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Abstract: Flower-like ZnO architectures assembled with many nanorods were successfully synthe-
sized through Thermionic Vacuum Arc, operated both in direct current (DC-TVA) and a pulsed
mode (PTVA), and coupled with annealing in an oxygen atmosphere. The prepared coatings were
analysed by scanning-electron microscopy with energy-dispersive X-ray-spectroscopy (SEM-EDX),
X-ray-diffraction (XRD), and photoluminescence (PL) measurements. By simply modifying the TVA
operation mode, the morphology and uniformity of ZnO nanorods can be tuned. The photocatalytic
performance of synthesized nanostructured ZnO coatings was measured by the degradation of
methylene-blue (MB) dye and ciprofloxacin (Cipro) antibiotic. The ZnO (PTVA) showed enhancing
results regarding the photodegradation of target contaminants. About 96% of MB molecules were
removed within 60 min of UV irradiation, with a rate constant of 0.058 min−1, which is almost nine
times higher than the value of ZnO (DC-TVA). As well, ZnO (PTVA) presented superior photocatalytic
activity towards the decomposition of Cipro, after 240 min of irradiation, yielding 96% degradation
efficiency. Moreover, the agar-well diffusion assay performance against both Gram-positive and
Gram-negative bacteria confirms the degradation of antibiotic molecules by the UV/ZnO (PTVA)
approach, without the formation of secondary hazardous products during the photocatalysis process.
Repeated cyclic usage of coatings revealed excellent reusability and operational stability.

Keywords: Thermionic Vacuum Arc; zinc-oxide coating; flower-like architectures; photocatalysis;
methylene blue; ciprofloxacin

1. Introduction

In recent years, the frequent detection of organic dyes and antibiotics in water bodies
has attracted much concern, owing to the fact that they may have a negative impact on
aquatic organisms and human health. The occurrence of quinolone residues (Qs) and azo
dyes was reported all around the world, which is not surprising, given that over 0.7 million
tons of azo dyes are annually synthesized [1], and the quinolone consumption in the
EU/EEA community has been estimated in the range of 2.86 defined daily dose (DDD) per
1000 inhabitants per day in Bulgaria (the highest) and 0.35 per 1000 inhabitants per day in
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Norway (the lowest) in 2017 [2]. Ciprofloxacin (Cipro), one of the most prescribed Qs used
to prevent and treat infectious diseases, often appears in surface water, drinking water,
ground water and waste water, ranging from ng/L to mg/L [3–7]. Similarly, methylene
blue (MB), a blue cationic thiazine hazardous dye, is detected in the environment after
being released in water bodies via effluents from textile, plastic, cosmetic, paper and
pharmaceutical industries [8]. Exact data on the MB amount discharged in the environment
are not available, but it is assumed that 10–15% of dyes are lost in the effluents during
different stages of manufacture [9].

Therefore, much effort has been made to remove or convert such organic pollutants
into less harmful by-products [10–13]. Many physical, chemical and biological methods
have been explored to purify and, thereby, selectively remove these toxic contaminants
present in water bodies [14]. These include adsorption, membrane filtration, Fenton oxida-
tion, microwave catalysis, electrochemical oxidation and photocatalysis [15–17]. Among
these various strategies of decontamination, the in situ production of charge carriers and
powerful reactive species, as the result of the interaction of the semiconductor photocat-
alysts with a natural or artificial light source, has proven to be one of the most effective
greenways to degrade the various organic molecules in aqueous solutions [18–20]. Ti-
tanium dioxide (TiO2) and zinc oxide (ZnO) have attracted as much attention as metal-
oxide semiconductor-driven photocatalysis, due to their environmental friendliness, high-
degradation efficiencies, easy preparation methods and nontoxic nature. In particular,
ZnO appears to be a cost-effective and suitable alternative to the commonly used TiO2
photocatalyst [21]. However, there are still some limitations of pure ZnO, such as the large
bandgap (~3.37 eV, which corresponds to a wavelength absorption edge ~368 nm) that
hinders its application under solar irradiation, the fast electron-hole recombination and
limited reusability, which drastically diminish its photocatalytic performance. Therefore,
serious efforts have been made to address these drawbacks and enrich the photodegrada-
tion activity of ZnO. An improvement in the photocatalytic behaviour of ZnO has been
obtained by doping with foreign ions [22–24], anchoring with porphyrins [25] or coupling
with graphene [26,27] and conducting polymers [28,29]. The photoactivity of ZnO is not
only determined by its chemical composition, but also by its morphology, the electronic
structure and its crystalline degree and phase [30,31]. Furthermore, the photocatalytic
properties are strongly correlated with their specific surface areas, since a photocatalyst
with a large specific surface exposes more active sites and exhibits a high photocatalytic per-
formance. The enlarged specific surface area is not only favourable for enhancing contact
of the catalyst with the electrolyte, but it is also beneficial for charge and mass transport,
contributing to the significant enhancement of the photocatalytic performance [32]. Reduc-
ing the particle size of a photocatalyst may decrease the charge recombination probability
because it shortens the diffusion pathway of the charge carriers. Nanostructured materials
offer the opportunity to minimize the distances and time over which charge carriers have
to survive and be transported towards the surface, where they will drive photocatalytic
reactions [33].

Besides optical bandgap and morphology, photocatalytic performance is strongly
related to electrical conductivity, which in turn can significantly affect the hole and electron
transfer. It is well known that electrical conductivity varies with the crystal structure and
stoichiometric form of the photocatalyst, since the bulk/surface defects of the photocatalyst
usually act as recombination centers for photoexcited electrons and holes. Therefore,
increasing the crystallinity degree of photocatalysts can reduce the probability of the charge
recombination between photo-generated electrons and holes, resulting in increases in the
lifetime and mobility of charge carriers [34]. Even if the photo-generated electrons and
holes possess sufficient potential for photo-degradation reactions, the lack of active sites
on the photocatalyst surface leads to charge-recombination reactions. Co-catalysts, such
as Pt, NiO and RuO2, are usually loaded on the photocatalyst surface in order to confine
the photo-excited charge carriers to the surface, thus avoiding the charge recombination
and introducing new active sites [35]. Another strategy to reduce the recombination of the
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photogenerated charges is to separate the electrons and holes by using different facets of the
crystal photocatalyst [36] or by using a one-dimensional nanostructured photocatalyst [37].
When using one-dimensional nanostructures, such as nanorods or nanowires, photo-excited
electrons migrate along the nanostructure axis towards the tip, while the holes migrate
towards the sides, leading to effective separation of the photogenerated charges.

Synthesis approaches play crucial roles in determining the bulk and surface prop-
erties as well as the performance of photocatalyst materials. Over the past few years,
various physical and chemical methods have been employed for the synthesis of materials
based on ZnO, including simple precipitation [38], sol–gel [39], hydrothermal [40], elec-
trochemical [41] and microwave-assisted-deposition techniques [42]. Even though these
approaches are the most common routes for the preparation of ZnO, they are expensive
and time-consuming, plus they require the use of toxic chemical compounds or organic
solvents as reducing agents, which are all limitations that can be overcome with Physical
Vapour Deposition (PVD) techniques. For this reason, increasing attention has been put on
eco-friendly deposition approaches that are assisted by plasma processes. A wide range
of plasma-processing thin-film technologies are available, such as pulsed laser deposition,
sputtering techniques and the termionic vacuum arc. The coating’s quality is linked to the
experiment setup and process parameters (e.g., ion flux and energy of vaporised material).
For example, the TVA is a gas-free plasma source with ion energy and flux that can be
easily controlled by operating parameters [43]. Apart from the fact that the TVA-deposition
method is an environmentally friendly, time-saving, cost-effective and facile PVD technol-
ogy, the definite advantages are the high deposition rates, high purity of the thin films
and good adhesion of the coating to the substrate [44]. In addition, by using ZnO thin
films [45] or by loading the ZnO particles on a suitable substrate [23,46,47], the need for
post-treatment steps to recover or remove the suspended particles from the treated water
is avoided.

In the present study, the TVA-deposition method, operated both in DC and a pulsed
mode, was used to synthesize Zn coatings, which were subsequently annealed at 800 ◦C
in an oxygen atmosphere for 6 h to obtain the nanostructured ZnO coatings. The synthe-
sized photocatalysts were characterized by a scanning-electron microscopy with energy-
dispersive X-ray-spectroscopy (SEM-EDX), X-ray-diffraction (XRD) and photoluminescence
(PL) measurements. Initially, the photocatalytic-degradation efficiency of the ZnO coatings
was evaluated by assessing the removal of methylene-blue dye (MB) in water under UV
irradiation. Then, due to the greater photocatalytic activity of ZnO (PTVA), this was used
as a photocatalyst for the mineralization of ciprofloxacin (Cipro) in aqueous solution. Fur-
thermore, to prove the effective removal of Cipro from water, the agar-well-diffusion assay
against both Gram-positive and Gram-negative bacteria was performed. The reusability
of nanostructured ZnO samples was also investigated by recording the photocatalytic
activity over four consecutive cycles of 240 min under UV irradiation. To the best of our
knowledge, the deposition of Zn-metallic coatings by TVA working in a pulsed mode and
the examination of flower-like, nanostructured ZnO-coating photocatalytic activity, under
UV irradiation using Cipro antibiotic as a model contaminant, have not been reported
so far.

2. Materials and Methods
2.1. Photocatalyst Synthesis

TVA is a gas-free metal-vapour plasma source, characterized by highly energetic metal
ions and high deposition rate. Briefly, TVA discharge takes place between two electrodes
(anode and cathode), in the vapours of the anode material, vapours that are produced
under the intense electron bombardment. An overview of TVA operation principle and
applications is given by Vladoiu et al. in a recent review [48]. Usually, the discharge cathode
consists of a loop-shaped tungsten filament, surrounded by a Wehnelt cylinder used to
focus thermo-electrons, while the anode is usually shaped as a crucible (cylindrical shaped),
made from materials with high melting point (W, C, TiB), which contains the material to be
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evaporated (small pieces of Zn, in this case). The anode is highly positively biased (from
few hundreds of V up to several kV), while the cathode is grounded and acts as an electron
gun when is heated. Under the electron-beam bombardment, the anode material first
begins to melt and afterwards to boil and evaporate, ensuring a steady state concentration
of evaporated atoms in the inter-electrodic space, which meet the necessary conditions for
a bright arc plasma ignition in the anode’s vicinity. An important feature of the thermionic
arc is that the plasma bulk is highly positive (hundreds of V to 1 kV), so that the metal ions
will be accelerated towards the growing film with energy corresponding to the potential
drop between the plasma potential and substrate potential [49,50]. An extensive description
of experimental setup (excepting vacuum vessel size) and plasma diagnostics techniques
are given in our previous paper [44]. In this work, all the experiments were performed in
an ultra-high vacuum stainless-steel chamber with cylindrical shape (30 cm in diameter
and 50 cm height). Prior to arc ignition, the chamber was depressurized to an ultimate
pressure of 10−4 Pa using a pumping system consisting of a turbo-molecular pump and a
dry pump. During TVA discharge, due to metal vapours, the pressure inside the chamber
increases up to 10−3 Pa. Several Zn coatings were deposited on silicon (Si) substrates,
by operating TVA discharge both in direct current (DC-TVA) and a pulsed mode (PTVA).
Our previous studies have shown that as compared to conventional DC–TVA, PTVA can
generate metal-vapour plasma characterized by higher energetic ions and a much higher
ionization degree [51]. Therefore, it is expected that the properties on Zn coatings to be
related to the plasma conditions, which, in turn, depend on the operation mode of TVA
discharge. In the case of DC-TVA plasma, the discharge current was set to 300 mA, while
the discharge voltage was set to +400 V, using a DC power supply. The PTVA discharge was
operated with amplitude voltage U = 1 kV, peak current Ip = 1.5 A, pulse duration τ = 200 µs
and repetition frequency ν = 1 kHz, using a home-made pulse generator. The average
power during PTVA operation was 280 W. In both operation modes, filament current (If)
was set to 25 A, while the distance between filament and anode (da-f) was set to 3 cm. The
Si substrates were fixed on an electrically grounded substrate holder, axially positioned
at 20 cm above the anode. In both cases, the deposition time was set to 10 min, and the
substrates were unintentionally heated during deposition process. The as-deposited Zn
coatings were then annealed at 800 ◦C for 6 h under an oxygen atmosphere to obtain ZnO
nanostructures. The annealing process was carried out in a high vacuum stainless-steel
chamber using a programmable heater system. Prior to annealing process, the chamber
was depressurized to an ultimate vacuum of 10−4 Pa using a pumping system consisting
of a turbo-molecular pump and a rotary pump. The annealing process was conducted at
a designed heating and cooling rate, in an oxygen atmosphere at pressure of 1 Pa. The
oxygen gas was introduced into the chamber with a constant flow rate of 10 sccm (standard
cubic centimetres per minute). The samples (Zn coatings deposited onto Si substrates) were
heated from room temperature (RT = 20 ◦C) to 800 ◦C, with a heating rate of 3.2 ◦C/min,
and after 6 h of annealing were cooled down to RT with a rate of 1.6 ◦C/min.

2.2. Plasma Diagnosis

During DC-TVA operation, the discharge voltage and current were directly monitored
from power-supply display, while during PTVA operation, the voltage and current wave-
forms were recorded by a digital oscilloscope using a high-voltage probe (TesTec, 1:100) and
a current probe (Pearson, 1 V/1 A). In both operation modes, the space-and-time evolution
of the plasma potential has been recorded using an emissive probe system working in
the so-called “saturated floating-potential regime” [52]. A detailed description of plasma-
potential-measurement technique was reported in one of our previous works [53]. In this
work, plasma-potential measurements have been performed along the TVA discharge axis,
between Wehnelt cylinder and top side of the chamber wall (35 cm above the anode), using
a step size of 5 mm.
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2.3. Materials Characterization

The morphology and composition of the as-deposited Zn and annealed (ZnO) coat-
ings were investigated via field-emission scanning-electron microscopy (Hitachi S-3400N,
Hitachi Science Systems, Tokyo, Japan) equipped with an energy-dispersive X-ray spectrom-
eter (EDX). The structural and phase analyses of the coatings were performed using X-ray
diffraction (XRD), in Bragg–Brentano configuration, via Shimadzu LabX XRD-6000 diffrac-
tometer (supplied by Shimadzu Corporation, Kyoto, Japan), equipped with a CuKα radia-
tion source (λ = 1.54059 Å). The photoluminescence (PL) measurements were performed
at room temperature using SLM 8000 spectrofluorometer (SLM Instruments, Urbana, IL,
USA), with an excitation wavelength of 330 nm.

2.4. Photocatalytic Activity Measurements

The photocatalytic performance of nanostructured ZnO coatings, under UV irradiation,
was investigated by using methylene blue (MB, 03978-250ML, Sigma Aldrich, Darmstadt,
Germany) and ciprofloxacin (Cipro, Novo mesto, Slovenia) antibiotic as model contami-
nants. The Cipro liquid form was purchased from a local pharmacy. The manufacturer
brand remains anonymous to avoid a possible conflict of interest. The product was se-
lected in order to explore a scenario similar to a real case. The photocatalytic activity
measurements have been carried out in a 50 mm × 17 mm glass Petri dish illuminated by a
horizontally placed UV lamp (Philips, Poland, 1 W/m2, with main emission wavelength
at 253.7 nm), at 5 cm above the sample, inside of a self-designed box covered with an alu-
minium foil. The power density of the incident light was measured using a UV-Optometer
(G187079, SUSS Microtek, Eindhoven, The Netherlands). Prior to the light irradiation,
the aqueous solution of MB (47 µM) or Cipro (0.015 µM) with the photocatalyst sample
(nanostructured ZnO coating deposited onto 2 × 2 cm2 Si wafer) was kept in contact
in the dark for 30 min in order to achieve the adsorption-desorption equilibrium. The
antibiotic concentration was selected according to its occurrence in wastewater and water
resources [54]. At the pre-set time intervals, solution was collected and the changes in the
contaminant concentration were analysed with Evolution 300 UV-Vis spectrophotometer
(Thermo Fisher Scientific, Madison, WI, USA). The degradation of the organic contaminants
was followed by measuring the decay of the absorption intensity at their λmax = 664 nm
(MB) and 277 nm (Cipro) as a function of irradiation time. The concentrations of treated
dye and antibiotic solutions were evaluated from constructed calibration curves, as shown
in Figure S1 (Supplementary Materials). The removal percentage (%) of pollutants was
calculated using Equation (1), where C0 is the MB/Cipro initial concentration after 30 min
adsorption in dark, and Ct is the dye/antibiotic concentration after a certain irradiation time.

%Removal =
(

1 − Ct

C0

)
× 100% (1)

The degradation rate constant (k) values were determined from slopes of the graphs by
plotting–ln(Ct/C0) versus irradiation time. In addition, the apparent quantum yield (AQY)
of the photocatalytic process were estimated using Equation (2), following the calculation
details given by Bora et al. [55].

AQY(%) =
2nMBNAhc

PSλt
× 100% (2)

where nMB (mol) is the amount of methylene blue mineralized in 1800 s, NA (mol−1) is
Avogadro’s constant, h (J·s) is Planck’s constant, c (m·s−1) is speed of light, P (W/m2) is the
power density of the incident light, S (m2) is the photocatalyst area, λ (m) is the wavelength
of the incident monochromatic light and t (s) is the exposure time.

The stability of synthesized thin film photocatalyst was investigated over four consec-
utive cycles of 240 min under UV irradiation.
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2.5. Agar Well Diffusion Assay

In order to assess the efficient removal of ciprofloxacin from aqueous solution by
nanostructured ZnO (PTVA) coating under UV irradiation, the well-diffusion assay was
performed against both bacterial strains, Escherichia coli ATCC 8739 (Gram-negative bacilli,
Microbiologics, MN, USA) and Staphylococcus aureus ATCC 25923 (Gram-positive cocci,
Microbiologics, MN, USA) following the protocol described by Dwivedi et al. [56]. Briefly,
both bacteria were inoculated and incubated overnight at 37 ◦C and 160 rpm in 10 mL
Muller–Hinton broth. The optical density measured at 600 nm (OD600) of the cultures was
adjusted to 0.1 (approx. 3.5 × 108 CFU/mL) after incubation, and 200 µL of each inoculum
was evenly spread on Muller–Hinton agar in Petri dishes. Using a sterile 1 mL micropipette
tip, wells of approximately 10 mm diameter were made in the agar layer (4 per Petri dish).
Then, 100 µL of control (Cipro without UV and ZnO coatings) and treated solutions (10, 30,
120, 240 min) with UV in absence or presence of photocatalyst film were poured into each
well. The clear zone diameter (mm) was measured after plates were incubated overnight at
37◦C, as illustrated in Figure S2 (Supplementary Materials). To ensure the consistence of
our results, the tests were performed in triplicates.

3. Results and Discussions
3.1. Plasma Characterization

A deep understanding of the pulsed TVA discharge behaviour is necessary to con-
trol the deposition process, process stability and to improve the coating performance.
Plasma-diagnosis results allow for better selection of the experimental setup and pro-
cess parameters, to get the maximum benefit from this technique. The plasma potential
and, consequently, the ion flux and energy of vaporised material is of great importance
when investigate the correlation between plasma properties and coating structure. In this
work, to gain a better understanding of the fundamental mechanisms governing a pulsed
TVA process and to investigate their implications on the coating growth, the discharge
current-voltage behavior and plasma-potential distribution were measured and discussed.

Figure 1a shows the temporal evolutions of the discharge voltage, discharge current
and plasma potential measured at the substrate position (20 cm above the anode) during
PTVA discharge with U = 1 kV, pulse duration τ = 200 µs and repetition frequency ν = 1
kHz. The temporal evolution of the plasma potential, measured at the substrate position by
an emissive probe, follows closely the discharge-voltage waveform, having quite similar
values. During the on-pulse period, the peak current reaches a value of 1.5 A, which is five
times higher than discharge current during DC-TVA operation. This translates in a much
higher plasma density and ion flux towards the substrate in the case of PTVA as compared
to the DC-TVA discharge.

The fast replication of the discharge current during the PTVA pulse and its time
evolution in-between pulses indicates that the afterglow plasma does not die out, as the
ions and electrons are still present at the beginning of the subsequent pulse. The axial
distribution of plasma potential measured between the Wehnelt cylinder and the port
substrate (Figure 1b) shows that in both cases the plasma-potential distributions (measured
as peak plasma potential during the PTVA pulse) are uniform, with values very close to the
discharge voltage. Plasma-potential measurements (not shown here) performed beyond
the substrate position, up to the top side of the chamber wall (35 cm above the anode),
reveal also a uniform plasma-potential distribution. This feature is much different from
the plasma-potential-distribution data reported before, for Cu and Be TVA plasmas, due
to the much lower melting point of Zn (682.7 K versus 1356.6 K and 1560 K, respectively)
and lower size (especially, diameter) of the discharge chamber. Due to a very low melting
point, the evaporation rate of the Zn is very high and TVA plasma fills the whole chamber,
just like in the case of a glow discharge. Due to very large gradient of metallic vapours
and the open geometry of the discharge electrodes, the plasma species diffuse in almost
all directions (radial losses), allowing very large substrates to be coated. It should be
noted that the deposition rate, estimated by means of a profilometer, of the Zn coating
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deposited onto Si substrate positioned axially at 20 cm above the anode, is about 2 µm/min
during DC-TVA operation and 4.5 µm/min during PTVA discharge. In addition, the
plasma-potential-distribution measurements reveal that Zn ions are accelerated towards a
grounded substrate with energy corresponding to the full-arc voltage (up to 1 kV during
PTVA operations).
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3.2. Surface Morphology

Figure 2 shows SEM images of the as-deposited Zn coatings by DC-TVA and PTVA and
corresponding flower-like ZnO structures obtained after thermal treatment in an oxygen
atmosphere at 800 ◦C for 6 h.
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The Zn coatings deposited either by DC-TVA or PTVA present an aspect of nanos-
tructures with regular and irregular shapes (hexagonal drums and truncated hexagonal
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pyramids). The Zn nanostructures obtained by DC-TVA have a compact structure, while
those obtained by PTVA have a lamellar structure. It seems that Zn nanostructures synthe-
sized by PTVA appear to be made of overlapping hexagonal nanosheets. The pulsed-plasma
regime and higher kinetic energy of the Zn ions gained during PTVA discharge lead to
the growth of self-assembly nanostructures. After annealing in an oxygen atmosphere,
the resulting ZnO coatings revealed flower-like surface morphologies, consisting of nu-
merous rods with individual diameters around 30–50 nm. For instance, flower-like ZnO
architectures have been prepared by ultrasonic and microwave combined technique or
hydrothermally using solution-based approaches [57–60]. In addition, an increase in the
density and length of the ZnO nanorods has been observed for the coating obtained by
PTVA. In contrast with previous reports, where the length of nanorods has been controlled
by altering the precursor concentration [61] and the pre-annealing temperature of the ZnO
seed layer [62], the change of TVA-operation mode enabled us to produce ZnO nanorods
with tunable morphology.

Among all the materials, the ZnO has the richest variety of nanostructure shapes,
such as tower-, tube- and flower-like morphologies [63–65], nanotubes [66], nanowires [67],
hollow spheres [68], nanohelices [69], nanorods [70], nanobelts [71] and nanoplates [72].
The ability to be synthesized in wide range of novel structures resides from an important
characteristic of ZnO, such as its polar surfaces. Structurally, ZnO has a hexagonal crystal
structure, with three types of growth direction, corresponding to a polar surface ({0001}) and
two non-polar surfaces ({2110} and {0110}). The relative surface activities of various growth
facets determine the anisotropic growth rates and the morphology of ZnO nanostructures.
ZnO synthesized by PTVA shows a typical growth morphology of 1D nanostructures
(nanorods), where the growing structures tend to maximize the areas of the non-polar
facets ({2110} and {0110}) and to minimize the area of the polar facet {0001}, which is
stable and has higher energy than the non-polar facets. The nanorod’s growth direction
seems to be affected by the geometrical shape and crystallographic structure of the Zn
nanostructures. The nanorods grow along {0001} facet (c-axis), in the Zn-nanosheet plane,
with the direction normal to the side of hexagon.

3.3. Structural, Chemical Properties

Figure 3 shows the X-ray-diffraction patterns for as-deposited Zn coatings and the
thermal-annealed coating (ZnO) synthesized by DC-TVA and PTVA, respectively. The
diffraction patterns of the as-deposited Zn coating deposited by DC-TVA confirm the
presence of a Zn phase (according to PDF card no. 870713), with the main diffraction peaks
positioned at 36.38◦, 39.07◦ and 43.3◦, which are assigned to the (002), (100) and (101) planes
of pure Zn, respectively. The diffraction peaks of the as-deposited Zn coating deposited
by PTVA are shifted to higher diffraction angles by 0.25◦, indicating a tensile stress in the
coatings, which could be caused by the grain-boundary shrinkage [73]. The diffraction
peaks of Zn coating deposited by DC-TVA have the same intensity as the Zn coating
deposited by PTVA, indicating roughly the same crystallinity degree of both coatings. The
EDX measurements revealed that the Zn coatings deposited both in DC and pulsed TVA
have (97 ± 1) at.% Zn and (3 ± 1) at.% O. The origin of oxygen in the as-deposited coatings
can be assigned to residual oxygen from the discharge chamber, desorbed oxygen under
intense ion bombardment, from the chamber wall, and to the natural oxidation process
of Zn coatings as a result of their exposure to environmental conditions. The average
grain size, estimated from the diffraction peaks’ width using Scherrer’s equation [74], is
73.4 nm and 84.2 nm in the case of the as-deposited Zn coating deposited by DC-TVA and
PTVA, respectively.
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Figure 3. X-ray-diffraction patterns for as-deposited Zn coatings and thermal-annealed coating (ZnO)
synthesized by DC-TVA and PTVA.

After thermal annealing, the characteristic peaks of the wurtzite ZnO phase is found,
while all the characteristic peaks of Zn disappeared, indicating a complete oxidation process
of the Zn coatings. This statement is supported by EDX measurements, which revealed, for
both coatings, a chemical composition of (51 ± 1) at.% Zn and (49 ± 1) at.% O. The main
diffraction peaks positioned at 31.96◦, 34.62◦ and 36.45◦ are assigned to the (100), (002) and
(101) planes of the wurtzite ZnO phase (according to PDF card no. 890511), respectively.
As compared to the ZnO coatings deposited by DC-TVA, the X-ray-diffraction pattern of
the ZnO coatings deposited by PTVA depicts a better crystalline order, the intensity of ZnO
(101) plane being eight times higher. The average grain size of the ZnO nanostructures
synthesized by DC-TVA and PTVA is 28.9 nm and 37.6 nm, respectively.

3.4. Photoluminescence Spectra

Since the recombination of photoexcited charge carriers produces fluorescence emis-
sion, the photoluminescence (PL) spectra may provide information about the recombination
rate. Therefore, the high PL-emission intensity is a sign of a high recombination rate of
electrons (e−) and holes (h+), which, in turn, decreases the photoexcited charges available
for photocatalytic reactions. On the contrary, a low recombination rate is, thus, expected to
produce a low PL emission intensity, meaning that more photoexcited charge carriers are
available to participate in the photodegradation reactions. Consequently, to improve the
material photocatalytic activity, it is very important to slow down the recombination of the
photo-induced charge carriers [75].

As can be seen in Figure 4, the photoluminescence spectra of ZnO coatings synthesized
by DC-TVA and PTVA, display a very low emission band in the range of 495–605 nm.
The PL-emission signal could be attributed to the intrinsic defect states in ZnO, such as
interstitial oxygen/zinc [76] and oxygen/zinc vacancies [77,78], which act as recombination
centers for photoexcited charge carriers. Therefore, the lower intensity of the ZnO (PTVA)
PL spectrum corresponds to a lower recombination rate of the electron-hole pairs, thereby
enhancing the photocatalytic efficiency.
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3.5. Evaluation of Photocatalytic Activity

Initially, the photocatalytic efficiencies of the two kinds of ZnO photocatalysts under
UV light were evaluated by the degradation of methylene-blue dye, a hazardous chemical
found in aqueous emissions from the textile, pharmaceutical and cosmetic industries. Fig-
ure 5a,b exhibits changes in absorption spectra of MB solution as a function of irradiation
time, in the presence of ZnO synthesized by the DC-TVA and PTVA approaches, respec-
tively. It can be seen that irradiation of MB-dye solution in the presence of photocatalysts
leads to a decrease in absorption intensity. The adsorption bands of MB molecules located
at 293 nm and 664 nm gradually decrease with an increase in irradiation time and disappear
almost completely after 90 min for the flower-like nanostructured ZnO (PTVA) coating.
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The photocatalytic degradation efficiency of MB dye in the absence or presence of
nanostructured ZnO photocatalysts under UV light is shown in Figure 6a. The result
indicates that MB is quite stable, with a slight decay in the efficiency in absence of photocat-
alysts after 240 min of irradiation (ca. 30%). In contrast, the prepared nanostructured ZnO
coatings presented enhancing results towards the photocatalytic removal of contaminant,
as about 96% of dye removal takes place in the presence of ZnO (PTVA) film under 60
min of UV irradiation, while the photocatalytic degradation efficiency attained by the ZnO
(DC-TVA) sample is 35%. The remarkable augmentation of the photocatalytic activity of the
nanostructured ZnO coating synthesized by pulsed TVA might be ascribed to the collective
contribution of nanostructured morphology and the higher degree of crystallinity, which
improve the lifetime of charge carriers and offer more exposed active surface sites, leading
to more reactive species and, consequently, to a higher MB photodegradation rate. Similarly,
Paisrisarn et al. [79] reported that both the crystallinity and morphology of ZnO nanowires
are key physicochemical properties that can be related to the extracellular vesicles’ capture
performance. Furthermore, the ZnO (PTVA) sample exhibits a high rate-constant value
of 0.058 min−1 for the first 60 min of UV irradiation, which is almost nine times the rate
of the constant value of the ZnO (DC-TVA) sample (Figure 6b). On the other hand, the
apparent quantum yield (AQY), defined as the ratio of the number of MB molecules miner-
alized in 30 min to the number of incident photons, was calculated for both photocatalysts
(Supplementary Materials). The resulting AQYs for photocatalytic degradation of MB
using ZnO (PTVA) (26.9%) was almost six times higher than that of ZnO (DC-TVA) (4.3%).
These results are in the same range as those found by Bora et al. [55] for the degradation of
MB using bare ZnO and gold-nanoparticles-decorated ZnO nanorods under UV irradiation.
Owing to the fact that the reactions happen at the interface between the materials’ surface
and the organic contaminants, it is expected that the ZnO photocatalytic activity depends
on the surface-to-volume ratio of the rods, as well as to the bulk-crystalline degree and
phase. It was reported that the formation of 1D nanostructures can efficiently separate
electrons and holes spatially, suppressing their recombination rate and greatly enhancing
the intrinsic activity of each active site [80]. In addition, using 1D nanostructures, such as
nanorods, the excited electrons migrate along the long axis of the nanorod, while the holes
migrate to the sides, causing the effective separation of electrons and holes, significantly
improving overall the photocatalytic performances [81].
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One important feature of the synthesized ZnO-based photocatalysts is their reusabil-
ity: they can give almost the same performance over four consecutive cycles of 240 min
under UV irradiation. As shown in Figure 7, a slight decay in the photodegradation ef-
ficiency of ZnO coating prepared by PTVA over the cycles (from 99% to 97.8%) has been
observed, which might be due to the deactivation of the photocatalyst active sites by
adsorbed degradation by-products or due to the conversion of zinc oxide (ZnO) in zinc
peroxide (ZnO2). On contrary, the ZnO coating synthesized by DC-TVA revealed a slight
improvement in its photodegradation performance (from 85% to 94.7%), probably due
to the removal/decomposition of organic contaminants (hydrocarbons) adsorbed on the
catalyst surface before photocatalytic degradation measurements. Organic compounds act
as electron donors for photocatalytic reactions, and a part of the photo-generated holes are
used for their decomposition [82].

Nanomaterials 2022, 12, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 7. Reuse of ZnO synthesized by DC-TVA and PTVA approaches for the photodegradation 
of MB for four successive cycles (240 min each run). 

To further examine the capability of the ZnO coating synthesized by PTVA for the 
decontamination of water polluted with pharmaceutical compounds, the prepared pho-
tocatalyst has been tested for the degradation of ciprofloxacin, which is the most fre-
quently detected fluoroquinolone antibiotic in wastewater plants and water resources 
around the world [83]. Considering the frequent detection of Cipro and its possible nega-
tive effects on aquatic organisms and human health, the European Commission has in-
cluded the antibiotic on the updated Watch List under the Water Framework Directive 
[84]. It is well known that ciprofloxacin is prone to photochemical transformation by ex-
posure to UV light. According to the literature, the photolysis of Cipro leads to the pho-
tosubstitution of fluorine and decarboxylation and the transformation of the piperazine 
ring [85]. The UV-Vis absorbance spectrum of Cipro at different irradiation times in the 
absence and presence of the nanostructured ZnO (PTVA) photocatalyst are shown in Fig-
ure 8a,b. The band and the humps located at 272 nm and 327 nm gradually decrease with 
an increase in irradiation time and are almost flattened after 240 min, for the flower-like, 
nanostructured ZnO (PTVA) coating. As can be seen in Figure 8c, the efficiency of photol-
ysis was enhanced when UV irradiation was combined with the nanostructured ZnO coat-
ing. About 96% of the Cipro was degraded under 240 min of UV irradiation, which is 1.5 
times larger than the value obtained in the absence of photocatalyst. Furthermore, after 
240 min of UV irradiation, the estimated degradation rate of the Cipro over the ZnO sam-
ple was 0.0148 min−1, which is almost three times larger than the value of bare Cipro (Fig-
ure 8d). These results are superior compared to the values obtained for an earlier reported 
ZnO-based photosystem [86]. 

Figure 7. Reuse of ZnO synthesized by DC-TVA and PTVA approaches for the photodegradation of
MB for four successive cycles (240 min each run).

To further examine the capability of the ZnO coating synthesized by PTVA for the
decontamination of water polluted with pharmaceutical compounds, the prepared photo-
catalyst has been tested for the degradation of ciprofloxacin, which is the most frequently
detected fluoroquinolone antibiotic in wastewater plants and water resources around the
world [83]. Considering the frequent detection of Cipro and its possible negative effects
on aquatic organisms and human health, the European Commission has included the
antibiotic on the updated Watch List under the Water Framework Directive [84]. It is well
known that ciprofloxacin is prone to photochemical transformation by exposure to UV
light. According to the literature, the photolysis of Cipro leads to the photosubstitution of
fluorine and decarboxylation and the transformation of the piperazine ring [85]. The UV-Vis
absorbance spectrum of Cipro at different irradiation times in the absence and presence of
the nanostructured ZnO (PTVA) photocatalyst are shown in Figure 8a,b. The band and the
humps located at 272 nm and 327 nm gradually decrease with an increase in irradiation
time and are almost flattened after 240 min, for the flower-like, nanostructured ZnO (PTVA)
coating. As can be seen in Figure 8c, the efficiency of photolysis was enhanced when UV
irradiation was combined with the nanostructured ZnO coating. About 96% of the Cipro
was degraded under 240 min of UV irradiation, which is 1.5 times larger than the value
obtained in the absence of photocatalyst. Furthermore, after 240 min of UV irradiation, the
estimated degradation rate of the Cipro over the ZnO sample was 0.0148 min−1, which is
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almost three times larger than the value of bare Cipro (Figure 8d). These results are superior
compared to the values obtained for an earlier reported ZnO-based photosystem [86].
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Figure 8. UV-Vis-absorption spectra of Cipro solution as a function of irradiation time acquired in the
absence (a) and presence (b) of ZnO synthesized by PTVA approach. (c) Photocatalytic-degradation
plots of Cipro in the absence or presence of nanostructured ZnO coating within 240 min of UV
irradiation. (d) Linear kinetic-fitting curves with the degradation-rate constants for the UV-induced
dissociation of Cipro.

Moreover, to assess the photodegradation efficiency of the ZnO coating (PTVA), under
UV light for effective treatment of the Cipro present in water, we have performed the agar
well-diffusion assay against both Escherichia coli ATCC 8739 (Gram-negative bacilli) and
Staphylococcus aureus ATCC 25923 (Gram-positive cocci). Briefly, the antibacterial activity
of ciprofloxacin before and after UV irradiation in the absence or presence of photocatalyst
has been evaluated. Figure S2 (Supplementary Materials) shows that a clear, hollow
inhibition zone is formed on the surface of agar plates containing untreated Cipro solutions,
indicating that the bacteria cannot proliferate. In addition, a larger inhibition zone has
been measured for the E. coli bacteria. The antibacterial study revealed that after photolysis
or photocatalytic treatment, the Cipro solution became less toxic, showing a significant
decrease in the inhibition zone diameter. Notably, after 30 min of UV irradiation in the
presence of nanostructured ZnO (PTVA) coating, the ciprofloxacin lost its antibacterial
activity against S. aureus, while for only UV treatment no antibacterial activity is observed
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around the disc after 120 min (Figure 9a). For the E. coli strain, the Cipro completely lost
its activity after 240 min of UV irradiation in combination with ZnO photocatalyst, while
after 240 min of UV treatment a smaller inhibition zone can still be observed (Figure 9b).
These findings imply that the loss of the Cipro’s antibacterial activity is proportional to the
time of its UV irradiation, and the nanostructured ZnO (PTVA) coating showed enhancing
results towards the photocatalytic removal of antibiotic. Furthermore, microbiological
assay proved that the antibiotic degrades completely and that during the photocatalysis
process no harmful secondary compounds are generated.
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A possible photocatalytic degradation mechanism of MB and Cipro by the ZnO
(PTVA) coating has also been proposed based on previous reports [27,29,39,86,87] and the
aforementioned results (Figure 10). First, when nanostructured ZnO coatings are irradiated
by UV light with energy hν equal to or higher than that of the band gap, electrons (e−) in
the valence band (VB) may be excited to the conduction band (CB) with the simultaneous
generation of holes (h+) in the VB. Then, these species (e−/h+) will react with water
molecules and/or hydroxide anions (OH−) and oxygen to produce hydroxyl radicals (•OH)
and superoxide radical anions (O2

•−), respectively. Finally, these radicals may react with
MB and Cipro molecules, breaking them into smaller and harmless fragments. The superior
photocatalytic activity of flower-like, nanostructured ZnO synthesized by PTVA might be
attributed to the synergetic effect between the coating morphology and crystalline order. A
high crystalline quality and the high effective surface area of the ZnO nanorods allow for
better transport and separation of the photo-excited electrons and holes on different crystal
facets, leading to a low recombination rate and enhanced photocatalytic activity.
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Compared with the previously available reports (Table 1), the efficiency of our nanos-
tructured ZnO-based photocatalyst synthesized by pulsed TVA is superior for the remedia-
tion of water polluted with organic dyes and pharmaceutical compounds. In addition, our
photocatalytic system is a valuable alternative to the existing approaches based on particles
or powders, owing to the fact that the need for costly and time-consuming post-treatment
steps to recover or to remove the suspended particles from the treated water bodies is
avoided. As few reports are available for the photocatalytic degradation of organic con-
taminants from water by using ZnO films [87–90], tremendous attention has been paid to
nanoparticles and powders. For example, films composed of ZnO-porous nanosheets have
been synthesized via a hydrothermal approach directly on Zn foil, with improved photo-
catalytic activity in the degradation of Rhodamine B under UV light irradiation, by Wang
and co-workers [88]. Islam et al. assessed the photocatalytic activity of nanostructured
ZnO film prepared by a sol–gel dip-coating technique through the decomposition of MB
dye [87]. Similarly, the porous ZnO thin coatings prepared by a sol–gel process have been
found to be an effective catalyst for the decomposition of chemical waste, such as phenol,
chlorophenol, naphthalene and anthracene, to CO2 [89]. Photocatalytic activity of ZnO thin
films grown by metal–organic chemical-vapour deposition was studied by measuring the
photoinduced decolouration of Orange II dye solution [90]. To our best knowledge, this is
the first study in which TVA working in a pulsed mode (PTVA) is employed to deposit Zn
thin film, and flower-like, nanostructured ZnO (PTVA) coating was used for the successful
treatment of ciprofloxacin from water under UV irradiation.

Table 1. Comparative data of photocatalytic degradation of MB dye and antibiotic using ZnO-
based photocatalysts.

Catalyst (Amount) Preparation
Method

Contaminants
(Concentration) Light Source Efficiency/Irradiation Time k (× 10−3, min−1) Ref.

ZnO NPs (0.5 g/L)
Chemical route

MB (10 µM) 300 W Xe lamp 90%/240 min - [26]
ZnO NPs (0.02 g/L) Cipro (15 µM) UV light (365 nm) 50%/60 min 4.3 [86]

ZnO NPs (0.25 g/L) Precipitation MB (63 µM) UV lamp (Philips,
12 W)

81%/180 min 8.4 [39]Sol–gel 92.5%/180 min 12.4

Mesoporous ZnO (1 g/L)

Sol–gel

MB (20 µM) 250 W Hg lamp 69%/180 min 6.1 [29]
ZnO nanopowder MB (30 µM, pH = 2) 150 W Hg lamp 86%/180 min 10.8 [91]
ZnO NPs (2.4 g/L) MB (47 µM) 100 W 85/180 min 12.9 [27]

ZnO film (1 × 1.5 cm2) MB (25 µM) 15 W UV light 60%/380 min 1 [87]
ZnO nanopowder Cipro 140 W/m2 86.9%/75 min - [92]

ZnO NPs (0.24 g/L)
Green

synthesis

MB (30 µM) 125 W Hg lamp 85%/120 min 17.5 [31]
ZnO NPs MB (1 mM) 365 nm 63%/120 min 8.12 [93]

ZnO NPs (1 g/L) MB (47 µM) 10 W Hg lamp 90%/120 min 22.6 [94]
ZnO nanocrystals (0.15 g/L) MB (16–63 µM) UV from 99 to 58%/100 min - [95]

DC-TVA MB (47 µM) 53%/90 min 6.6
MB (47 µM) 97%/90 min 58Nanostructured ZnO

coatings (2 × 2 cm2) PTVA Cipro (0.015 µM)

UV lamp (253.7 nm,
1 W/m2) 96%/240 min 14.8

Present
work

Preliminary results indicate that ZnO (PTVA) coating shows very good photocat-
alytic activity and stability for water splitting under sunlight irradiation. The photo-
electrochemical measurements performed in a conventional three-electrode electrochemical-
cell setup with aqueous electrolyte solution (0.1 M NaOH), under standard solar-illumination
conditions (AM 1.5 G, 100 mW/cm2), reveal that the photocurrent density reaches a value
up to 1.5 mA/cm2. The photo-electrochemical response for water splitting is a subject of
further experimental work, which will be reported on in a separate paper.

4. Conclusions

In this work, the Thermionic Vacuum Arc (TVA) deposition technique, operated in
DC and a pulsed mode, has been used to synthesize Zn coatings. The thermal anneal-
ing/oxidation of Zn coatings leads to the formation of ZnO crystalline nanostructures.
The pulsed-plasma regime and higher kinetic energy of the Zn ions gained during PTVA
discharge led to the growth of self-assembly nanostructures with a high crystalline order.
After thermal annealing in an oxygen atmosphere, the Zn nanostructures synthesized by



Nanomaterials 2022, 12, 2193 16 of 20

PTVA change their morphology into nanorods structures, with hexagonal cross-section and
high aspect ratio. The effects of morphology and the crystalline facet of ZnO nanostructures
on UV-light photocatalytic-decomposition performances of MB dye and the ciprofloxacin
antibiotic have been investigated. The degradation efficiency of MB over ZnO photocatalyst
synthesized by PTVA reaches 97%, after 60 min of UV irradiation, whereas the decomposi-
tion rate constant is nine times higher than ZnO synthesized by DC-TVA. The degradation
efficiency of ciprofloxacin over ZnO photocatalyst synthesized by PTVA reaches 88%, after
120 min of UV irradiation. The antibacterial study revealed that ciprofloxacin is removed
successfully from water by the UV/ZnO (PTVA) photocatalytic system, without forma-
tion of secondary hazardous products. The pulsed TVA deposition of Zn is a favourable
and facile method for fabrication of one-dimensional (1D) ZnO nanorods structures, with
outstanding photocatalytic performance towards UV photo-degradation of organic contam-
inants. The superior photocatalytic activity of flower-like, nanostructured ZnO synthesized
by pulsed TVA might be attributed to the high crystalline order, high specific surface area
and better separation of photo-excited electrons and holes on different crystal facets. On
the other hand, the nanostructured ZnO (PTVA) coating, due to its remarkable proper-
ties, seems to be an excellent candidate for other applications, such as solar cells and H2
generation via solar water splitting.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12132193/s1, Figure S1: Calibration curves for (a) methylene-
blue dye and (b) ciprofloxacin drug; Figure S2: Photographs of Petri dishes used in agar-well
diffusion method for both bacterial strains, E. coli ATCC 8739 (a) and S. aureus ATCC 25923 (b) and
each experimental conditions, where 1 is the control (Cipro), and 2/3, 4/5, 6/7 and 8/9 are Cipro
after 10, 30, 120 and 240 min UV exposure in the absence and presence of nanostructured ZnO (PTVA)
coatings, respectively. Calculation of AQY. Reference [96] is cited in the Supplementary Materials.
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