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Post-stroke Epilepsy (PSE) is one of the most common forms of acquired epilepsy,
especially in the elderly population. As people get increasingly older, the number of stroke
patients is expected to rise and concomitantly the number of people with PSE. Although
many patients are affected by post-ischemic epileptogenesis, not much is known about
the underlying pathomechanisms resulting in the development of chronic seizures. A
common hypothesis is that persistent neuroinflammation and glial scar formation cause
aberrant neuronal firing. Here, we summarize the clinical features of PSE and describe
in detail the inflammatory changes after an ischemic stroke as well as the chronic
changes reported in epilepsy. Moreover, we discuss alterations and disturbances in
blood-brain-barrier leakage, astrogliosis, and extracellular matrix changes in both, stroke
and epilepsy. In the end, we provide an overview of commonalities of inflammatory
reactions and cellular processes in the post-ischemic environment and epileptic brain
and discuss how these research questions should be addressed in the future.
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INTRODUCTION

Ischemic strokes are among the most common causes of death and account for a large proportion
of disabilities in Western societies (Deuschl et al., 2020). Importantly, cerebrovascular diseases are
one of the main reasons for acquired epilepsy in adulthood, so-called post-stroke epilepsy (PSE;
Pitkänen et al., 2016). With the rising number of geriatric patients worldwide, the number of
stroke patients, and hence PSE patients, can be expected to rise significantly in the next decades
(Deuschl et al., 2020). Although good descriptions and reviews of current clinical knowledge of
PSE are available (Pitkänen et al., 2016; Feyissa et al., 2019; Xu, 2019; Zelano et al., 2020; Galovic
et al., 2021), surprisingly little is known about the underlying pathomechanism that leads to PSE.
Therefore, treatment and preventive actions are limited and speculative.

Common hypotheses for the post-ischemic epileptogenesis include gliosis, chronic
inflammation, angiogenesis, neurodegeneration, altered synaptic plasticity, or synaptic sprouting
(Li et al., 2010; Feyissa et al., 2019). Additionally, blood-brain-barrier (BBB) leakage during
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stroke induces inflammation and pro-epileptogenic mechanisms
(Vezzani et al., 2019). Mitochondrial dysfunction, edema, or ion
gradient imbalances might contribute to stroke lesion size as well
as to seizure generation. Moreover, seizure-like brain activity
during ischemia also increases the infarct size and negatively
impacts functional recovery (Williams and Tortella, 2002). This
suggests that post-ischemic pathological changes and seizure
generation are reciprocal processes which influence each other
(Feyissa et al., 2019).

We here summarize clinical features of PSE and describe
characteristics of neuroinflammation, blood-brain-barrier
perturbations, gliosis, and changes in the extracellular matrix
in stroke and epilepsy. Furthermore, we delineate similarities
and possible interactions between the two pathologies and
propose future directions for investigating the underlying
pathomechanism in PSE in a preclinical and translational
approach.

POST-STROKE EPILEPSY

Post-stroke seizures occur frequently and can be categorized
into acute symptomatic (≤7 days post-stroke, ASS) and remote
symptomatic seizures (>7 days post-stroke, RSS). ASS is
considered to be the result of local metabolic imbalances (Feyissa
et al., 2019). Although ASS drastically increases the risk for
developing RSS, they do not contribute to the diagnosis of PSE.
However, all patients who develop a single seizure more than
7 days after a stroke are classified as suffering from PSE as they
have a 71.5% increased risk of developing further seizures within
the next 10 years (Hesdorffer et al., 2009) and hence fall into the
category of epilepsy according to the International League against
Epilepsy (Fisher et al., 2014). Numbers of patients developing
PSE vary due to different cohorts regarding the length of follow-
up, stroke etiology, or varying definitions of early and RSS, but
generally range from 3 to 25% (Galovic et al., 2018, 2021; Feyissa
et al., 2019; Xu, 2019; Ferreira-Atuesta et al., 2021). Risk factors
for PSE include strokes with cortical involvement, stroke severity,
young age (below 65 years), or ASS (Galovic et al., 2018; Feyissa
et al., 2019; Zelano et al., 2020; Ferreira-Atuesta et al., 2021).

Hemorrhagic strokes, which only make up about 5–10% of
strokes, are more epileptogenic than ischemic ones (Caplan and
Kase, 2016). ASS appears in between 2% and 4% of patients with
ischemic strokes vs. 10% to 16% of patients with intracranial
hemorrhages (Haapaniemi et al., 2014; Wang et al., 2017;
Thevathasan et al., 2018). These numbers may be an under-
estimate, as a study postulates that up to a fifth of patients
showed electroencephalographic seizures in the acute phase
after stroke (Bentes et al., 2017). The incidence of late-onset
post-stroke seizures at a 5-year follow-up has been reported to
be 9.5% for ischemic strokes and 11.8% for hemorrhagic strokes
(Haapaniemi et al., 2014; Holtkamp et al., 2017).

Approximately 70% of PSE patients develop focal seizures,
which occasionally generalize. The remaining 30% have bilateral
tonic-clonic seizures only (Xu, 2019). PSE does not only lead to
decreased quality of life, as does epilepsy in general, but it has also
been linked with decreased post-stroke recovery, neurological
deterioration, and poor functional outcomes (Graham et al.,

2013; Baranowski, 2018; Feyissa et al., 2019). Seizures in PSE
patients are often well manageable with anti-epileptic therapy
(AED, anti-epileptic drugs), however, up to 40% of patients
remain unresponsive to pharmacological intervention (Feyissa
et al., 2019; Xu, 2019). General prophylactic AED treatment
after stroke is not advisable, as this has been reported to
decrease behavioral and motor recovery by inhibiting neural
plasticity (Messé et al., 2009). Moreover, long-term AED usage
may increase the risk of atherosclerosis, which would pose
an additional risk for post-stroke patients (Tan et al., 2009).
Although there are some clinical tools available to determine
the risk of developing PSE after ischemic, hemorrhagic, or both
stroke types (Strzelczyk et al., 2010; Haapaniemi et al., 2014;
Galovic et al., 2018; Lekoubou et al., 2021), an easily measurable
biomarker would ameliorate early diagnosis and facilitate
preventive treatment even before the first seizure has occurred.
In search of imaging biomarkers predicting the risk of poststroke
seizures, a significant association between the incidence of PSE
2 years after the occurrence of hemorrhagic transformation
post ischemic stroke in patients who underwent endovascular
revascularization therapy was found (17.9% compared with 4.0%,
p = 0.001; Thevathasan et al., 2018). In a recent study no impact
of reperfusion techniques on the development of PSE was found
(Ferreira-Atuesta et al., 2021).

Although RSS is significantly associated with stroke severity
and stroke location in the middle cerebral artery territory among
others (Galovic et al., 2018), no explicit information regarding
more accurate stroke localization, infarct size, or concomitant
cerebrovascular damages, for example microangiopathy, or loss
in brain volume, is available.

Unfortunately, hardly anything is known about the
pathomechanism of post-ischemic epileptogenesis on a cellular
and molecular level. A better understanding of these processes
would help to search for possible biomarker candidates in easily
accessible compartments such as the blood and could identify
patients at risk of developing PSE in a paraclinical setting.

Neuroinflammation as Possible
Mechanism Underlying PSE
An ischemic insult induces a plethora of processes in the brain
parenchyma, such as excitotoxicity, hypoxic injury, activation
of the immune system, and BBB leakage (Wimmer et al., 2018;
Jayaraj et al., 2019). Interestingly, similar mechanisms have been
described to induce epileptogenesis (Figure 1; Bauer et al., 2017;
Vezzani et al., 2019). Especially neuroinflammation-mediated
epilepsy has become a focus of attention in recent years. Several
immunological mediators have been shown to lower the seizure
threshold. Innate as well as adaptive neuroinflammation has
repeatedly been shown in the brain parenchyma in several forms
of epilepsy (Vezzani et al., 2011a; Devinsky et al., 2013; Bauer
et al., 2017).

Neuroinflammation in Stroke
Post-ischemic inflammation occurs rapidly after the event and
is characterized by microglia activation, influx of peripheral
immune cells, and BBB breakdown.
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FIGURE 1 | Overview of longitudinal inflammatory changes after ischemic stroke: pathophysiological mechanisms and contributing inflammatory mediators are
indicated at the respective time point after an ischemic infarct. The timely progression and difference of the inflammatory profile at the different stages after stroke are
indicated in different colored waves. All pathophysiological mechanisms and inflammatory mediators contributing to epilepsy too are indicated in bold. IL, Interleukin;
TNF, Tumor necrosis factor; IFN, Interferon; MMP, Metalloproteinases; HMGB1, High-mobility group box 1; RAGE, receptor for advanced glycation products; TLR,
Toll-like receptor.

TABLE 1 | Summary of Inflammatory changes in stroke and epilepsy.

Stroke Epilepsy

Cell Loss Neuronal and Glial Cell Death Neuronal Loss (depending on etiology)
Immune Cells Involved Macrophages, Neutrophils, Leukocytes, Lymphocytes, Microglia Microglia, Lymphocytes
Microglia First pro-inflammatory, then phagocytic, produce growth factors Chronically pro-inflammatory, ramified morphology
Cytokines IL-6, IL-1β, IL-15, IL-10, IFN-γ, TNF-α, TGF-β IL-6, IL-1β, TNF-α, TGF-β
Chemokines CCL1, CCL2, CCL4, CCL5, CCL22, CXCL10, CXCL12, CX3C CCL2, CCL3, CCL4, CCL5, CXCL10, CX3CL1
Reactive Oxygen and Nitrogen Species Plasma lipid peroxides and thiobarbituric acid in blood Increased in blood, iNOS in post-mortem brains
Astrocytes Hyperplasic, produce increased vimentin, GFAP, ephrin-A5, ECM

molecules, CSPGs, nerve growth factors, BDNF, scar formation
Astrogliosis, ramified morphology

Blood-Brain Barrier BBB breakdown (acute), HIF-1α induced MMP2 and MMP9,
integrin breakdown, albumin leakage

BBB leakage (chronic), imbalance in brain
homeostasis, albumin leakage

Alarmins HMGB1, purins, peroxireduxins, RAGE, TLR2 and 4, S100B and
Hsc70 downregulation in patients with a high probability of PSE

HMGB1, RAGE, TLR4

Network Rearrangements Plasticity in the penumbra, axonal outgrowth through ECM proteins,
neuroregeneration and rewiring (limited), synaptic sprouting

Synaptic sprouting in hippocampus

IL, Interleukin; TNF, Tumor necrosis factor; MMP, Metalloproteinases; HMGB1, High-mobility group box 1; RAGE, receptor for advanced glycation products; TLR, Toll-like receptor.

In the early stage after a stroke, acute neuronal and glial cell
death occurs within the necrotic area. Peripheral immune cells,
above all macrophages, neutrophils, and leukocytes, infiltrate
the brain and migrate into the core lesion. Microglia in the
surrounding areas increase in number and polarize towards a
highly pro-inflammatory phenotype, expressing markers linked

to oxidative stress, phagocytosis, and antigen presentation
(Zrzavy et al., 2017; Figure 1, red wave). Pro-inflammatory
cytokines are elevated in post-mortem tissue of stroke patients,
such as interleukin (IL) 6, IL-1β, interferon (IFN) γ, tumor
necrosis factor (TNF) α and IL-15 (Doll et al., 2014; Nguyen
et al., 2016; Zrzavy et al., 2017; Wimmer et al., 2018). IL-1β
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and TNFα levels in serum and plasma have been investigated
and some studies reported an increase shortly after the stroke
(Intiso et al., 2004; Sotgiu et al., 2006), whereas others did not
(Tarkowski et al., 1995; Ormstad et al., 2011). However, due
to the potent pro-inflammatory action of these cytokines and
short half-life, a short-lived and locally restricted increase would
be expected (Doll et al., 2014; Jayaraj et al., 2019). Further,
many pro-inflammatory chemokines are upregulated in the
brain, such as CCL1, CCL2, CCL4, CCL5, CCL22, CXCL10,
and CXCL12, and some can be detected in serum or plasma
(García-Berrocoso et al., 2014; Nguyen et al., 2016). On the
other hand, anti-inflammatory cytokines such as IL-10 are highly
upregulated in early stroke lesions and initially down-regulated
in the serum, but levels increase later on (Ormstad et al., 2011;
Nayak et al., 2012; Nguyen et al., 2016). Peripheral IL-6 and IL-10
levels were linked to worsened or improved stroke outcomes,
respectively (Jiao et al., 2016; Nguyen et al., 2016). As microglia
are polarized towards a pro-inflammatory phenotype, they can
produce oxygen and nitrogen (ROS and NOS) species, which
lead to BBB breakdown and act as neurotoxins (Seneş et al.,
2007; Jayaraj et al., 2019). Astrocytes become hyperplasic and
produce chemokines, cytokines, and astrocyte-specific proteins
such as vimentin, or glial fibrillary acidic protein (GFAP), which
contribute to scar formation (Wang et al., 2018; Pluta et al.,
2021). Astrocytes also produce ephrin-A5, extracellular matrix
molecules, and chondroit sulfate proteoglycans, which interfere
with axonal sprouting, inhibit axonal growth and regeneration
(Rolls et al., 2009; Overman et al., 2012; Huang et al., 2014).
In the blood, increased levels of plasma lipid peroxides and
thiobarbituric acids were found, a sign of ongoing oxidative stress
and elevated levels of ROS and NOS (Alexandrova et al., 2003).
Moreover, fraktalkine (CX3C), which can induce chemotaxis of
leukocytes and microglia by binding to its receptor CX3CR1,
seems to play a role in the post-ischemic outcome in an animal
model, as CX3C knock-out animals had a nearly 30% reduction
in infarct size and mortality (Soriano et al., 2002).

After the initial wave of inflammation, peripheral
macrophages which have infiltrated the brain, together with
brain-resident microglia, phagocytose debris of dead cells
and shift towards either a mixed pro- and anti-inflammatory,
or exclusively anti-inflammatory phenotype linked to the
resolution of inflammation, removal of debris, and central
nervous system (CNS) remodeling (Zrzavy et al., 2017).
Pro-inflammatory mediators, such as IL-6, CXCL10, and CCL4,
but also anti-inflammatory transforming growth factor (TGF) β

are still significantly elevated (Nguyen et al., 2016; Jayaraj et al.,
2019; Figure 1, orange wave). In post-mortem brains of patients,
who died within 7 days after an ischemic infarct, astrocytes were
shown to produce pro-inflammatory IL-15 via activating CD8+
T cells and natural killer cells (Li et al., 2017). Lymphocytes,
especially CD8+ T cells, were increased in the ischemic lesion
compared to healthy controls, although the number of T cells
was about 10-fold lower compared to inflammatory conditions
such as multiple sclerosis or encephalitis and did not show active
proliferation as a sign of antigen recognition (Zrzavy et al., 2017).

In the late cystic or scar stage, an astrocytic scar has
formed around the necrotic core. In this late phase after

ischemic stroke, microglia reappear within the lesion core with
a partly homeostatic, partly inflammatory phenotype (Zrzavy
et al., 2017). Several pro- and anti-inflammatory cytokines and
chemokines are still elevated and microglia produce increased
levels of various growth factors, enhancing neurogenesis and
plasticity within the penumbra (Nguyen et al., 2016; Jayaraj et al.,
2019; Figure 1, yellow wave). B cells have been postulated to play
a role in stroke recovery in the late stage. Increased numbers
of regulatory B cells were shown to be beneficial, as they secret
anti-inflammatory IL-10 (Offner and Hurn, 2012). On the other
hand, in a mouse model for stroke, activated B cells infiltrated the
brain weeks after a stroke and secreted immunoglobulin, leading
to cognitive deficits. Post-stroke cognitive decline was decreased
drastically upon depletion of B cells, indicating an active role of
the activated B cells in the brain (Doyle et al., 2015).

Neuroinflammation in Epilepsy
In epilepsy, the temporal resolution of inflammatory processes
is less well established. In humans, the epileptogenic processes
leading to the first seizure can occur over years during
which patients are free of symptoms. Most data on human
patients derive from surgical resections of drug-resistant epilepsy
patients, in whom epileptogenic activity has been ongoing for
years. Hence, the pathological changes characterize a very late
stage of the disease, and no conclusions regarding the initial
events can be drawn. Results from both, human end-point
analyses and animal studies, where clear time-course studies
are feasible, revealed several pro-inflammatory mediators, which
are involved in epileptogenesis. The most prominent one is IL-
1β, which is produced in the brain of human patients with
pharmaco-resistant epilepsy and was also shown to lower the
seizure threshold in animals (Vezzani et al., 1999, 2000, 2011b).
IL-1β leads to an altered phosphorylation of NMDA receptors,
rendering them more permeable to calcium and therefore
increasing neuronal firing or potentially even excitotoxicity
(Viviani et al., 2003). Moreover, patients’ serum IL-1β levels
decrease after surgical resection of the epileptogenic foci (Pedre
et al., 2018a). IL-6 is upregulated during epileptogenesis,
decreases neurogenesis, and promotes gliosis (Minami et al.,
1991; Ichiyama et al., 1998; Peltola et al., 2000; Valliéres et al.,
2002; Liimatainen et al., 2009; Rana andMusto, 2018). Moreover,
IL-6 serum levels were reduced after surgical resection of the
epileptogenic foci and were significantly reduced in epileptic
patients who became seizure-free after the surgery (Pedre et al.,
2018a). Further, increased levels of oxidative stress markers
as a possible sign for activated, pro-inflammatory microglia,
were found in the blood of epilepsy patients, which decreased
after surgery (López et al., 2007; Pedre et al., 2018b). Increased
levels of inducible nitric oxide synthase (iNOS) were found in
post-mortem tissue of epilepsy patients (Pauletti et al., 2019;
Terrone et al., 2019). TNFα can exert various pro-epileptogenic
properties in the brain (Minami et al., 1991; Ichiyama et al.,
1998; Arulsamy and Shaikh, 2020). It is released from activated
microglia upon extracellular glutamate detection and leads
to an upregulation of synapses. In vitro, TNFα induces an
upregulation of AMPA receptors and the endocytosis of GABA
receptors (Stellwagen et al., 2005). Chemokines have also been
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depicted to play a role in epileptogenesis. In human tissue
resections CCL2, CCL3, CCL4, CCL5, and CXCL10 were
highly upregulated (Wu et al., 2008; Tröscher et al., 2019).
The same was found in animal models, where CCL2, CCL3,
CCL4, and CCL5 have been involved in epileptic neuronal
signaling (Fabene et al., 2008, 2010; Foresti et al., 2009; Xu
et al., 2009; Cerri et al., 2017). Moreover, an endothelial
upregulation of chemokines can lead to increased leukocyte
influx, which has been shown to act pro-convulsively and
induce an epileptogenic inflammatory milieu within the brain
parenchyma in animals (Fabene et al., 2008, 2010; Cerri et al.,
2017). In humans, T cell numbers were found to be uncorrelated
with seizure frequency, making a direct link between T cells
and epileptogenesis less likely (Tröscher et al., 2021). The
neuronal chemokine fraktalkine (CX3CL1), which mediates
neuronal-microglial interaction, has been shown to modulate
GABAA currents in human temporal lobe epilepsy (Roseti
et al., 2013; all inflammatory changes occurring in epilepsy
in Figure 1 in bold).

Astrogliosis and Glial Scar in Stroke and Epilepsy
The astrocytic scar formed in the late stage after stroke provides
a scaffold for angiogenesis, modulates immune cells and prevents
the uncontrollable spread of inflammation and cell damage
to healthy areas, and maintains ion and fluid balance (Rolls
et al., 2009). Moreover, astrocytes forming the scar produce
nerve growth factors and brain-derived neurotrophic factors
(Schwartz and Nishiyama, 1994), which facilitate survival and
rewiring of surviving neurons in the penumbra (Rolls et al.,
2009). Several extracellular matrix proteins have also been
shown to aid axonal outgrowth (Dzyubenko et al., 2018).
Although neuroregeneration and rewiring are difficult in the
CNS, neuronal reorganization and repair occur post-ischemia
and can be enhanced by glial-derived growth factors and
stimulation (Zhang and Chopp, 2009; Wahl et al., 2014, 2017).

Astrogliosis is also a hallmark of medial temporal lobe
epilepsy, where areas with or without neuronal loss can be
affected (Thom, 2014; Blumcke et al., 2017). Moreover, it
was shown that astrocytes can change the extracellular matrix
in a TGFβ-dependent manner, leading to a breakdown of
perineuronal nets around inhibitory neurons, triggering
inhibition deficits (Kim et al., 2017). Disruption of the
extracellular matrix leads to altered ion concentrations,
osmolarity, and firing behavior in hippocampal neurons
(Glykys et al., 2014). Astrocytes also play a critical role with
respect to ion balancing, especially potassium buffering, and
neurotransmitter homeostasis. These mechanisms have been
shown to be altered in epilepsy surgical resections (Pekny et al.,
2016).

Blood-Brain-Barrier Breakdown in Stroke and
Epilepsy
Another hallmark of stroke is BBB breakdown. This is mainly
mediated by proteinases such as metalloproteinases (mainly
MMP2 and MMP9), which are induced by hypoxia-inducible
factor (HIF) 1α or various pro-inflammatory cytokines. They
directly decrease the expression of tight-junction proteins and

shift their location. MMP9 levels were found to be increased
after ischemic stroke and positively correlate with the severity of
neurological deficits. Interestingly, MMP9 levels dropped after
72 h, except in patients with stroke progression (Brouns et al.,
2011). Integrins, which under physiological conditions interact
with the basement membrane to control BBB permeability, also
break down, leading to edema and exacerbated inflammation
(Yang and Rosenberg, 2011). In rodent stroke models, reactive
oxygen species were shown to further enhance BBB leakage
(Kim et al., 2001). Breakdown of the BBB leads to leakage of
peripheral proteins such as albumin, which by itself acts highly
pro-inflammatory within the brain parenchyma (Brouns et al.,
2011; Altman et al., 2019; Yang et al., 2019).

BBB leakage also commonly occurs in epilepsy and also
increases the risk of developing epilepsy after a precipitating
incident (Marchi et al., 2007, 2010, 2012; van Vliet et al., 2007;
Tomkins et al., 2008; Raabe et al., 2012). Peripheral proteins can
induce seizures and lead to imbalances in brain homeostasis and
trigger inflammation. Albumin was shown to decrease potassium
buffering in a TGFβ-dependent manner (Schröder et al., 2000;
Jauch et al., 2002; Cacheaux et al., 2009; Frigerio et al., 2012;
Heinemann et al., 2012; Devinsky et al., 2013; Gorter et al.,
2019). Moreover, seizures themselves can lead to increased BBB
permeability (Marchi et al., 2007, 2012; van Vliet et al., 2007;
Tomkins et al., 2008; Morin-Brureau et al., 2011; Devinsky et al.,
2013; Vezzani et al., 2019). The importance of BBB leakage with
respect to the development of PSE is further underlined by the
fact that statins reduce the risk for hospitalization for epilepsy
after stroke in a dose-dependent manner. Their effect is mainly
ascribed to their anti-inflammatory and protective action on the
BBB (Xu et al., 2020; Fang et al., 2021; Guo et al., 2021).

Alarmins in Stroke and Epilepsy
Inflammation in stroke as well as in epilepsy can be initiated,
propagated, and maintained by the release of alarmins, which
are mostly intracellular molecules released upon cellular stress
or death. In stroke, various alarmins, such as the protein
high-mobility group box 1 (HMGB1), purins, or peroxireduxins,
are released and bind to various damage associated molecular
pattern receptors (DAMPs), initiating an inflammatory cascade
(Gülke et al., 2018). HMGB1 activates the receptor for advanced
glycation products (RAGE) as well as toll-like receptor (TLR)
2 and 4, which are also activated by peroxiredoxins. Similar
pathways, mediated via HMGB1, RAGE, and TLR4 were shown
to be upregulated in epilepsy animal models and surgical
resections of epilepsy patients (Zurolo et al., 2011; Paudel
et al., 2019). HMGB1 was also found in the serum of stroke
patients and high levels were linked to a worse outcome,
indicated by higher follow-up modified Rankin scores at
1 year (Tsukagawa et al., 2017). Binding to these receptors
initiates NFKB signaling, which induces the transcription of
several highly pro-inflammatory chemokines and cytokines (Liu
et al., 2017) and was shown to be activated in hippocampal
resections of medial temporal lobe epilepsy patients (Crespel
et al., 2002). Purins, which are released from dying cells
after seizures or ischemia, can activate the inflammasome via
Nod-like receptor (NLRP) 3, which triggers the secretion of
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IL1β and IL18 (Beamer et al., 2016; Gülke et al., 2018). The
inflammasome or its products IL1β and IL18 have been shown
to be upregulated in various epilepsies (Tröscher et al., 2019;
Vezzani et al., 2019).

Commonalities in the Inflammatory
Activation Between Epilepsy and Stroke
There is a significant overlap of inflammatory mechanisms
after an ischemic infarct compared to findings in epilepsy
patients. Pro-inflammatory cytokines, such as IL-6, IL-1β, and
TNFα have been described in brains and in the blood of
both, patients after stroke and in epilepsy (Table 1; Stellwagen
et al., 2005; Doll et al., 2014; Nguyen et al., 2016; Zrzavy
et al., 2017; Pedre et al., 2018a; Rana and Musto, 2018;
Wimmer et al., 2018; Vezzani et al., 2019). Especially the
pro-epileptogenic action of IL-1β and TNFα are well understood
and their upregulation after ischemia could be a possible
explanation for post-ischemic epileptogenesis (Stellwagen et al.,
2005; Vezzani et al., 2019). Alarmins, secreted due to neuronal
damage or cell death caused by the ischemia, may augment the
inflammatory reaction and activate pro-epileptogenic pathways
via pro-inflammatory cytokines (Vezzani et al., 2011b; Gülke
et al., 2018). A recent study found downregulation of calcium-
binding protein B (S100B) and heat-shock protein (Hsc70) as
well as an upregulation of endostatin in patients directly after
stroke, who had a high probability of developing PSE in the
following months (Abraira et al., 2020). S100B and Hsc70 are
DAMPs linked to BBB integrity, hence lower levels could
point towards perturbed BBB function (Galovic et al., 2021).
In addition, T cell and monocyte-attracting chemokines are
expressed in the early, intermediate, and late stages after an
ischemic infarct and in epilepsy resections (Fabene et al., 2010;
García-Berrocoso et al., 2014; Cerri et al., 2017). How these
chemokines act pro-epileptogenically is not yet fully understood,
but T cells have been shown to infiltrate the brain in both
epilepsy and after an ischemic stroke, albeit in low numbers
(Zrzavy et al., 2017; Tröscher et al., 2021). However, a recent
study showed that the number of T cells in medial temporal
lobe epilepsy does not correlate with the seizure frequency.
Therefore, parenchymal T cells are unlikely to be the key driver of
post-ischemic epileptogenesis (Tröscher et al., 2021). However,
so far little is known about the parenchymal inflammatory milieu
in PSE brains.

Glial scar forming astrocytes are present around the lesion
core after an ischemic infarct and are commonly found in
epilepsy patients, for example in hippocampal sclerosis (Rolls
et al., 2009; Robel and Sontheimer, 2015; Wang et al., 2018).
Moreover, astrocytes play a key role in neurotransmitter
homeostasis (Pekny et al., 2016). The glial scar and excessively
produced extracellular matrix proteins around the lesion core
may inhibit axonal regrowth and prevent physiological synaptic
sprouting. Therefore, excessive scar formation around the
lesion could potentially affect surviving neurons within the
penumbra/scar area or neurons in the neighboring areas (Glykys
et al., 2014; Robel and Sontheimer, 2015; Pekny et al., 2016;
Wang et al., 2018). On the other hand, astroglial scars were also
shown to produce neuronal growth factors and act beneficially in

post-stroke rewiring (Schwartz and Nishiyama, 1994; Do Carmo
Cunha et al., 2007; Rolls et al., 2009; Zhang and Chopp, 2009).
In brain specimens of epilepsy patients, synaptic sprouting was
also observed, where it was ascribed to inducing or facilitating
seizure generation (Proper et al., 2000; Jarero-Basulto et al.,
2018). Disturbances of previously functional networks have been
shown by EEG recordings, where prolonged disturbed gamma
oscillations were found in animal models and also correlated with
stroke recovery in humans (Vecchio et al., 2019; Hazime et al.,
2021).

Astrocytes play another critical role in post-ischemic
parenchymal processes via their endfeet, constituting a part
of the BBB (Alvarez et al., 2013). After ischemic infarcts, the
BBB often breaks down leading to the influx of peripheral
molecules and cells (Brouns et al., 2011). In epilepsy, BBB leakage
is a commonly observed phenomenon and was repeatedly
described as triggering or enhancing epileptic activity (Friedman,
2011). Therefore, chronic alterations in the BBB could be
another mechanism by which PSE develops and how epileptic
activity persists even months and years after the ischemic lesion
occurred.

DISCUSSION AND FUTURE DIRECTIONS

Although PSE is one of the most common forms of acquired
epilepsy in the elderly, surprisingly little is known about the
underlying pathomechanisms. One of themost common theories
for post-ischemic epileptogenesis is chronic inflammation,
which can occur in stroke patients but also in patients
suffering from epilepsy. Many studies have investigated the
inflammatory cascades occurring after stroke (for review see
Wimmer et al., 2018; Jayaraj et al., 2019). In epilepsy research
chronic inflammation has been delineated as a potent driver of
epileptogenesis as well (Wilcox and Vezzani, 2014; Bauer et al.,
2017; Vezzani et al., 2019). However, hardly anything is known
about the interaction of these two pathomechanisms.

In recent years, crucial scientific work has been done to
pave the way for future studies, among them establishing a
sensitive clinical screening tool for patients at high risk of
developing PSE (Galovic et al., 2018). This will allow for
designing studies to investigate possible pathomechanisms and
therapeutic approaches for PSE by pre-selecting susceptible
patients. Previously, designing prospective studies on PSE
was hardly realistic due to the relatively low percentage of
patients developing PSE. Using the SELECT score, a patient
pool with patients at high risk for PSE can be generated
and followed up. First investigations on blood biomarkers
in PSE have recently been published and underline the
fact, that inflammatory processes might be involved in the
pathomechanism of PSE (Abraira et al., 2020). Furthermore,
the recently published meta-analyses on the beneficial effect
of statins on the development of PSE point towards a
pro-inflammatory origin of RSS (Guo et al., 2015; Xu et al.,
2020; Fang et al., 2021). As clinical research on PSE is very
laborious and time-consuming, translational research would be
very useful to understand the basic pathomechanisms. However,
generating animal models is equally difficult, as mice and rats
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also tend to develop seizures after stroke in relatively low
numbers. Hence, high numbers of animals would be required
for reliable and reproducible results. Moreover, the validity
of results gained from young rodents for a human disease
affecting the elderly is questionable (Reddy et al., 2017). In vitro
approaches using human iPSCs or organotypic slices could
lead to insights on basic molecular principles of post-ischemic
epileptogenesis with human cells or tissues. However, most likely
only combining results from all three approaches will lead to
a better understanding of the underlying pathomechanism of
post-ischemic PSE and thus help to identify targets for therapy
and prophylaxis.

We summarized the key inflammatory mediators involved
in both diseases and provided a broad overview on potential
post-ischemic epileptogenic mechanisms. In the future, these
questions have to be addressed in clinical as well as translational
research to provide insights into the development of PSE.
In animal models, the basic principles of post-ischemic
inflammation and their potential to drive epileptogenesis can be
studied in detail, allowing exactly timed disease course analyses
and in vivomonitoring of neuronal activity. Moreover, in animal
models confounding factors such as lesion size, age, and area
of incident can easily be controlled for. In clinical research, the
quest for biomarkers in easily accessible compartments, such

as the blood, will be crucial. Moreover, electroencephalographic
and imaging approaches can be used in human clinical research
to identify key epileptogenic hubs and their specific firing
properties during the latent phase of epileptogenesis. This will
not only improve our basic understanding of post-ischemic brain
physiology but also pave the way for potential prophylactic
interventions, inhibiting epileptogenesis before the first seizure
occurs.
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