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Abstract: New, practical approaches for the synthesis of α-amino (2-alkynylphenyl)-methylph
-osphonates and 1,2-dihydroisoquinolin-1-ylphosphonates were developed. By the propylphos-
phonic anhydride (T3P®)-mediated Kabachnik–Fields reaction of 2-alkynylbenzaldehydes, aniline,
and dialkyl phosphites, α-amino (2-alkynylphenyl)-methylphosphonates were obtained selectively
in high yields. The method developed is a simple operation and did not require a chromatographic
separation since the products could be isolated from the reaction mixture by a simple extraction.
At the same time, 2,3-disubstituted-1,2-dihydroisoquinolin-1-ylphosphonates could be prepared
effectively from the same kinds of starting materials (2-alkynylbenzaldehydes, aniline, and dialkyl
phosphites) at 60 ◦C in a short reaction time by changing the catalyst for CuCl. Therefore, it was
proved that the catalyst system applied played a crucial role with respect to the reaction outcome.

Keywords: α-aminophosphonates; dihydroisoquinolin-1-ylphosphonates; multicomponent reaction;
Kabachnik–Fields reaction; T3P®

1. Introduction

Organophosphorus compounds continue to receive widespread interest due to their
unique significance in organic, bio-, and medicinal chemistry, as well as in the agricul-
ture and plastic industries [1–3]. One of the major classes of organophosphorus com-
pounds is the family of organophosphates. Among them, α-aminophosphonates, as
the bioisosteres and structural analogues of natural α-amino acids, have attracted a
considerable focus. They were found to be effective as enzyme inhibitors, antibiotics,
antiviral, antifungal, or antitumor agents, as well as pesticides [3–8]. In addition, the
introduction of α-aminophosphonates into an epoxy system can improve flame retar-
dant properties [9,10]. In recent years, the chemistry of heterocyclic derivatives of α-
aminophosphonates have also received intensively growing attention [11–14]. Isoquino-
lines, including 1,2-dihydroisoquinolines as privileged fragments, can be considered as a
common structural scaffold in several natural products that exhibit significant biological
and pharmaceutical activity [15–17].

Multicomponent syntheses, such as the Kabachnik–Fields reaction, in which an amine,
an oxo-compound, and a >P(O)H derivative react with each other, are one of the most
straightforward and efficient tools for the preparation of α-aminophosphonates and their
heterocyclic derivatives [18–20]. Applying multicomponent reactions, the target products
are usually formed in a “one-pot” manner from simple starting materials with high atom
economy. The ability to use various reagents makes these reactions ideal for creating new
molecular libraries, and in most cases, the principles of green chemistry also prevail to save
time and energy [21,22].

Only a few papers have been reported on the synthesis of α-amino (2-alkynylphenyl)-
methylphosphonates (1) and 1,2-dihydroisoquinolin-1-ylphosphonates (2) (Figure 1) by
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the three-component condensation of 2-alkynylbenzaldehydes, primary amines, and
dialkyl phosphites.
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Figure 1. General formula of α-amino (2-alkynylphenyl)-methylphosphonates (1) and 1,2-
dihydroisoquinolin-1-ylphosphonates (2).

Wu and co-workers performed the condensation of 2-alkynylbenzaldehyde, aromatic
amines, and a small excess of diethyl phosphite in the presence of various catalytic sys-
tems [23–25]. It was found that in the presence of magnesium perchlorate or Lewis acid
(FeCl3, In(OTf)3, Bi(OTf)3, Yb(OTf)3) in dichloroethane (DCE) at room temperature or at
60 ◦C for 4 h, the α-amino (2-alkynylphenyl)-methylphosphonates (1) were formed [23,24];
however, applying AgOTf as a catalyst in ethanol at 60 ◦C for 4–6 h, the cyclic phospho-
nates (2) were the main products of the reactions [23]. The latter derivatives (2) were
also synthesized using CuI as a catalyst in DCE at 60 ◦C for 4 h [24] or applying a Lewis
acid-type surfactant combined with a catalyst (CuSO4 and C12H25SO3Na) in water under
ultrasonic conditions [25].

Recently, an enantioselective synthesis of 1,2-dihydroisoquinolin-1-ylphosphonates (2)
was also reported [26]. In this case, the multicomponent reaction was catalyzed by a chiral
silver spirocyclic phosphate in the presence of 5 Å molecular sieves in methyl tert-butyl
ether at −10 ◦C for 3 days.

Wu and his group also described a AgOTf-catalyzed ring closure reaction of α-amino
(2-alkynylphenyl)methylphosphonate (1), which provided the cyclic derivatives (2) in
moderate to good yields [27].

There are two further examples of the multicomponent synthesis of 1,2-dihydroisoqui
-nolin-1-ylphosphonates (2) [28,29]. In one case, 2-(2-formylphenyl)ethenone was reacted
with primary amines and diethyl phosphite in the presence of CuI and 4 Å molecular sieves
in DCE at 70 ◦C for long reaction times (12–24 h) [28]. In the other case, a multicatalytic
four-component method was developed by the reaction of 2-bromobenzaldehyde, alkynes,
aromatic amines, and diethyl phosphite, catalyzed by the combination of palladium and
copper salts [29].

Propylphosphonic anhydride (T3P®) is a green, mild, and low toxic coupling and de-
hydrating agent, which delivers remarkable advantages, including broad functional group
tolerance and easy work-up procedures due to the formation of water-soluble by-products,
thus allowing high purity and yield for the products [30]. Several applications have been
reported using this reagent, e.g., in multicomponent reactions or in the preparation of
various heterocyclic compounds [31].

In this paper, we describe simple and selective preparation methods for the syn-
thesis of new α-amino (2-alkynylphenyl)-methylphosphonates (1), as well as novel 1,2-
dihydroisoquinolin-1-ylphosphonates (2) by the three-component reaction of 2-alkynylben
-zaldehydes, aromatic amines, and dialkyl phosphites using different catalytic systems
(T3P® or CuCl) (Scheme 1). There is no example in the literature of the use of T3P® in the
three-component reaction mentioned.
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Scheme 1. Synthesis of α-amino (2-alkynylphenyl)-methylphosphonates (1) and 1,2-dihydroisoquinolin-1-ylphosphonates (2).

2. Materials and Methods
2.1. General Information

The reactions were carried out at room temperature or under conventional heating in
an oil bath under N2 atmosphere.

High-performance liquid chromatography-mass spectrometry (HPLC-MS) measure-
ments were performed with an Agilent 1200 liquid chromatography system coupled with
a 6130 quadrupole mass spectrometer equipped with an ESI ion source (Agilent Technolo-
gies, Palo Alto, CA, USA). Analysis was performed at 40 ◦C on a Gemini C18 column
(150 mm × 4.6 mm, 3 µm; Phenomenex, Torrance, CA, USA) with a mobile phase flow
rate of 0.6 mL/min. Composition of eluent A was 0.1% (NH4)(HCOO) in water; eluent
B was 0.1% (NH4)(HCOO) and 8% water in acetonitrile, 0–3 min 5% B, 3–13 min gradi-
ent, 13–20 min 100% B. The injection volume was 2 µL. The chromatographic profile was
registered at 254 nm. The MSD operating parameters were as follows: positive ionization
mode, scan spectra from m/z 120 to 1000, drying gas temperature 300 ◦C, nitrogen flow
rate 12 L/min, nebulizer pressure 60 psi, capillary voltage 4000 V.

The 31P, 1H, 13C, NMR spectra were taken in CDCl3 solution on a Bruker AV-300 or
DRX-500 spectrometer (Bruker AXS GmBH, Karlsruhe, Germany) operating at 121.5, 75.5,
and 300 or 202.4, 125.7, and 500 MHz, respectively. Chemical shifts are downfield relative
to 85% H3PO4 and TMS. Non-equivalence effect was observed in 1H and 13C{1H} NMR
spectra. Corresponding pairs of resonances were marked with (I) and (II).

High resolution mass spectrometry measurements were performed on a Sciex TripleTOF
5600+ high resolution tandem mass spectrometer equipped with a DuoSpray ion source.
Electrospray ionization was applied in positive ion detection mode. Samples were dis-
solved in acetonitrile and flow injected into acetonitrile/water 50:50 flow. The flow rate
was 0.2 mL/min. The resolution of the mass spectrometer was 35,000.

2.2. General Procedure for the Synthesis of α-Amino (2-Alkynylphenyl)-Methylphosphonates
(3 and 5–10)

To the mixture of 1 mmol of 2-alkynylbenzaldehydes (2-(p-tolylethynyl)benzaldehyde:
0.22 g, 4-fluoro-2-(p-tolylethynyl)benzaldehyde: 0.24 g, 2-((4-methoxyphenyl)ethynyl)-
benzaldehyde: 0.24 g, 2-((4-chlorophenyl)ethynyl)benzaldehyde: 0.24 g, 2-(phenylethynyl)
-benzaldehyde: 0.21 g), 1 mmol (0.09 mL) of aniline and 1 mmol of dialkyl phosphites
(dibutyl phosphite: 0.195 mL, dibenzyl phosphite: 0.22 mL, diethyl phosphite: 0.13 mL) was
added 1.0 mmol (0.6 mL) or 0.5 mmol (0.29 mL) of T3P® (50% solution in EtOAc) and stirred
at 25 ◦C or at 60 ◦C. After completion of the reaction (1 h), the mixture was diluted with
EtOAc (15 mL) and washed with 10% NaHCO3 solution (15 mL). The organic phase was
dried (Na2SO4), filtered, and concentrated. The following products were thus prepared:

Dibutyl ((phenylamino)(2-(p-tolylethynyl)phenyl)methyl)phosphonate (3): Yield: 96%
(0.47 g), light yellow solid; Mp: 78–79 ◦C; 1H NMR (CDCl3) δ 0.76 (t, 3H, JHH = 7.4,
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CH3
I), 0.84 (t, 3H, JHH = 7.4, CH3

II), 1.13–1.22 (m, 2H, CH2CH3
I), 1.28–1.38 (m, 4H,

CH2CH3
II, OCH2CH2

I), 1.57–1.64 (m, 2H, OCH2CH2
II), 2.38 (s, 3H, PhCH3), 3.46–3.54

(m, 1H, CHA, OCH2
I), 3.80–3.87 (m, 1H, CHA, OCH2

II), 4.12 (q, 2H, JHH = 6.8, CHB,
OCH2), 5.02 (br s, 1H, NH), 5.55 (d, 1H, 2JHP = 24.7, CHP), 6.63–6.69 (m, 3H, ArH), 7.09
(t, 2H, JHH = 7.9, ArH), 7.18 (d, 2H, JHH = 7.9, ArH), 7.21–7.30 (m, 2H, ArH), 7.46 (d, 2H,
JHH = 8.1, ArH), 7.53 (d, 1H, JHH = 7.6, ArH), 7.59 (d, 1H, JHH = 7.9, ArH); 13C NMR (CDCl3)
δ 13.5, 13.6, 18.5, 18.7, 21.6, 32.3 (d, 3JCP = 6.0), 32.5 (d, 3JCP = 5.7), 53.0 (d, 1JCP = 151.3),
66.9 (d, 2JCP = 7.2), 67.0 (d, 2JCP = 7.4), 86.5 (d, JCP = 2.2), 95.3, 113.6, 118.2, 120.0, 123.6
(d, 3JCP = 6.9), 127.3 (d, 3JCP = 4.4), 127.6 (d, JCP = 3.1), 128.8 (d, JCP = 3.2), 129.2, 131.4,
131.9 (d, 3JCP = 2.3), 138.2 (d, JCP = 2.2), 138.8, 146.1 (d, 2JCP = 14.8); 31P NMR (CDCl3) δ
22.7; [M + H]+

found = 490.2519, [M + H]+
calculated = 490.2511.

Dibenzyl ((phenylamino)(2-(p-tolylethynyl)phenyl)methyl)phosphonate (5): Yield:
93% (0.52 g), light yellow solid; Mp: 124–125 ◦C; 1H NMR (CDCl3) δ 2.38 (s, 3H, PhCH3),
4.52 (dd, 1H, JHH = 8.0, JHH = 11.8, CHA, CH2OI), 4.84 (dd, 1H, JHH = 7.4, JHH = 11.8,
CHA, CH2OII), 5.11 (d, 2H, JHH = 8.2, CHB, CH2O), 5.69 (d, 1H, 2JHP = 24.9, CHP),
6.64 (d, 2H, JHH = 7.7, ArH), 6.68 (t, 1H, JHH = 7.3, ArH), 7.19–7.31 (m, 10H, ArH), 7.39
(d, 2H, JHH = 8.1, ArH), 7.52 (d, 1H, JHH = 7.4, ArH), 7.62 (d, 1H, JHH = 7.8, ArH); 13C
NMR (CDCl3) δ 21.6, 53.3 (d, 1JCP = 151.6), 68.48 (d, 2JCP = 7.3), 68.53 (d, 2JCP = 7.1), 86.5
(d, JCP = 2.0), 95.6, 113.7, 118.4, 119.9, 123.6 (d, 3JCP = 7.1), 127.4 (d, 3JCP = 4.6), 127.6, 127.8
(d, JCP = 3.1), 127.9, 128.2, 128.3, 128.4, 128.5, 128.9 (d, JCP = 3.2), 129.23, 129.25, 131.5,
132.9 (d, 3JCP = 2.2), 136.0 (d, 3JCP = 6.0), 136.1 (d, 3JCP = 6.0), 137.8 (d, JCP = 1.8), 138.8, 146.0
(d, 2JCP = 15.1); 31P NMR (CDCl3) δ 23.6; [M + H]+

found = 588.2205, [M + H]+
calculated = 588.2198.

Dibutyl ((4-fluoro-2-(p-tolylethynyl)phenyl)(phenylamino)methyl)phosphonate (6): Yield:
87% (0.44 g), light yellow solid; Mp: 72–73 ◦C; 1H NMR (CDCl3) δ 0.78 (t, 3H, JHH = 7.4,
CH3

I), 0.85 (t, 3H, JHH = 7.4, CH3
II), 1.16–1.24 (m, 2H, CH2CH3

I), 1.29–1.44 (m, 4H,
CH2CH3

II, OCH2CH2
I), 1.58–1.64 (m, 2H, OCH2CH2

II), 3.56–3.62 (m, 1H, CHA, OCH2
I),

3.83–3.90 (m, 1H, CHA, OCH2
II), 4.12 (q, 2H, JHH = 6.8, CHB, OCH2), 4.97 (br s, 1H, NH),

5.49 (dd, 1H, 2JHP = 24.4, JHH = 4.7, CHP), 6.63 (d, 2H, JHH = 7.5, ArH), 6.68 (dd, 1H, JHH = 7.9,
JHH = 6.8, ArH), 6.99 (td, 1H, JHH = 8.4, JHH = 2.7, ArH), 7.10 (dd, 2H, JHH = 7.2, JHH = 8.6, ArH),
7.19 (d, 2H, JHH = 7.9, ArH), 7.23 (dd, 1H, JHH = 9.1, JHH = 1.9, ArH), 7.46 (d, 2H, JHH = 8.2, ArH),
7.55 (ddd, 1H, JHH = 8.5, JHH = 5.7, JHH = 2.6, ArH); 13C NMR (CDCl3) δ 13.47, 13.55, 18.5,
18.7, 21.6, 32.3 (d, 3JCP = 5.9), 32.5 (d, 3JCP = 5.9), 52.5 (d, 1JCP = 152.3), 66.95 (d, 2JCP = 7.4),
67.02 (d, 2JCP = 7.1), 85.5 (dd, JCP = 1.8, JCF = 3.2), 96.2, 113.6, 116.2 (dd, JCP = 3.0, JCF = 21.7),
118.2 (d, JCP = 2.3), 118.4, 119.5, 125.2 (dd, 3JCP = 7.0, 3JCF = 9.6), 129.1 (dd, 3JCP = 4.1,
3JCF = 8.8), 129.28, 129.30, 131.5, 134.2 (dd, 3JCP = 2.3, JCF = 3.2), 139.3, 145.9 (d, 2JCP = 14.7),
161.7 (dd, 3JCP = 3.3, 1JCF = 247.1); 31P NMR (CDCl3) δ 22.4; [M + H]+

found = 508.2424,
[M + H]+

calculated = 508.2417.
Dibutyl ((2-((4-methoxyphenyl)ethynyl)phenyl)(phenylamino)methyl)phosphonate

(7): Yield: 89% (0.45 g), light yellow oil; 1H NMR (CDCl3) δ 0.76 (t, 3H, JHH = 7.4, CH3
I),

0.84 (t, 3H, JHH = 7.4, CH3
II), 1.13–1.22 (m, 2H, CH2CH3

I), 1.28–1.39 (m, 4H, CH2CH3
II,

OCH2CH2
I), 1.57–1.64 (m, 2H, OCH2CH2

II), 3.46–3.54 (m, 1H, CHA, OCH2
I), 3.79–3.87

[3.83 (s, OCH3) overlapped by the multiplet of CHA, OCH2
II total int. 4H), 4.12 (q, 2H,

JHH = 6.8, CHB, OCH2), 5.03 (br s, 1H, NH), 5.54 (d, 1H, 2JHP = 24.7, CHP), 6.62–6.68 (m,
3H, ArH), 6.89 (d, 2H, JHH = 8.8, ArH), 7.09 (dd, 2H, JHH = 7.4, JHH = 8.4, ArH), 7.20–7.29
(m, 2H, ArH), 7.49–7.58 (m, 3H, ArH), 7.58 (d, 1H, JHH = 8.0, ArH); 13C NMR (CDCl3) δ
13.5, 13.6, 18.5, 18.7, 32.3 (d, 3JCP = 6.0), 32.5 (d, 3JCP = 5.8), 53.0 (d, 1JCP = 151.3), 55.4, 66.9
(d, 2JCP = 7.5), 67.0 (d, 2JCP = 7.8), 85.9 (d, JCP = 2.3), 95.1, 113.6, 114.1, 115.2, 118.2, 123.7
(d, 3JCP = 6.9), 127.3 (d, 3JCP = 4.4), 127.6 (d, JCP = 3.1), 128.6 (d, JCP = 3.2), 129.2, 131.8
(d, 3JCP = 2.6), 133.0, 138.1 (d, JCP = 2.2), 146.2 (d, 2JCP = 14.7), 159.9; 31P NMR (CDCl3) δ
22.7; [M + H]+

found = 506.2466, [M + H]+
calculated = 506.2460.

Dibutyl ((2-((4-chlorophenyl)ethynyl)phenyl)(phenylamino)methyl)phosphonate (8):
Yield: 97% (0.49 g), light yellow solid; Mp: 63–64 ◦C; 1H NMR (CDCl3) δ 0.76 (t, 3H,
JHH = 7.4, CH3

I), 0.85 (t, 3H, JHH = 7.4, CH3
II), 1.13–1.21 (m, 2H, CH2CH3

I), 1.28–1.38
(m, 4H, CH2CH3

II, OCH2CH2
I), 1.57–1.64 (m, 2H, OCH2CH2

II), 3.47–3.54 (m, 1H, CHA,
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OCH2
I), 3.80–3.87 (m, 1H, CHA, OCH2

II), 4.12 (q, 2H, JHH = 6.8, CHB, OCH2), 5.01 (br s,
1H, NH), 5.49 (d, 1H, 2JHP = 24.8, CHP), 6.62 (d, 2H, JHH = 7.4, ArH), 6.67 (t, 1H, JHH = 7.3,
ArH), 7.09 (dd, 2H, JHH = 7.2, JHH = 8.6, ArH), 7.22–7.27 (m, 1H, ArH), 7.28–7.37 (m, 3H,
ArH), 7.47–7.51 (m, 2H, ArH), 7.53 (d, 1H, JHH = 7.6, ArH), 7.59 (d, 1H, JHH = 7.9, ArH);
13C NMR (CDCl3) δ 13.5, 13.6, 18.5, 18.7, 32.3 (d, 3JCP = 6.0), 32.5 (d, 3JCP = 5.7), 53.2 (d,
1JCP = 151.5), 66.9 (d, 2JCP = 7.3), 67.0 (d, 2JCP = 7.4), 88.1 (d, JCP = 2.1), 93.9, 113.6, 118.3,
121.6, 123.0 (d, 3JCP = 6.8), 127.4 (d, 3JCP = 4.3), 127.7 (d, JCP = 3.0), 128.8, 129.2 (d, JCP = 3.1),
129.3, 132.0 (d, 3JCP = 2.2), 132.7, 134.7, 138.5 (d, JCP = 2.2), 146.1 (d, 2JCP = 14.6); 31P NMR
(CDCl3) δ 22.6; [M + H]+

found = 510.1974, [M + H]+
calculated = 510.1965.

Dibutyl ((phenylamino)(2-(phenylethynyl)phenyl)methyl)phosphonate (9): Yield: 98%
(0.47 g), light yellow solid; Mp: 97–98 ◦C; 1H NMR (CDCl3) δ 0.76 (t, 3H, JHH = 7.4, CH3

I),
0.84 (t, 3H, JHH = 7.4, CH3

II), 1.13–1.22 (m, 2H, CH2CH3
I), 1.28–1.40 (m, 4H, CH2CH3

II,
OCH2CH2

I), 1.57–1.64 (m, 2H, OCH2CH2
II), 3.46–3.55 (m, 1H, CHA, OCH2

I), 3.79–3.87 (m,
1H, CHA, OCH2

II), 4.12 (q, 2H, JHH = 6.8, CHB, OCH2), 5.02 (br s, 1H, NH), 5.55 (dd, 1H,
2JHP = 24.7, JHH = 6.8, CHP), 6.63–6.69 (m, 3H, ArH), 7.09 (dd, 2H, JHH = 7.2, JHH = 8.7,
ArH), 7.24–7.27 (m, 1H, ArH), 7.30 (t, 1H, JHH = 7.6, ArH), 7.35–7.39 (m, 3H, ArH), 7.52–7.61
(m, 4H, ArH); 13C NMR (CDCl3) δ 13.48, 13.55, 18.5, 18.7, 21.6, 32.3 (d, 3JCP = 6.0), 32.5 (d,
3JCP = 5.8), 53.0 (d, 1JCP = 151.2), 66.9 (d, 2JCP = 7.2), 67.0 (d, 2JCP = 7.4), 87.2 (d, JCP = 2.3),
95.0, 113.6, 118.2, 123.1, 123.3 (d, 3JCP = 6.9), 127.4 (d, 3JCP = 4.3), 127.7 (d, JCP = 3.2), 128.5,
128.6, 129.0 (d, JCP = 3.1), 129.3, 131.5, 132.0 (d, 3JCP = 2.2), 138.4 (d, JCP = 2.2), 146.1 (d,
2JCP = 15.0); 31P NMR (CDCl3) δ 22.6; [M + H]+

found = 476.2366, [M + H]+
calculated = 476.2355.

Diethyl ((phenylamino)(2-(phenylethynyl)phenyl)methyl)phosphonate (10): Yield:
95% (0.40 g), light yellow solid; Mp: 135–136 ◦C; 1H NMR (CDCl3) δ 1.05 (t, 3H, JHH = 7.1,
CH3

I), 1.30 (t, 3H, JHH = 7.1, CH3
II), 3.56–3.66 (m, 1H, CHA, OCH2

I), 3.85–3.94 (m, 1H,
CHA, OCH2

II), 4.21 (q, 2H, JHH = 7.3, CHB, OCH2), 5.01 (br s, 1H, NH), 5.55 (d, 1H,
2JHP = 24.8, CHP), 6.62–6.70 (m, 3H, ArH), 7.10 (t, 2H, JHH = 7.8, ArH), 7.22–7.28 (m, 1H,
ArH), 7.30 (t, 1H, JHH = 7.5, ArH), 7.34–7.42 (m, 3H, ArH), 7.53–7.62 (m, 4H, ArH);13C
NMR (CDCl3) δ 16.1 (d, 3JCP = 5.8), 16.5 (d, 3JCP = 5.8), 53.2 (d, 1JCP = 151.3), 63.2
(d, 2JCP = 6.9), 63.5 (d, 2JCP = 7.2), 87.1 (d, JCP = 2.1), 95.1, 113.6, 118.3, 123.1, 123.4 (d,
3JCP = 6.9), 127.4 (d, 3JCP = 4.4), 127.7 (d, JCP = 3.1), 128.5, 128.6, 129.0 (d, JCP = 3.1), 129.3,
131.5, 132.1 (d, 3JCP = 2.3), 138.3 (d, JCP = 2.4), 146.1 (d, 2JCP = 14.8); 31P NMR (CDCl3) δ
22.7; [M + H]+

found = 420.1736, [M + H]+
calculated = 420.1729.

2.3. General Procedure for the Synthesis of 1,2-Dihydroisoquinolin-1-Ylphosphonates (4 and
11–18)

To the mixture of 2-alkynylbenzaldehydes [(2-(p-tolylethynyl)benzaldehyde: 1 mmol
(0.22 g) or 1.2 mmol (0.26 g), 4-fluoro-2-(p-tolylethynyl)benzaldehyde: 1.2 mmol (0.29 g), 2-
((4-methoxyphenyl)ethynyl)benzaldehyde: 1.2 mmol (0.29 g), 2-((4-chlorophenyl)ethynyl)
-benzaldehyde: 1.2 mmol (0.29 g), 2-(phenylethynyl)benzaldehyde: 1.2 mmol (0.25 g)],
amine [(aniline: 1 mmol (0.09 mL), 1.2 mmol (0.11 mL), p-anisidine: 1.2 mmol (0.15 g),
4-chloroaniline: 1.2 mmol (0.15 g)] and 1 mmol of dialkyl phosphites (dibutyl phosphite:
0.195 mL, dimethyl phosphite: 0.09 mL, diethyl phosphite: 0.13 mL) was added copper
catalyst [0.05 mmol (5 mg) or 0.10 mmol (10 mg) of CuCl, 0.10 mmol (25 mg) CuSO4·5H2O,
0.10 mmol (12 mg) of CuBr or 0.10 mmol (19 mg) of CuI)] in 1 mL of acetonitrile under N2
atmosphere. The mixture was stirred at 60 ◦C. The volatile components were removed in
vacuum, and the residue was analyzed by 31P NMR spectroscopy and by HPLC-MS. The
1,2-dihydroisoquinolin-1-ylphosphonates were obtained after column chromatography
using silica gel as the absorbent and dichloromethane/methanol (99:1) as the eluent. The
following products were thus prepared:

Dibutyl (2-phenyl-3-(p-tolyl)-1,2-dihydroisoquinolin-1-yl)phosphonate (4): Yield: 79%
(0.39 g), yellow oil; 1H NMR (CDCl3) δ 0.83 (t, 3H, JHH = 7.5, CH3

I), 0.84 (t, 3H, JHH = 7.3,
CH3

II), 1.23–1.34 (m, 4H, CH2CH3), 1.47–1.59 (m, 4H, OCH2CH2), 2.27 (s, 3H, PhCH3),
3.79–3.91 (m, 2H, OCH2

I), 3.91–3.98 (m, 1H, CHA, OCH2
II), 3.98–4.06 (m, 1H, CHB, OCH2

II),
5.44 (d, 1H, 2JHP = 18.8, CHP), 6.46 (s, 1H, ArH), 6.82–6.88 (m, 1H, ArH), 7.03 (d, 2H,
JHH = 7.6, ArH), 7.05–7.20 (m, 7H, ArH), 7.20–7.27 (m, 1H, ArH), 7.46 (d, 2H, JHH = 7.7,
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ArH); 13C NMR (CDCl3) δ 13.50, 13.53, 18.60, 18.62, 21.2, 32.56 (d, 3JCP = 5.4), 32.59 (d,
3JCP = 5.7), 64.2 (d, 1JCP = 163.6), 66.1 (d, 2JCP = 7.4), 66.4 (d, 2JCP = 7.6), 111.6, 122.2, 122.63,
122.65, 124.2 (d, JCP = 2.7), 125.7 (d, JCP = 3.2), 126.4 (d, JCP = 2.0), 127.2 (d, 2JCP = 5.9), 127.5,
128.2 (d, JCP = 3.1), 128.4, 129.0, 133.2 (d, 3JCP = 3.3), 134.5, 137.7, 142.0 (d, 3JCP = 1.8), 147.8 (d,
3JCP = 7.2); 31P NMR (CDCl3) δ 20.8; [M + H]+

found = 490.2517, [M + H]+
calculated = 490.2511.

Dimethyl (2-phenyl-3-(p-tolyl)-1,2-dihydroisoquinolin-1-yl)phosphonate (11): Yield:
86% (0.35 g), yellow oil; 1H NMR (CDCl3) δ 2.27 (s, 3H, PhCH3), 3.61 (d, 3H, JHH = 10.5,
OCH3

I), 3.68 (d, 3H, JHH = 10.6, OCH3
II), 5.47 (d, 1H, 2JHP = 18.7, CHP), 6.50 (s, 1H,

ArH), 6.84–6.89 (m, 1H, ArH), 7.03–7.21 (m, 9H, ArH), 7.22–7.27 (m, 1H, ArH), 7.46 (d,
2H, JHH = 8.2, ArH); 13C NMR (CDCl3) δ 21.2, 53.27 (d, 2JCP = 9.5), 53.32 (d, 2JCP = 8.9),
64.0 (d, 1JCP = 163.3), 111.4, 122.5, 122.80, 122.82, 124.3 (d, JCP = 2.7), 125.4 (d, JCP = 3.2),
126.6 (d, JCP = 2.1), 127.2 (d, 2JCP = 6.0), 127.6, 128.4 (d, JCP = 3.1), 128.6, 129.1, 133.2 (d,
3JCP = 3.2), 134.4, 138.0, 142.2 (d, 3JCP = 1.8), 147.7 (d, 3JCP = 7.1); 31P NMR (CDCl3) δ 23.2;
[M + H]+

found = 406.1580, [M + H]+
calculated = 406.1572.

Diethyl (2-phenyl-3-(p-tolyl)-1,2-dihydroisoquinolin-1-yl)phosphonate (12): Yield:
83% (0.36 g), yellow oil; 1H NMR (CDCl3) δ 1.19 (t, 3H, JHH = 7.0, CH3

I), 1.23 (t, 3H,
JHH = 7.2, CH3

II), 2.27 (s, 3H, PhCH3), 3.86–3.98 (m, 2H, OCH2
I), 3.98–4.04 (m, 1H, CHA,

OCH2
II), 4.06–4.13 (m, 1H, CHB, OCH2

II), 5.43 (d, 1H, 2JHP = 18.8, CHP), 6.47 (s, 1H, ArH),
6.82–6.88 (m, 1H, ArH), 7.04 (d, 2H, JHH = 7.8, ArH), 7.06–7.20 (m, 7H, ArH), 7.21–7.27
(m, 1H, ArH), 7.47 (d, 2H, JHH = 7.8, ArH); 13C NMR (CDCl3) δ 16.4 (d, 3JCP = 5.4), 16.5
(d, 3JCP = 5.6), 21.2, 62.5 (d, 2JCP = 7.1), 62.7 (d, 2JCP = 7.5), 64.2 (d, 1JCP = 163.2), 111.5,
122.2, 122.70, 122.72, 124.2 (d, JCP = 2.7), 125.6 (d, JCP = 3.2), 126.4 (d, JCP = 2.0), 127.2 (d,
2JCP = 5.9), 127.5, 128.2 (d, JCP = 3.1), 128.5, 129.0, 133.2 (d, 3JCP = 3.1), 134.5, 137.8, 142.1
(d, 3JCP = 1.1), 147.8 (d, 3JCP = 7.2); 31P NMR (CDCl3) δ 20.9; [M + H]+

found = 434.1894,
[M + H]+

calculated = 434.1885.
Dibutyl (6-fluoro-2-phenyl-3-(p-tolyl)-1,2-dihydroisoquinolin-1-yl)phosphonate (13):

Yield: 81% (0.41 g), yellow oil; 1H NMR (CDCl3) δ 0.83 (t, 3H, JHH = 7.4, CH3
I), 0.85 (t,

3H, JHH = 7.4, CH3
II), 1.24–1.34 (m, 4H, CH2CH3), 1.49–1.59 (m, 4H, OCH2CH2), 2.27 (s,

3H, PhCH3), 3.84–4.05 (m, 4H, OCH2), 5.39 (d, 1H, 2JHP = 18.4, CHP), 6.38 (s, 1H, ArH),
6.79–6.89 (m, 3H, ArH), 7.01–7.12 (m, 7H, ArH), 7.49 (d, 2H, JHH = 8.3, ArH); 13C NMR
(CDCl3) δ 13.5, 13.6, 18.66, 18.68, 21.2, 32.6 (d, 3JCP = 5.6), 32.7 (d, 3JCP = 5.7), 63.8 (d,
1JCP = 164.9), 66.3 (d, 2JCP = 7.3), 66.4 (d, 2JCP = 7.6), 110.5, (dd, JCP = 2.5, 2JCF = 22.6), 110.6
(d, JCP = 2.4), 113.0 (dd, JCP = 1.8, 2JCF = 22.4), 121.2 (t, JCP = 3.0), 122.6, 122.91, 122.93,
127.7, 128.57, 128.60 (dd, 2JCP = 6.0, JCF = 8.7), 129.1, 134.1, 135.2 (d, 3JCP = 3.1, 3JCF = 8.7),
138.2, 143.3 (d, 3JCP = 1.7), 147.7 (d, 3JCP = 6.9), 162.9 (dd, JCP = 3.1, 1JCF = 244.9); 31P NMR
(CDCl3) δ 20.5; [M + H]+

found = 508.2424, [M + H]+
calculated = 508.2417.

Dibutyl (3-(4-methoxyphenyl)-2-phenyl-1,2-dihydroisoquinolin-1-yl)phosphonate (14):
Yield: 80% (0.40 g), yellow oil; 1H NMR (CDCl3) δ 0.82 (t, 3H, JHH = 7.4, CH3

I), 0.84 (t,
3H, JHH = 7.4, CH3

II), 1.24–1.33 (m, 4H, CH2CH3), 1.48–1.58 (m, 4H, OCH2CH2), 3.74 (s,
3H, PhOCH3), 3.81–4.02 (m, 4H, OCH2), 5.42 (d, 1H, 2JHP = 18.9, CHP), 6.41 (s, 1H, ArH),
6.75 (d, 2H, JHH = 8.7, ArH), 6.83–6.87 (m, 1H, ArH), 7.05–7.18 (m, 7H, ArH), 7.20–7.25
(m, 1H, ArH), 7.49 (d, 2H, JHH = 8.8, ArH); 13C NMR (CDCl3) δ 13.56, 13.59, 18.60, 18.67,
32.61 (d, 3JCP = 5.6), 32.64 (d, 3JCP = 5.6), 55.2, 64.2 (d, 1JCP = 163.5), 66.2 (d, 2JCP = 7.3),
66.4 (d, 2JCP = 7.7), 111.0, 113.7, 122.2, 122.75, 122.77, 124.1 (d, JCP = 2.7), 125.7 (d, JCP = 3.2),
126.3 (d, JCP = 2.2), 127.2 (d, 2JCP = 5.9), 128.2 (d, JCP = 3.2), 128.5, 128.9, 129.4, 133.3
(d, 3JCP = 3.1), 141.8 (d, 3JCP = 1.8), 147.9 (d, 3JCP = 7.2), 159.4; 31P NMR (CDCl3) δ 20.9;
[M + H]+

found = 506.2469, [M + H]+
calculated = 506.2460.

Dibutyl (3-(4-chlorophenyl)-2-phenyl-1,2-dihydroisoquinolin-1-yl)phosphonate (15):
Yield: 82% (0.42 g), yellow oil; 1H NMR (CDCl3) δ 0.82 (t, 3H, JHH = 7.3, CH3

I), 0.84 (t, 3H,
JHH = 7.5, CH3

II), 1.24–1.33 (m, 4H, CH2CH3), 1.47–1.59 (m, 4H, OCH2CH2), 3.81–4.02 (m,
2H, OCH2), 5.41 (d, 1H, 2JHP = 18.8, CHP), 6.48 (s, 1H, ArH), 6.87 (t, 1H, JHH = 7.1, ArH),
7.04 (d, 2H, JHH = 8.1, ArH), 7.08–7.13 (m, 3H, ArH), 7.14–7.22 (m, 4H, ArH), 7.23–7.28 (m,
1H, ArH), 7.50 (d, 2H, JHH = 8.6, ArH); 13C NMR (CDCl3) δ 13.5, 13.6, 18.65, 18.66, 32.6 (d,
3JCP = 5.4), 32.7 (d, 3JCP = 5.7), 64.1 (d, 1JCP = 163.8), 66.2 (d, 2JCP = 7.4), 66.4 (d, 2JCP = 7.7),
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112.8, 122.58, 122.62, 122.64, 124.5 (d, JCP = 2.7), 125.8 (d, JCP = 3.2), 126.9 (d, JCP = 2.0),
127.3 (d, 2JCP = 5.9), 128.3 (d, JCP = 3.2), 128.6, 128.7, 128.8, 132.8 (d, 3JCP = 3.3), 133.6, 136.0,
140.9 (d, 3JCP = 1.8), 147.5 (d, 3JCP = 7.1); 31P NMR (CDCl3) δ 20.7; [M + H]+

found = 510.1974,
[M + H]+

calculated = 510.1965.
Dibutyl (2,3-diphenyl-1,2-dihydroisoquinolin-1-yl)phosphonate (16): Yield: 80% (0.38 g),

yellow oil; 1H NMR (CDCl3) δ 0.86 (t, 3H, JHH = 7.1, CH3
I), 0.87 (t, 3H, JHH = 7.2, CH3

II),
1.27–1.36 (m, 4H, CH2CH3), 1.50–1.62 (m, 4H, OCH2CH2), 3.84–4.07 (m, 4H, OCH2), 5.48
(d, 1H, 2JHP = 18.8, CHP), 6.53 (s, 1H, ArH), 6.85–6.91 (m, 1H, ArH), 7.08–7.30 (m, 11H,
ArH), 7.61 (d, 2H, JHH = 7.7, ArH); 13C NMR (CDCl3) δ 13.5, 13.6, 18.65, 18.66, 32.61 (d,
3JCP = 5.7), 32.63 (d, 3JCP = 5.6), 64.2 (d, 1JCP = 163.6), 66.2 (d, 2JCP = 7.2), 66.4 (d, 2JCP = 7.7),
112.4, 122.3, 122.63, 122.65, 124.3 (d, JCP = 2.8), 125.8 (d, JCP = 3.5), 126.6 (d, JCP = 2.6), 127.3
(d, 2JCP = 6.0), 127.6, 127.9.5, 128.26, 128.27 (d, JCP = 2.3), 128.5, 133.1 (d, 3JCP = 3.6), 137.4,
142.0 (d, 3JCP = 1.9), 147.8 (d, 3JCP = 7.7); 31P NMR (CDCl3) δ 20.8; [M + H]+

found = 476.2362,
[M + H]+

calculated = 476.2355.

3. Results and Discussion

First, the model reaction of 2-(p-tolylethynyl)benzaldehyde (A), aniline (B), and
dibutyl phosphite (C) was studied (Table 1). Performing the three-component conden-
sation without any catalyst in acetonitrile at 60 ◦C for 4 h, the conversion was only 52%,
and the dibutyl ((phenylamino)(2-(p-tolylethynyl)phenyl)methyl)phosphonate (3) was
the main product; however, 2% of dibutyl (2-phenyl-3-(p-tolyl)-1,2-dihydroisoquinolin-
1-yl)phosphonate (4) was also formed (Table 1, Entry 1). Repeating the reaction in the
presence of half equivalent of propylphosphonic anhydride (T3P®) as the condensing
agent, at room temperature for 1 h, it was found that a conversion of 70% could be already
reached, and product 3 was formed selectively (Table 1, Entry 2). Increasing the amount
of T3P® for one equivalent, resulted in a similar conversion (71%) after 30 min (Table 1,
Entry 3). Using one equivalent of T3P® and applying a reaction time of 1 h, the reaction
was complete, and phosphonate 3 was formed in a ratio of 100% (Table 1, Entry 4).

Table 1. Investigation of the condensation of 2-(p-tolylethynyl)benzaldehyde, aniline, and dibutyl phosphite.
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Entry A:B:C 
(Equiv) 

Catalyst Solvent T 
(°C) 

t 
(h) 

Composition a (%) 

C 3 4 
1 1:1:1 – MeCN 60 4 48 50 2 
2 1:1:1 0.5 equiv T3P® – 25 1 30 70 0 
3 1:1:1 1 equiv T3P® – 25 0.5 29 71 0 
4 1:1:1 1 equiv T3P® – 25 1 0 100 0 
5 1:1:1 5 mol% CuSO4·5H2O – 60 1 27 5 68 
6 1:1:1 5 mol% CuSO4·5H2O MeCN 60 1 14 0 86 
7 1:1:1 5 mol% CuI MeCN 60 1 12 0 88 
8 1:1:1 5 mol% CuBr MeCN 60 1 13 0 87 
9 1:1:1 5 mol% CuCl MeCN 60 1 9 0 91 

10 1:1:1 10 mol% CuCl MeCN 60 1 9 0 91 
11 1:1:1 5 mol% CuCl MeCN 80 1 8 0 92 
12 1:1:1 5 mol% CuCl MeCN 60 1.5 8 0 92 
13 1:1.2:1 5 mol% CuCl MeCN 60 1 5 0 95 
14 1.2:1.2:1 5 mol% CuCl MeCN 60 1 0 0 100 

a Determined by 31P NMR. 

In the next round, the T3P®-promoted Kabachnik–Fields reaction was carried out 
starting from various 2-alkynylbenzaldehydes, aniline, and dialkyl phosphites under the 
optimized conditions (1 equiv of T3P®, 25 °C, 1 h) (Figure 2). The dibutyl ((phenylamino)(2-
(p-tolylethynyl)phenyl)methyl)phosphonate (3) was isolated from the experiment marked 
by Table 1, Entry 4 in a yield of 96% after the extraction. Performing the condensation of 
(2-(p-tolylethynyl)benzaldehyde with aniline and dibenzyl phosphite, compound 5 was 
synthesized in a yield of 93%. The three-component reaction of aniline and dibutyl phos-
phite was also carried out with 4-fluoro-2-(p-tolylethynyl)-, 2-((4-methoxy-
phenyl)ethynyl)-, and 2-((4-chlorophenyl)ethynyl)benzaldehyde, as well as with 2-(phe-
nylethynyl)benzaldehyde, and the corresponding α-aminophosphonates (6–9) were ob-
tained in yields of 87–98%. The reactions of 2-alkynylbenzaldehydes containing an elec-
tron donating group, such as methyl or methoxy group, on the phenyl ring, resulted in 
slightly lower yields (87% or 89%, respectively). In contrast, α-amino (2-alkynylphenyl)-
methylphosphonates bearing a 4-chloro substituent on the phenyl ring (9) or the unsubsti-
tuted derivatives (10) were isolated in excellent yields. Finally, the condensation of 2-(phe-
nylethynyl)benzaldehyde and aniline was carried out with diethyl phosphite, and the re-
sult obtained was similar to that of the reaction performed with dibutyl phosphite. 

  

Entry A:B:C
(Equiv) Catalyst Solvent T (◦C) T (h)

Composition a (%)

C 3 4

1 1:1:1 – MeCN 60 4 48 50 2
2 1:1:1 0.5 equiv T3P® – 25 1 30 70 0
3 1:1:1 1 equiv T3P® – 25 0.5 29 71 0
4 1:1:1 1 equiv T3P® – 25 1 0 100 0
5 1:1:1 5 mol% CuSO4·5H2O – 60 1 27 5 68
6 1:1:1 5 mol% CuSO4·5H2O MeCN 60 1 14 0 86
7 1:1:1 5 mol% CuI MeCN 60 1 12 0 88
8 1:1:1 5 mol% CuBr MeCN 60 1 13 0 87
9 1:1:1 5 mol% CuCl MeCN 60 1 9 0 91

10 1:1:1 10 mol% CuCl MeCN 60 1 9 0 91
11 1:1:1 5 mol% CuCl MeCN 80 1 8 0 92
12 1:1:1 5 mol% CuCl MeCN 60 1.5 8 0 92
13 1:1.2:1 5 mol% CuCl MeCN 60 1 5 0 95
13 1.2:1.2:1 5 mol% CuCl MeCN 60 1 0 0 100

a Determined by 31P NMR.
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Our aim was also to accomplish the synthesis of dibutyl (2-phenyl-3-(p-tolyl)-1,2-
dihydroisoquinolin-1-yl)phosphonate (4); therefore, the three-component reaction was
investigated in the presence of various copper catalysts (Table 1, Entries 5–9). Carrying out
the condensation using 5 mol% of CuSO4·5H2O at 60 ◦C for 1 h under solvent-free condi-
tions, the cyclic phosphonate (4) was the main product (68%); however, 5% of phosphonate
3 and 27% of unreacted dibutyl phosphite (C) was also detected in the reaction mixture
(Table 1, Entry 5). Repeating this reaction in acetonitrile, the condensation was much more
efficient since 86% of cyclic phosphonate (4) was formed (Table 1, Entry 6). Applying
CuI, CuBr, or CuCl as catalysts, the results obtained were somewhat similar, but CuCl
was proved to be the most effective (Table 1, Entries 7–9). To improve the conversion, an
experiment was performed in the presence of 10 mol% of CuCl at 60 ◦C for 1 h, and another
at a higher temperature of 80 ◦C for 1 h, as well as a third at 60 ◦C for 1.5 h (Table 1, Entries
10–12). It was found that the conversion of each reaction did not change significantly.
Next, the condensation was carried out using a small excess of aniline in the presence of
5 mol% of CuCl at 60 ◦C for 1 h, and the reaction was almost complete (Table 1, Entry 12).
Repeating the condensation with 1.2 equivalents of acetylene and aniline under the same
conditions, 100% of cyclic phosphonate (4) was formed (Table 1, Entry 14).

In the next round, the T3P®-promoted Kabachnik–Fields reaction was carried out
starting from various 2-alkynylbenzaldehydes, aniline, and dialkyl phosphites under the
optimized conditions (1 equiv of T3P®, 25 ◦C, 1 h) (Figure 2). The dibutyl ((phenylamino)(2-
(p-tolylethynyl)phenyl)methyl)phosphonate (3) was isolated from the experiment marked
by Table 1, Entry 4 in a yield of 96% after the extraction. Performing the condensation of
(2-(p-tolylethynyl)benzaldehyde with aniline and dibenzyl phosphite, compound 5 was syn-
thesized in a yield of 93%. The three-component reaction of aniline and dibutyl phosphite
was also carried out with 4-fluoro-2-(p-tolylethynyl)-, 2-((4-methoxyphenyl)ethynyl)-, and
2-((4-chlorophenyl)ethynyl)benzaldehyde, as well as with 2-(phenylethynyl)benzaldehyde,
and the corresponding α-aminophosphonates (6–9) were obtained in yields of 87–98%.
The reactions of 2-alkynylbenzaldehydes containing an electron donating group, such as
methyl or methoxy group, on the phenyl ring, resulted in slightly lower yields (87% or
89%, respectively). In contrast, α-amino (2-alkynylphenyl)-methylphosphonates bearing
a 4-chloro substituent on the phenyl ring (9) or the unsubstituted derivatives (10) were
isolated in excellent yields. Finally, the condensation of 2-(phenylethynyl)benzaldehyde
and aniline was carried out with diethyl phosphite, and the result obtained was similar to
that of the reaction performed with dibutyl phosphite.

In contrast with previous reports, where magnesium perchlorate [23] or Lewis acids [24]
were used as catalysts, the T3P®-mediated method developed is a new approach for the syn-
thesis of α-amino (2-alkynylphenyl)-methylphosphonates, which applies green, low toxic
additive, and milder reaction conditions (25 ◦C, 1 h). Altogether seven new derivatives
were prepared in high yields and characterized by 31P, 1H, and 13C NMR spectroscopy, as
well as by HRMS. (Copies of 31P, 1H, and 13C NMR spectra for all compounds synthesized
are presented in the Supplementary Materials.)

The formation of α-amino (2-alkynylphenyl)-methylphosphonates by the T3P®-
promoted Kabachnik–Fields reaction can be explained by the proposed mechanism shown
in Scheme 2. First, by the reaction of 2-alkynylbenzaldehyde and aniline, imine III is formed
via adduct I. This condensation may be promoted by T3P® to afford imine III along with
tripropyl triphosphonic acid (QOH) as the by-product. The dehydration may take place
via adduct II. In the next step, imine III reacts with the dialkyl phosphite in a nucleophilic
addition, and after a protonation by T3P.H2O, the phosphonium salt V formed is stabilized
by an Arbuzov fission to furnish α-amino (2-alkynylphenyl)-methylphosphonates (1) and
the T3P.H2O by-product.
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(2-phenyl-3-(p-tolyl)-1,2-dihydroisoquinolin-1-yl)phosphonate (4) was isolated from the
experiment marked by Table 1, Entry 14 in a yield of 79% after column chromatogra-
phy. The condensation of (2-(p-tolylethynyl)benzaldehyde and aniline was also carried
out with dimethyl or diethyl phosphite as the P-reagent, and the (2-phenyl-3-(p-tolyl)-
1,2-dihydroisoquinolin-1-yl)phosphonates (11 and 12) were obtained in yields of 86%
and 83%, respectively. Performing the three-component reaction of aniline and dibutyl
phosphite with 4-fluoro-2-(p-tolylethynyl)-, 2-((4-methoxyphenyl)ethynyl)-, and 2-((4-
chlorophenyl)ethynyl)benzaldehyde, as well as with 2-(phenylethynyl)benzaldehyde, the
corresponding dialkyl (2-phenyl-3-aryl-1,2-dihydroisoquinolin-1-yl)phosphonates (13–16)
were isolated in yields of 80–82% after column chromatography.
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In contrast with previous reports, which were detailed in the Introduction section [23–26],
our CuCl-catalyzed approach for the preparation of 2,3-disubstituted-1,2-dihydroisoquinolin-
1-ylphosphonates utilizes a small excess of 2-alkynylbenzaldehydes and aniline, less of
an amount of catalyst, acetonitrile solvent, a reaction temperature of 60 ◦C, and a shorter
reaction time (1 h). Altogether seven new derivatives were synthesized in good yields
(79–86%) and were characterized by 31P, 1H, and 13C NMR spectroscopy, as well as by
HRMS. (Copies of 31P, 1H, and 13C NMR spectra for all compounds synthesized are
presented in the Supplementary Materials.)

The formation of 1,2-dihydroisoquinolin-1-ylphosphonates (2) by the CuCl-catalyzed
three-component reaction can be explained by the mechanism shown in Scheme 3. First,
by the Kabachnik–Fields reaction of 2-alkynylbenzaldehyde, aniline, and dialkyl phos-
phite, α-aminophosphonate VI is formed. Then, the CuCl catalyst activates the triple
bond for the intramolecular nucleophile attack of the amino group. This ring closure step
results in an organocopper cyclic ammonium salt VII, which is stabilized by a deprotona-
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tion/protonation step (parallelly losing the CuCl unit) to form the 1,2-dihydroisoquinolin-
1-ylphosphonate (2).
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4. Conclusions

In summary, we developed a novel approach for the synthesis of new α-amino (2-
alkynylphenyl)-methylphosphonates by the T3P®-mediated three-component reaction of
2-alkynylbenzaldehydes, aniline, and dialkyl phosphites. The method developed has the
advantages of the simple operation and mild reaction conditions; furthermore, it does not
require a chromatographic separation since the products could be recovered from the reac-
tion mixture by an extraction. Moreover, novel 2,3-disubstituted-1,2-dihydroisoquinolin-1-
ylphosphonates were synthesized by the CuCl-catalyzed condensation of the same kinds of
starting materials (2-alkynylbenzaldehydes, aniline, and dialkyl phosphites) at 60 ◦C for a
short reaction time (1 h). This approach is faster and cheaper compared with the examples
in the literature, where the reactions were complete after 4–6 h using more expensive
catalysts. Applying the methods developed, altogether seven α-amino (2-alkynylphenyl)-
methylphosphonates and seven 2,3-disubstituted-1,2-dihydroisoquinolin-1-ylphosphonate
derivatives were synthesized in good to high yields, and fully characterized, all of them
are new compounds.
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