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Abstract

Introduction:Cognitive composite scores offer a means of precisely measuring execu-

tive functioning (EF).

Methods: We developed the Uniform Data Set v3.0 EF composite score (UDS3-EF)

in 3507 controls from the National Alzheimer’s Coordinating Center dataset using

item-response theory and applied nonlinear and linear demographic adjustments. The

UDS3-EF was validated with other neuropsychological tests and brain magnetic reso-

nance imaging from independent research cohorts using linear models.

Results: Final model fit was good-to-excellent: comparative fit index = 0.99; root

mean squared error of approximation = 0.057. UDS3-EF scores differed across vali-

dation cohorts (controls >mild cognitive impairment > Alzheimer’s disease-dementia

≈ behavioral variant frontotemporal dementia; P < 0.001). The UDS3-EF correlated

most strongly with other EF tests (βs= 0.50 to 0.85, Ps< 0.001) andmorewith frontal,

parietal, and temporal lobe gray matter volumes (βs = 0.18 to 0.33, Ps ≤ 0.004) than

occipital gray matter (β = 0.12, P = 0.04). The total sample needed to detect a 40%

reduction in UDS3-EF change (n= 286) was ≈40% of the next best measure (F-words;

n= 714).

Conclusions: The UDS3-EF is well suited to quantify EF in research and clinical trials

and offers psychometric and practical advantages over its component tests.
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1 INTRODUCTION

Executive functioning (EF) is a multifaceted cognitive domain com-

prising several component processes including set-shifting, inhibi-

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2020 The Authors. Alzheimer’s & Dementia published byWiley Periodicals LLC on behalf of Alzheimer’s Association

tion, planning, organization, and working memory.1,2 Intact EF is crit-

ical for completing daily activities and mediates functional decline

in many neurologic conditions.3,4 The neuroanatomical substrate of

EF spans fronto-parietal networks, subcortical-cortical circuits, and
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HIGHLIGHTS

∙ The Uniform Data Set v3.0 executive function (UDS3-EF)

is an item response theory-based composite score.

∙ The UDS3-EF demonstrates convergent validity with

other EF tests and EF brain regions.

∙ Using the UDS3-EF reduces sample size estimates for

powering clinical trials.

∙ TheUDS3-EF iswell suited as a cognitive endpoint for clin-

ical trials.

RESEARCH INCONTEXT

1. Systematic review: Executive functioning (EF) is a mul-

tifaceted cognitive domain affected by common age-

related pathologies. Cognitive composite scores offer

psychometric and practical advantages over individual

tests as clinical trial endpoints. Modern nonlinear adjust-

ments for demographic factors may further improve the

precision of cognitive composite scores.

2. Interpretation: We developed an EF composite score

using the National Alzheimer’s Coordinating Center

Uniform Data Set (version 3.0) Neuropsychological

Battery and developed norms using nonlinear adjust-

ments. This composite was then validated in indepen-

dent healthy control, mild cognitive impairment, and

dementia cohorts, and shown to provide lower sam-

ple size estimates for clinical trials than the individual

tests.

3. Future directions: The UDS3-EF composite score evi-

denced strong utility as a cognitive endpoint for mea-

suring executive function in research and clinical tri-

als. Further work may explore correlates with advanced

neuroimaging and fluid biomarkers. Future composites

may benefit from incorporating tablet-based EF mea-

sures with better psychometric properties.

interhemispheric connections.5–9 It therefore is not surprising that EF

deficits are frequently observed in aging populations due to common

pathological changes like Alzheimer’s disease (AD) and cerebrovascu-

lar disease.10–13 There is an emerging need for sophisticated and psy-

chometrically robust quantificationof EF inolder adults at greatest risk

for such diseases.

Neuropsychological test batteries administered through large-

scale, longitudinal aging studies typically include several EF

measures.14 This ensures measurement of multiple EF components

but can increase “false positive” errors if interpreting individual

low scores or declines as evidence of true impairment or cognitive

worsening.15 On the other hand, EF composite scores offer advantages

such as better reliability, fewer statistical comparisons (ie, lower false

positive risk),15–17 and improved power to detect longitudinal change

with smaller sample sizes.17–21

Prior work leveraging the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) cohort demonstrated the benefits of an EF com-

posite score. Gibbons et al. showed that, compared to individual

EF test scores, the ADNI-EF composite score was associated

with greater ability to detect change over time, better prediction

of conversion to dementia, and stronger associations with AD

biomarkers.17 Similar findings have been shown for the National

Institutes of Health Executive Abilities: Measure and Instru-

ments for Neurobehavioral Evaluation and Research (NIH-

EXAMINER),7 a computerized EF battery that uses item response

theory (IRT) to derive a cognitive composite.21 Data collected

and stored by the National Institutes on Aging Alzheimer’s Dis-

ease Centers (ADC) would benefit from an EF composite score

that maximizes measurement precision using novel psychometric

approaches.

Clinicians and researchers often interpret cognitive test perfor-

mance using a demographically adjusted standardized score derived

from a normative reference group. z-Scores, for example, repre-

sent the difference between an individual’s score and the norma-

tive group mean, divided by the normative group’s standard devia-

tion. Adjustments commonly are made by linearly correcting for age,

sex, and education,15 which assumes their effect on any given cog-

nitive skill is constant across the spectrum of that variable (eg, the

effect of age on EF is the same between the ages of 40 to 50 as

it is between 70 and 80). Relying on linear models when evaluat-

ing nonlinear relationships can over- or underestimate the magni-

tude of a z-score, and nonlinear regression approaches can improve

the precision of normative comparisons, particularly for age effects.22

Taken together, validating an EF composite score derived from sev-

eral EF tests and then standardized using nonlinear adjustments for

key demographic factors could optimize EF measurement in aging

research.

We used the National Alzheimer’s Coordinating Center

(NACC) Uniform Data Set (UDS v3.0)23 to develop an EF com-

posite score (UDS3-EF). We then validated the UDS3-EF com-

posite in independent research cohorts. We hypothesized the

UDS3-EF would correlate more strongly with independent EF

measures and frontal, parietal, and temporal brain volumes than

with non-EF tasks and brain regions that do not directly support

executive functions (eg, occipital lobes). We also hypothesized

that older adults diagnosed with mild cognitive impairment (MCI),

dementia due to suspected AD, or behavioral variant frontotem-

poral dementia (bvFTD) would have significantly lower UDS3-

EF scores, and that using the UDS3-EF as an outcome would

improve longitudinal change detection compared to its component

tests.
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2 METHODS

2.1 UDS3-EF composite development and
norming

The normative database was an extension of the NACC-UDS database

of normal controls from29ADCsused byWeintraub et al.,23 with addi-

tional data collected through May 2017. This same sample was used

by Kornak et al. to create nonlinear z-scores of the UDS measures.22

Informed consent was obtained by all participants, and permission

was obtained from the NACC to perform this study. The downloaded

dataset contained baseline data for 4287 control participants.We then

restricted the dataset to those whose primary language was English

(excludedn=111; final n=3507).Non-English speakerswereexcluded

to reduce test variance attributable to language rather than executive

functions and to allow future research that directly studies thesemod-

els in non-English speakers.

2.1.1 Scale construction

Several of theauthorswithexpertise inneuropsychological assessment

(AMS, BMA, KBC, DM, JHK) reviewed the battery to make an initial

selection of items that could be considered indicators of EF. EF is amul-

tifaceted domain, and most measures of this construct also rely heav-

ily on other cognitive processes, particularly processing speed.24 Given

the limited availability of measures, and the goal of creating a compos-

ite that is sensitive to the changes associated with aging and its associ-

ated pathologies, we favored inclusivenesswhen selecting tests similar

to previous efforts using ADNI data.17 The tests that we chose were

Digit Span Backwards (total correct), Trail Making Test (TMT) parts A

and B (correct lines per minute), lexical fluency (F and L words—total

correct), and semantic fluency (animal and vegetable fluency—total

correct). Model building steps are described in detail in the support-

ing information. IRT was used to calculate factor scores. IRT-derived

scores have the important property of being invariant to the specific

items used. Therefore, these scores should provide unbiased estimates

of the latent trait regardless of which subtests are included.

2.1.2 Shape constrained additive model (SCAM)

Additive models relate the predictors to the dependent variable by

estimating smoothly varying functions. Shape constrained additive

models (SCAMs) can incorporate constraints over and above smooth-

ness on the form of the fitted functions.25 In particular, the constraint

used in this paper is such that the functions increase or decreasemono-

tonically. Relevant to this study, SCAMs allow incorporation of scien-

tific knowledge about the behavior of neuropsychological scores with

respect to particular predictors; specifically, performance onmeasures

of executive function typically decreases with age and increases with

education. Theapplicationof SCAMmodels toneuropsychological data

have been detailed elsewhere22 and are described in the supporting

information.

2.2 UDS3-EF validation cohort participants

We assessed UDS3-EF validity in older adult participants from

the UCSF Hillblom Aging Network (controls), ADRC (MCI and AD-

dementia), and/or the Advancing Research and Treatment for Fron-

totemporal Lobar Degeneration/Longitudinal Evaluation of Familial

Frontotemporal Dementia Subjects (ARTFL/LEFFTDS; healthy con-

trols and bvFTD) projects. ARTFL/LEFFTDS controls were excluded

if they had a genetic mutation known to cause FTD. All participants

underwent comprehensive annual assessments including the UDS. A

large subset also completed structural neuroimaging. We limited anal-

yses involvingmagnetic resonance imaging (MRI) and cognitive testing

to individuals completing both within 90 days.

The UDS3-EF was calculated for each participant using data from

the first visit at which the UDS v3.023 was completed. Therefore, this

represents the first exposure to UDS3-EF tests added to UDS v3.0 (F-

words and L-words) but not necessarily other components included in

prior UDS versions (eg, animal fluency). All participants spoke English

as their primary language. All participants classified as MCI or demen-

tia were suspected to have a primary AD etiology based on clinical his-

tory and available neuroimaging, biomarkers, and family history. Classi-

fication as cognitively normal, MCI, AD-dementia, or bvFTDwas made

through a multidisciplinary consensus conference. We excluded indi-

viduals diagnosed with language-predominant syndromes regardless

of suspected pathology. Individual components of the UDS3-EF occa-

sionallywereavailableduring consensus conferencewhendetermining

functional status, but the UDS3-EF composite score was not.

2.3 Other neuropsychological tests

EF tests not included in the UDS3-EF composite were used in valida-

tion analyses: Modified Trail Making Test,26 Letter Fluency (D-words),

Design Fluency, and the NIH-EXAMINER Executive Composite score.

Non-EF tests performed were the Craft Story, Benson Figure, Num-

ber Location subtest of the Visual Object and Space Perception bat-

tery (VOSP), 15-item Boston Naming Test, Mini-Mental State Exami-

nation (MMSE),27 and Montreal Cognitive Assessment (MoCA)28 (see

supporting information).

2.4 Structural neuroimaging

T1-weighted structural MRI scans were obtained on a 3.0 Tesla

Siemens TIM Trio scanner and a 3.0 Tesla Siemens Prisma Fit scanner

at the University of California at San Francisco (UCSF) Neuroscience

ImagingCenter. Scanner parameters and processing steps are included

in the supporting information.
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2.5 UDS3-EF validation analyses

All model building, IRT, and SCAM analyses were performed in R (ver-

sion 3.6.1), while the remaining validation steps were performed in

SPSS version 25 (IBM, Armonk, New York, USA). Raw test scores from

other neuropsychological measures and region of interest (ROI) vol-

umes were converted to z-scores based on the mean and standard

deviation of a non-overlapping sample of cognitively healthy partici-

pants from the Hillblom Aging Network (n = 201 to 718 across tests).

NIH-EXAMINER z-scores were based on the normative sample. We

excluded participants with UDS3-EF standard error >0.757 (N = 8; 0

controls, twoMCI, four AD-dementia, two bvFTD).

We performed four sets of validation analyses. First, we compared

the UDS3-EF among diagnostic groups (controls, MCI, AD-dementia,

bvFTD) cross-sectionally using analysis of variance (ANOVA).

Second, we assessed associations between the UDS3-EF and other

test scores using linear regression covarying for age, sex, education,

and Clinical Dementia Rating Scale Sum of Boxes (CDR-SB). Divergent

validity was assessed through associations between the UDS3-EF and

tests of memory, language, and spatial abilities.

Third, we assessed associations between theUDS3-EF andROI gray

matter volumes using linear regression covarying for age, sex, total

intracranial volume, andCDR-SB. Putative “executive” regions included

frontal gray matter, parietal gray matter, temporal gray matter, dor-

solateral prefrontal cortex (DLPFC; caudal and rostral middle frontal

gyrus), orbitofrontal cortex (OFC; medial and lateral orbital frontal

gyrus), and anterior cingulate cortex (ACC; caudal and rostral anterior

cingulate gyrus). We assessed potential divergent validity from total

occipital and pericalcarine graymatter volume.

For all regression models, statistical significance was defined as P <

0.005 to account for multiple comparisons.

Last, we assessed the ability to detect changes in EF over time

(UDS3-EF score without norming vs individual component tests) using

longitudinal data. Consistent with published methodology,29 we esti-

mated annualized changed scores for the executive composite and for

each of the component subtests. We included those with a second

assessment that occurred within 2 years of baseline. We compared

annualized change scores between groups using linear regression. We

also used the annualized change score to estimate the sample sizes

needed to detect a small (25%) and moderate (40%) reduction in the

mean rate of decline in 12 months, with 80% power and alpha = .05

(two-sided). To improve comparability, we restricted the sample to the

MCI anddementia patients thatwerenotmissing anydata for this anal-

ysis; no bvFTD cases met these criteria.

3 RESULTS

3.1 Model fit

First, an exploratory factor analysis was conducted to inform

the number of latent factors. Eigenvalues and the resulting

scree plot strongly suggested a one-factor model: eigenvalue

1 = 3.25, 2 = 1.02, 3 = 0.89. We fit a confirmatory factor model

without any residual covariances and extracted modification

indices. Fit was poor for this initial model (C2[df = 14] = 1779.3,

P < 0.001; comparative fit index [CFI] = 0.82; root mean squared

error of approximation [RMSEA] = 0.194). Consistent with expecta-

tions, modification indices suggested residual covariances between

several measures. We observed greatly improved fit (P < 0.001

based on 𝜒2 difference test) when allowing residual covariances

among semantic fluency measures, lexical fluency measures, and

TMT A and B. Final model fit was excellent for most statistics

(C2[df = 11] = 130.72, P < 0.001; CFI = 0.99; Tucker-Lewis index

[TLI] = 0.98). RMSEA (0.057) suggested good fit.30 Standardized

loadings are presented in Figure 1. Factor scores were calculated

for the NACC sample; the resulting score distribution was sym-

metrical and bell shaped, and there was no obvious departure from

normality based on a Q-Q diagnostic plot (Figures SA–B in supporting

information).

3.2 SCAM models

Figure 2 display plots of the UDS3-EF score against age and education.

There was a clear nonlinear effect of age. This nonlinear adjustment

was most noticeable at younger ages, where a linear fit would have

likely overestimated the mean score, leading to overcalling impair-

ments in this group. The additive sex effect was very small compared

to the nonlinear age and linear education effects (Figure SC in support-

ing information).

3.3 Validation sample description

We calculated UDS3-EF composite scores for 305 participants from

UCSF research cohorts (96 controls, 84 MCI, 87 AD-dementia, 38

bvFTD) with varying availability across test- and MRI-specific analy-

ses (Table SA in supporting information). Diagnostic groups did not

differ significantly in sex distribution, years of education, or race (%

White), but controls (mean ± standard deviation [SD] age = 65.2 ±

14.0 years) were on average younger than both MCI (70.5 ± 10.1) and

AD-dementia (69.2 ± 9.4) groups (P = 0.008). The MCI, AD-dementia,

and bvFTD groups had lower MMSE, lower MoCA, higher Geriatric

Depression Scale, higher global CDR, and higher CDR-SB than controls

(Table 1).

There were statistically significant differences in UDS3-EF scores

between diagnostic groups (P < 0.001, partial eta squared = .53)

in the hypothesized direction (Figure 3): controls (mean z = −0.08,

95% confidence interval [CI −0.10, 0.26]) > MCI (mean z = −0.92,

95% CI [−1.13, −0.71]) > AD-dementia (mean z = −2.53, 95%

CI [−2.82, −2.25]) ≈ bvFTD (mean z = −2.72, 95% CI [−3.10,

−2.34]).
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F IGURE 1 Standardized factor loadings for the final confirmatory factor analysis model. Trails, Trail Making Test; UDS3, UniformData Set
version 3.0

3.4 Cognitive and structural neuroimaging
correlates of the UDS3-EF

Standardized (z)UDS3-EF scores, other cognitive test scores, and brain

structure volumes are provided by diagnostic group (Table SB in sup-

porting information). As shown in Figure 4A, the UDS3-EF correlated

more strongly with other EF scores (lowest β = 0.50 [95% CI 0.39,

0.61]; highest β=0.85 [95%CI 0.78, 0.92],Ps<0.001) thanwith spatial

(VOSP Number Location: β = 0.42 [95% CI 0.28, 0.56], P < 0.001), lan-

guage (BNT-15: β = 0.38 [95% CI 0.24, 0.52], P < 0.001) and memory

tests (Craft Story %Retention: β = 0.21 [95% CI 0.05, 0.36], P = 0.008;

Benson%Retention: β= 0.23 [95%CI 0.10, 0.35], P= 0.001).

Figure 4B shows that the UDS3-EF generally correlated most

stronglywith frontal (β= 0.18 [95%CI 0.06, 0.31], P= 0.002), temporal

(β = 0.33 [95% CI 0.22, 0.44], P < 0.001), and parietal lobes (β = 0.26

[95% CI 0.15, 0.38], P < 0.001), as well as frontal subregions (DLPFC:

β = 0.20 [95% CI 0.07 0.33], P = 0.003; ACC: β = 0.15 [95% CI 0.02,

0.28], P = 0.025; OFC: β = 0.14 [95% CI 0.02, 0.26], P = 0.027), com-

pared to the occipital lobe (β= 0.12 [95%CI 0.01, 0.23], P= 0.039) and

pericalcarine cortex (β= 0.06 [95%CI−0.08, 0.21], P= 0.372).

3.5 Longitudinal change

Mean annualized change for healthy controls (n = 32) was an increase

of 0.11 units/year (SD= 0.36). Statistically significantly greater decline

compared to controls was observed for the MCI group (n = 22; differ-

ence = −0.36 units/year, P = 0.001, [95% CI −0.57, −0.15), the AD-

dementia group (n=27; difference=−0.39 units/year, P=0.002, [95%

CI −0.63, −0.15]), and the bvFTD group (n = 20, difference = −0.42

units/year, P = 0.001, [95% CI −0.66, −0.18]). In a combined group of

26 MCI and AD-dementia participants with data for all measures, the

UDS3-EF measure showed the greatest estimated decline (Table 2).

The sample size needed to detect a 40% reduction in change (n= 286)

was 40%of the next bestmeasure (F-words: n= 714), and≈16%of the

sample required compared to CDR-SB (n= 1814).

4 DISCUSSION

Our study describes the development, norming, and initial validation of

an EF composite score derived from the NACC UDS3-EF. The UDS3-

EF was developed using modern psychometric methods in a large sam-

ple of healthy controls from the NACC and then validated in partici-

pants from independent research cohorts classified as controls, MCI

or dementia with expected AD pathology, or bvFTD. UDS3-EF scores

were significantly worse in MCI than control participants, and signif-

icantly worse in AD-dementia and bvFTD than MCI participants. The

UDS3-EF score correlatedwell with other EF test scores andwas asso-

ciated with frontal, parietal, and temporal lobe gray matter volumes,

along with several frontal subregions (predominantly DLPFC). Longi-

tudinal analysis showed greater declines in MCI, AD-dementia, and

bvFTDcompared to controls, andweestimated that a clinical trial using

theUDS3-EF composite as a cognitiveoutcomewould require less than
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F IGURE 2 A–B, Scatterplots showing
UDS3-EF scores in the NACC sample as a
function of age with separate fit lines for years
of education (A) and as a function of education
with separate fit lines for age groups (B).
NACC, National Alzheimer’s Coordinating
Center; UDS3, UniformData Set version 3.0

half the number of participants to detect a treatment effect than the

best individual EF test and≈80% fewer participants than the CDR-SB.

These results underscore the benefits of psychometrically robust

composite score endpoints in research studies and clinical trials across

the neurodegenerative disease spectrum.17,18,21 Studies from ADNI

have developed ADNI-specific composite scores for memory,18 EF,17

and global cognition.31 An IRT-derived EF composite from the NIH-

EXAMINER has been shown to detect longitudinal declines in asymp-

tomatic carriers of mutations that cause FTD.21 Notably, the NIH-

EXAMINER composite score showed the strongest correlation with

the UDS3-EF (>0.8) and participants with bvFTD obtained the lowest

UDS3-EF scores, on average, of all diagnostic groups. Suchwork consis-

tently demonstrates psychometric and practical advantages over using

a single cognitive test score or multiple isolated test scores to quantify

cognitive performance.

The UDS3-EF additionally improves precision of normative pre-

diction models by accounting for nonlinear age effects. Despite the

popularity of normative reference approaches linearly correcting for

factors like age, sex, andeducation, concerns about underlying assump-

tions (eg, consistent test score variance across the demographic spec-

trum) have prompted alternative approaches including quantile32,33

and nonlinear22 regression. Our study extended recent work showing

improved precision associated with nonlinear regression norms in the

NACCdataset22 to norm an EF composite score derived fromUDSv3.0
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TABLE 1 Descriptive statistics for the NACC development sample and independent validation cohorts

NACC

development

sample UCSF controls UCSFMCI

UCSF

dementia

UCSF

bvFTD Sig.a

N – 3507 96 84 87 38 –

Age (y) Mean (SD) 73.1 (10.1) 65.2 (14.0) 70.5 (10.1) 69.2 (9.4) 66.6 (7.4) .008

Mdn (IQR) 73 (67–80) 63.5 (50–79) 73 (64–78) 68 (62–76) 68 (60–72)

Sex % Female 64.2 60.4 42.9 50.6 50.0 .13

Education (y) Mean (SD) 17.0 (7.8) 16.7 (2.3) 16.9 (2.6) 16.2 (2.4) 16.6 (2.7) .37

Mdn (IQR) 16 (14–18) 16 (16–18) 18 (16–20) 16 (16–18) 16 (14–18)

Race/ethnicity %White 82.1 71.9 67.9 72.4 86.8 .33

%Black 13.9 0.0 2.4 1.1 2.6

%Asian 1.3 7.2 7.2 9.3 0.0

%Hispanic 2.2 0.0 0.0 0.0 0.0

%Native

American

0.04 0.0 0.0 0.0 0.0

%Missing 0.1 20.8 22.6 17.2 10.5

MMSE Mean (SD) – 28.7 (1.4) 26.9 (2.8) 21.0 (5.3) 22.4 (6.1) <.001

Mdn (IQR) – 29 (28–30) 28 (25–29) 22 (18–25) 24 (20–27)

MoCA Mean (SD) 26.3 (2.8) 27.0 (2.1) 23.3 (4.0) 16.1 (5.6) 17.1 (6.2) <.001

Mdn (IQR) 27 (25–28) 27 (26–29) 24 (21–26) 17 (12–21) 17 (13–22)

GDS Mean (SD) – 4.6 (4.9) 7.6 (5.7) 7.2 (5.2) 8.9 (7.3) <.001

Mdn (IQR) – 3.5 (1–7) 6 (3–12) 7 (3–10) 8 (2–15)

CDRGlobal Mean (SD) – All= 0 0.5 (0.22) 0.9 (0.4) 1.1 (0.8) <.001

Mdn (IQR) – – 0.5 (0.5–0.5) 1.0 (0.5–1.0) 1.0 (0.5–2.0)

CDR-SB Mean (SD) – 0.00 (0.09) 1.9 (1.2) 4.8 (2.1) 5.8 (3.9) <.001

Mdn (IQR) – 0.0 (0.0–0.0) 2.0 (1.0–2.5) 4.5 (4.0-6.0) 5.0 (3.0–9.5)

Abbreviations: bvFTD, behavioral variant frontotemporal dementia; CDR, Clinical Dementia Rating scale; CDR-SB, CDR Sum of Boxes; GDS, Geriatric

Depression Scale; IQR, interquartile range;MCI, mild cognitive impairment;MMSE,MiniMental State Exam;MoCA,Montreal Cognitive Assessment; NACC,

National Alzheimer’s Coordinating Center; SD, standard deviation; UCSF, University of California, San Francisco.
aStatistical significance of comparisons between UCSF cohorts using either analysis of variance or chi-square tests.

tests.We further observed theUDS3-EF to be approximately normally

distributed even in our dementia cohorts. This has analytic and inter-

pretive advantagesover individual test scores that are typically skewed

in populations with cognitive impairment.17

TheUDS3-EFoffers several practical advantages as a cognitive com-

posite outcome score. We showed that longitudinal measurement of

the UDS3-EF in a simulated clinical trial setting is more sensitive to

detecting performance changes than its component scores. TheUDS3-

EF is estimated to achieve greater statistical power at smaller sample

sizes,which has direct implications for clinical trial recruitment targets.

Using the UDS3-EF as a cognitive score outcome would require ≈286

total participants to detect a 40% treatment effect, whereas ≈700 to

13,000would be required if using any single component test, or 1814 if

using CDR-SB. Gibbons et al.17 report similar findings with the ADNI-

EF composite score. These and other studies consistently show the

benefit of composite score outcomes on measurement precision and

sample recruitment goals in clinical trials.

Quantifying EF with a single score made up of numerous aspects

of EF arguably simplifies the interpretive considerations inherent to

obtaining multiple scores, such as inflated type I error and inter-test

performance variability.15 Recentwork proposed a factor structure for

the UDS v3.0 with separate factors for “speed/executive” (TMT A and

B, lexical fluency) and “attention” (digit span) domains, along with cat-

egory fluency scores within the “language” domain.34 These are rea-

sonable factor classifications but arguably spread several “executive”

functions over separate, related domains.1,2,7 The UDS3-EF distills EF

measurement into a single score capturing several aspects of EF that

otherwise might be untenable to interpret either in isolation or across

different domain factors. A limitation of composite scores, however,

is the masking of test-specific, within-domain scores that may inform

diagnosis and recommendations on a case-by-case basis. The ability to

interpret a single low test scoremight be preferred in settings in which

potential “falsepositive” diagnoses are anacceptable trade-off formax-

imizing sensitivity to the earliest cognitive changes.
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F IGURE 3 UDS3-EF score comparison between diagnostic
groups. UDS3-EF score differences among controls, MCI,
AD-dementia, and behavioral variant frontotemporal dementia
diagnostic groups in the validation sample. Themean± standard
deviation of the UDS3-EF score is provided. Box plots represent the
median (horizontal line) and interquartile range (top and bottom
whiskers) of UDS3-EF scores. AD, Alzheimer’s disease;MCI, mild
cognitive impairment; UDS3, UniformData Set version 3.0

We limited our neuroimaging analyses to relatively crude associ-

ational investigations of discrete regional gray matter volumes. Data

clearly support distributed brain regions and networks being responsi-

ble for EF tasks.8 Converging evidence points toward frontal-parietal-

subcortical networks as key EF regions, but additional areas includ-

ing temporal and cerebellar regions also compellingly contribute to

EF.5,7–9,35–37 Consistent with prior work, the UDS3-EF correlated well

with multiple regions of interest throughout the frontal lobe as well as

the temporal and parietal lobes. These relationships held even when

controlling for degree of functional impairment (CDR-SB), but were

strongest in participants with the most functional impairment (ie, clas-

sified as having dementia; data not shown), which may reflect general-

ized brain changes associated with later-stage neurodegenerative dis-

ease and introduces specificity concerns.

The UDS3-EF was developed using test measures from the UDS

v3.0 and likely does not fully capture all aspects of EF. Given the lim-

ited number of subtests, we made the decision to include tests such

as TMT A and semantic fluency that could be considered measures of

processing speed and language, respectively. Processing speed is inti-

mately related to EFs,24 and ultimately, a single metric that captures

both speedandEFsmight be themost sensitive topathological changes

in aging. Despite this, our composite showed good convergent valid-

ity with other EF measures. Researchers interested in deriving a purer

estimate of EFs can choose to remove these tests when creating the

composite. Future studies might consider including additional, psycho-

metrically robust EF measures such as those from ADNI17 or UCSF

Brain Health Assessment.38 The lack of racial and ethnic diversity in

the NACC and UCSF cohorts (≈80% White) and overall high educa-

tion levels is another limitation precluding generalizability. Similarly,

there were few individuals in the NACC dataset below age 50 and

above age 90, and therefore caution should be exercised when apply-

ing thenormative corrections to thoseoutside this range.We identified

TABLE 2 Total sample sizes to detect treatment effects (25% and
40% reductions in score change) in sample of 26MCI and
AD-dementia participants with complete longitudinal cognitive data
for UDS subtests

Measure n 25% 40%

UDSmeasures

UDS3-EF 26 728 286

TMTA 26 9016 3524

TMTB 26 1966 770

Digit span

backward

26 1988 778

F-words 26 1822 714

L-words 26 4994 1952

Animal fluency 26 34680 13548

Vegetable fluency 26 3654 1428

Commonmeasures

CDR Sum of Boxes 24 4640 1814

MoCA 25 4222 1650

MMSE 20 13296 5196

Note: We also present commonly used outcome measures, when available

(ns 20 to 25), to provide an independent reference against which to illus-

trate the power of the UDS3-EF for tracking longitudinal change.

Abbreviations: AD-dementia; Alzheimer’s disease dementia; CDR, Clini-

cal Dementia Rating Scale; MCI, mild cognitive impairment; MMSE, Mini-

Mental State Examination; MoCA, Montreal Cognitive Assessment; TMT,

TrailMakingTest; UDS3-EF,UniformData Set v3.0 Executive Function com-

posite score.

participants from UCSF observational research cohorts for validating

the UDS3-EF. Slightly different sample sizes were available for differ-

ent aspects of the analyses, which may result in biases associated with

missing data. Some test scores may have been missing as a function of

impairment level (eg, higher proportion ofmissing data in the dementia

groups).

In conclusion, theUDS3-EFappears tobeavalid compositemeasure

of EF in older adults. The UDS3-EF appears well suited to quantify EF

in research and clinical trials and offers several psychometric and prac-

tical advantages over its component tests. R scripts to calculate factor

scores and normative lookup tables are available upon request to the

corresponding author.
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