods [163].

3.2. Chemical Treatments
3.2.1. Ozone Treatment

Ozone is generally recognized as safe (GRAS) and approved as an antimicrobial agent
of direct application to foods [13,101,164]. Ozone cleans and disinfects better than chlorine
because of the latter’s relatively low inactivation rate owed to concentration limitations
posed by regulations [13]. The electronic method for dissolved ozone operation measures
the sample in real-time, which allows control of (ozone) generation, as well as determination
of (dissolved) levels [13,101,103]. The lower energy overall energy consumption of ozone
is worth mentioning as a strong merit [13].

Researchers consider the higher weight per cent ozone product as an economic ad-
vantage. This is due to the fact that the equipment footprint is smaller given the higher
ozone’s solubility in water. This means that smaller contractors and pumps would in-
volve less energy cost as well as space for ozone facility [13]. However, excess ozone
rapidly auto-decomposes into oxygen, leaving no residue in the food product [13,101,103].
The high efficacy of ozone against a wide range of such microbial entities like bacteria,
fungi, protozoa, and viruses has been demonstrated [13,101,165]. Ozone has very great
biocidal activity at reduced contact times [13,164]. Another advantage is the possibility
to use ozone in the gaseous or liquid form (gaseous ozone or ozonated water in the food
industry) [13,101,103].
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3.2.2. Cold Plasma (Non-Thermal Plasma)

All kinds of microbes are said to be inactivated by cold plasma technology, including
viruses, fungi, and bacteria [117,166]. The utilization of non-thermal plasma as a non-heat
food treatment method is based on the fact that it results in the retention of the original
taste of foodstuffs as well as their nutrient contents [113]. When compared to thermal
technologies, cold plasma involves the utilization of quite a low temperature [15,167]. Since
the cold plasma process can be carried out at cold/room temperatures [90], it results in
minimized losses to the foodstuffs in terms of quality, most especially retaining the heat-
sensitive elements [9,126]. Similarly, cold plasma differs from conventional methods by
using a lesser amount of water and is also regarded as cost-effective (reduced expenditure
due to the use of natural gas and electricity) [4,168].

Cold plasma can serve for in-package sterilization [90]. It has continually been referred
to as an eco-friendly technique since, besides having minimal changes on the food matrix,
its application does not result to the generation of toxic residuals/wastes [90,169,170].
Moreover, the technology has similarly been described as lowering the immune-reactivity
of foods [15]. Furthermore, the technology is used for the treatment of foodstuffs that have
pathogens situated on the outer parts, the treatment effect reported to be reaching all sides
of the food matrix. It can also be applied for surface decontamination during the period
of packing foods. Additionally, for minimal surface treatment of fresh meats and greens,
cold plasma is thought to be the most suitable option [171]. With respect to seafood, cold
plasma has been recognized a promising non-thermal preservation method because of its
high inhibition efficacy to tackle various microbial entities [172].

4. Demerits Associated with the Selected Non-Thermal Food Processing Techniques

In the following section, the demerits associated with the selected non-thermal food
processing technologies covered in this study have been discussed.

4.1. Physical Treatments
4.1.1. Pulsed Electric Field (PEF)

The disadvantages associated with PEF include: huge start-up costs as one of the main
obstacles to the application of PEF on large capacity. The various kinds of equipment required
for its initial set-up are very expensive, their price ranging from 250,000–2,000,000 USD [22,134].
Therefore, to achieve complete industrial applications, there is a need to improve the
technique and to upgrade the capacity of the equipment [4,173]. There could also be
the failure for effective processing. This could be due to the fact that some bacteria cells
(vegetative and spore) have developed resistance against the pulsed electric field method.
This might eventually result in a public health risk [9,20]. PEF has been reported as not
yet effective in treating solid foodstuffs, compared to partial solids or liquid foods such as
juices and boiled meats [4,174]. Besides, it has not been easy to successfully scale-up PEF
given the fact that the technology is quite sophisticated and only a handful of studies are
currently available regarding its various industrial aspects [175].

4.1.2. High-Pressure Processing (HPP)

HPP is considered not suitable to be applied in dehydrated and porous foodstuffs [2].
This is because while such foods demand to be maintained in their dry conditions, the use
of water is, however, indispensable during the HPP process [46]. Besides, HPP treated
foodstuffs have to be kept in cold/refrigerated conditions. This is because pressure applica-
tions alongside such temperatures are effective in inactivating vegetative cells of microbes
compared to when pressure is used alone. Although this makes the HPP method appear
efficient, it might turn out to be uneconomical and laborious [46]. Moreover, to the best
of our knowledge, only plastic materials appear the best fit as packing materials for HPP
products, as the process requires packaging materials that can be compressed to some
degree, at least about 15% [46], which appears to be a setback given that it prevents the
use of multiple types of packaging materials. HPP is also reported to adversely upset milk
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and dairy food product components; for instance, reducing the casein micelle magnitude,
raising the free fatty acids level as well as altering the natural qualities of whey [176].
Like many other non-thermal processes, HPP is significantly hampered by huge initial
charges. In particular, like PEF technology, high equipment costs (even over $7000) should
be considered [102]. This is, however, thought to be minimized by the operational costs,
which are seemingly lower [48]. Moreover, the complex and large nature of the facility
would require appropriate skill and space to effectively operate.

4.1.3. Ultrasound Technology

During ultrasound application in liquid foodstuffs, the cavitation process is reported
to generate free radicals that may be the starting point of the decline of food product
quality [9,177]. These subsequently lead to oxidation of lipids, denaturation of proteins,
and degradation of ascorbic acids with associated detrimental changes in sensory at-
tributes [178]. Ultrasound technique is shown to produce detrimental effects on the charac-
teristics of foodstuffs such as the sensory parameters as well as nutrient composition [4,179].

Besides, at ambient temperature and pressure, high power ultrasound wave (20 kHz)
has been shown to produce low inactivation of some micro-organisms, especially Listeria
monocytogenes, which can be ameliorated either by increasing the power of sonication or
by an increase in pressure (manosonication) [10]. There still appears to be limitations
regarding the industrial scale of ultrasound. This has to do with the risks it poses to
the operators/workers. There is evidence to show that ultrasound technology can pose
occupational risks to operators. Magnavita and Fileni [180] showed that contact ultrasound
would pose greater hazards compared to exposure to airborne ultrasound clearly because
the air transmits much less than one percent of this kind of energy.

4.1.4. Pulsed Light (PL)

Similar to UV technology, the pulsed light comes with huge capital/costs in order
to achieve successful investment [152]. Pulsed light has been shown as not suitable for
application in foods that are opaque and irregularly shaped, as they can be potential
habitats for bacteria proliferation [152]. Moreover, extended periods of treatment in PL can
result in a “heating effect” upon food products and in the end affect the effectiveness of the
bacterial destruction [152,181].

4.1.5. Ultraviolet (UV) Radiation

The major setback that UV irradiation has faced for quite an extended period is the
lack of complete recognition and acceptability from the consumers. Unfortunately, many
people are still skeptical, especially on whether foodstuffs that have been handled by
UV radiation are harmless [4,36]. Consumers seem to be worried about the fact that UV
radiation might be leading to radioactive materials in foods, which may subject them to
serious health issues [9,82]. Indeed, UV-C light could represent risks for humans if they are
exposed to it. For instance, UVC radiation can cause severe skin burns and eye injuries
(photokeratitis) [182]. This UV-C limitation would suggest that its continuous exposure to
materials or processing surfaces could affect their chemistry and properties.

In addition, the UV radiation could also cause isomerization and oxidation of ly-
copene especially with increased radiation concentrations and contact times [8]. Another
limitation is that the effect of UV-C light application on liquid foods is affected by their
turbidity [102]. The time-consuming and laborious task to ship ready-made foodstuffs to
irradiation plants limits the applicability of UV radiation in the treatment of food products
after packaging [9,40]. When applied to foodstuffs with indefinite shape and structure,
UV radiation would be quite ineffective given its low penetration capacity. This would,
however, improve if UV radiation is combined with other non-thermal processes [9]. Addi-
tionally, huge investment requirements are also a limiting factor for achieving the complete
feasibility of the UV radiation process [4].
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4.1.6. Ionizing Irradiation (IOR)

One of the disadvantages of IOR is that when the ionizing radiation dose is too high,
the functional as well as the sensory properties of foods such as color and odor could
be affected. This implies that apart from depending on the degree of irradiation, the
required dosage to be applied to foods would be dependent on product parameters like
geometry/smoothness, speed of transmission, the density of the product, as well as the
load patterns [159]. Besides, ionizing irradiation can speed-up the auto-oxidation of lipids,
producing hydroperoxides and off-flavors with no increased threat due to mycotoxin
formation. The method is also found that it could have a direct effect caused by oxygen-
entered reactive radicals from water radiolysis, where higher dosage would change both
flavor and aroma of food product [163]. Ionizing radiation could also become harmful
and emerge as a threat to processors and workers upon excess accumulation as a result
of constant exposure to irradiation [183]. The huge capital/investment requirements
associated with the purchase of ionizing radiation facility is also another disadvantage of
the IOR technology.

4.2. Chemical Treatments
4.2.1. Ozone Treatment

Ozone facilities especially those of commercial scale involves high initial capital and
maintenance costs [13,184]. Usually very toxic when inhaled, ozone is corrosive if used
above 4 ppm [13,184]; making it a requirement to effective monitoring especially in indoor
applications [13,184]. Since the half-life of ozone is very short [13,164] it has been shown to
lack stable residual that limits its online testing efficacy [13,164].

At the large commercial scale levels, an ozone process facility/system would require
skilled trained operators given the complexity as well as occupational safety precautions,
especially industrial ozone processes [13]. The available concentrations of ozone, like the
domestic types (as well as some of the commercial types) are usually fixed [101,103,107]
and while this can pose challenges, it will also require a lot of caution during handling.
Another drawback is the manner in which ozone reacts with organic matter, which could
be limiting either the antimicrobial action or the efficacy of the treatment [13].

4.2.2. Cold plasma (Non-Thermal Plasma)

There are a number of suppositions that free radicals are generated by cold plasma.
The free radicals are usually very quick to undergo oxidation and may result in lipid
deterioration and destruction of inherent antioxidants, leaving the food with an undesirable
taste and aroma [113,185–189]. Foods subject to cold plasma are believed to have challenges
of attaining a 5-log decrease of bacteria cells or spores when used singly. As a result, it
has to be used in combination with pressure and/or temperature [2,62]. The high capital
investment required to set up plasma generating equipment, and challenges associated
with understanding the plasma chemistry is among key demerits of this non-thermal
technology [1,86]. Additionally, cold plasma experiences a lack of optimized process and
product factors; limiting effective scale-up of the process from lab or pilot to industrialized
stage to ensure its cost-effectiveness [4,174,189].

Cold plasma could speed up the oxidation rate of lipids in dairy products, adversely
impacting their sensory attributes [169]. There are difficulties encountered, especially in
treating foods with no definite shape and structure, probably because the plasma effect is
unable to reach the food matrix [169,190]. This might leave some bacteria untreated due
to their attachment to many localities [169,188]. Further challenges include the fact cold
plasma technique is still at its lowest level (laboratory or pilot scale) [169,191,192]. The full
feasibility of the non-thermal cold plasma technique to food products still remains unclear,
largely due to the lack of clearly stipulated functional settings given the presence of only a
handful of studies regarding its effects on product quality [169,190,192].
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5. Final Considerations

The action mechanism of the selected non-thermal technologies we have reviewed
herein appears driven by a wide range of energy sources, for instance, electrical fields, light,
and hydrostatic pressure. These techniques have proven their capacity in keeping food-
stuffs near an original fresh state, which is much desired by consumers, different from the
detrimental effects caused by many of the conventional heat application techniques. Some
selected non-thermal technologies produce minimal effects on the nutritional composition
of foodstuffs and promote the bioavailability of some bioactive components of foods.

Moreover, the design of equipment of large-scale application, formulation of rules
and regulations governing the safety of foodstuffs being processed, expanding the process
mechanisms of each technique, as well as raising awareness through consumer education,
are among several essentials of such non-thermal technologies that makes their adoption at
industrial scale challenging [133]. Since the majority of the novel non-thermal technologies
are still utilized at a small scale (lab/pilot level), their scaling-up to an industrial level
might prove expensive and therefore, the huge investment costs requires consideration
for sustainable implementation and utilization [8]. Therefore, further design of such non-
thermal technologies facility requires improvement, which could make the eventual process
mechanisms better and cost-effective [22].

Consumers will continue to demand for nutritionally fresh foodstuffs, and for this
reason, the onus remains on the food industry to push towards fully embracing non-thermal
food processing technologies, especially those discussed in this review. To the consumers,
this synthesis provides some relevant information that could help them in deciding their
preferred foodstuffs to consume based on the non-thermal processing methods. Overall,
this current synthesis can serve as a quick reference for food processors who intend to
employ one or more of these selected technologies.

6. Future Prospects

As a way forward and into the future, it is important for food industries to fully
understand the respective action mechanisms, as well as pros (merits) and cons (demer-
its) of non-thermal food technologies, prior to and even during their implementation.
Streamlining the process mechanisms of each technique and consumer education about the
strengths and prospects of non-thermal technologies could help to raise awareness, prior
to considerations on how to amend their designs if their cost-effectiveness and scale-up
capacity for industrial-level applications are to be improved.

Essentially, the implementation as well as selection of innovative non-thermal tech-
nologies within the food industry should involve a deep evaluation of the processing
line via hazard analysis and critical control points (HACCP) methodology. Such deep
evaluation would require combined efforts of HACCP and quality assurance control points
(QACP), which can help to enhance and sustain the improved food hygiene, quality and
safety processes [193]. In addition, future studies should be directed to perform cost com-
parisons of the selected non-thermal food processing technologies. Such cost comparisons
can help the food industries, as well as their respective stakeholders to select the appropri-
ate non-thermal technology that meets their food production requirements based on their
capacities and operational needs.

Additionally, the developing of a (hurdle-like) non-thermal technology that combines
a number of processing methods, designing the intended equipment particularly for large
scale application, as well as formulating the rules/regulations governing the intended
foodstuff safety when using these technologies, should be among the future priorities for
the food industry and its stakeholders. It is important to reiterate here that when a target
food industry that operates at either small-, medium- or large-scale desires to implement
a specific non-thermal food processing technology, the prerequisites already prescribed
by the manufacturers should be adhered to despite the variations in facilities/equipment,
operational/production scales, intended food product(s), factors of production, as well as
consumer targets.
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