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Abstract 

Background: Measuring similarity between complex diseases has significant implica-
tions for revealing the pathogenesis of diseases and development in the domain of 
biomedicine. It has been consentaneous that functional associations between disease-
related genes and semantic associations can be applied to calculate disease similarity. 
Currently, more and more studies have demonstrated the profound involvement of 
non-coding RNA in the regulation of genome organization and gene expression. Thus, 
taking ncRNA into account can be useful in measuring disease similarities. However, 
existing methods ignore the regulation functions of ncRNA in biological process. In this 
study, we proposed a novel deep-learning method to deduce disease similarity.

Results: In this article, we proposed a novel method, ImpAESim, a framework inte-
grating multiple networks embedding to learn compact feature representations and 
disease similarity calculation. We first utilize three different disease-related information 
networks to build up a heterogeneous network, after a network diffusion process, 
RWR, a compact feature learning model composed of classic Auto Encoder (AE) and 
improved AE model is proposed to extract constraints and low-dimensional feature 
representations. We finally obtain an accurate and low-dimensional feature representa-
tion of diseases, then we employed the cosine distance as the measurement of disease 
similarity.

Conclusion: ImpAESim focuses on extracting a low-dimensional vector representa-
tion of features based on ncRNA regulation, and gene–gene interaction network. Our 
method can significantly reduce the calculation bias resulted from the sparse disease 
associations which are derived from semantic associations.

Keywords: Non-coding RNA, Disease similarity, Semantic association, Gene functional 
network
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Background
Human complex diseases are often related with each other through shared causes or 
pathology. Knowledge of how various diseases are related can facilitate deepening the 
understanding of their etiology and pathogenesis [1, 2]. Studying the relationships can 
make contributions to predict disease causing genes [3, 4], inferring miRNA function 
associations [5, 6], and identifying novel therapeutic drugs for diseases [7, 8]. Various 
aspects including pathogenesis and phenotypes can be exploited to calculate the similar-
ity of pairwise diseases. Current methods for measuring disease similarity can be clas-
sified as semantic-based [5, 9] and functional-based [10–12]. Semantic-based methods 
are widely used for measuring similarity between diseases-associated ontological terms, 
such as Gene Ontology [13] and human phenotype ontology (HPO) [14] in biomedical 
and bioinformatics domain. Semantic association between diseases are documented in 
the ontology such as Disease Ontology (DO) [9]. For measuring similarity of semantic 
associations, Resnik’s method calculates disease similarity based on the information con-
tent (IC) of the most informative common ancestor (MICA) between two terms, Wang 
et al.’s method calculate similarity between terms considering multiple common ances-
tors [15]. It has been successfully employed in measuring disease similarity between 
medical subject headings (MeSH) terms and inferring microRNA function network [16]. 
Le et al. constructed disease similarity network based on semantic similarity measures 
on phenotype ontology database and integrated them with several kinds of gene/protein 
networks [17]. MultiSourcDSim proposed by Deng et al. compute the similarity between 
diseases by integrating multiple biological datasets including gene-disease associations, 
GO biological process-disease associations and symptom-disease associations [18].

Function-based methods for calculating similarity of terms incorporate genome infor-
mation. Mathur and Dinakarpandian presented a process-similarity based (PSB) method 
by involving the associations based on Gene Ontology [13]. Cheng et al. utilized gene 
interactions in the comprehensive gene functional network to calculate disease simi-
larity (SemFunSim) [19]. In contrast with aforementioned methods which ignore that 
genes could also be associated based on intermediate nodes in the gene functional net-
work, InfDisSim presented by Hu et al. models the information flow to the network in 
order that the entire network could be fully utilized [20]. Keller et al. revealed hidden 
relationships between diseases based on common associated genes as well as genes asso-
ciated with a common set of diseases by investigating formal concepts [21]. Carson et al. 
assumed that if a gene or gene sets is related to only one pair of diseases, the similar-
ity between these two diseases would be higher than that of a pair of diseases sharing 
gene associations with many other diseases [22]. However, it is worth noticing that many 
of these methods calculate disease similarity based on a single metric or a single data 
source, which could lead to a biased conclusion lacking of comprehensive assessment. 
Moreover, non-coding RNA have been demonstrated that they play a major part in many 
significant biological process, but existing methods have not taken this into account.

Non-coding RNAs have been considered as key regulators of gene expression, genome 
stability and defense against foreign genetic elements. The majority of the human 
genome transcripts are non-coding RNAs, in particular, miRNAs and lncRNAs [23, 24], 
which are involved in a plethora of cellular processes including either cis- or trans-reg-
ulation of protein-coding genes and alternative splicing. In this work, we developed a 
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novel method, called ImpAESim, to calculate disease similarity with taking these non-
coding RNAs into account by integrating multiple disease information networks. Many 
existing methods have been proposed to ensemble multiple networks into one network, 
such as kernel-based [25], Bayesian inference-based [26], weighted averaging or sum-
ming-based approaches [27], deep learning models [28, 29], and network representation 
learning (NRL) methods [30], these aforementioned methods fuse different networks 
into one integrated network and extract feature representations. However, they may 
induce information loss in the process of summarizing different networks into one. To 
solve this problem, multi-network embedding methods have been proposed, such as 
Mashup [31] which captured low-dimensional feature representations of genes based on 
multiple networks by utilizing a matrix factorization-based approach. However, matrix 
factorization-based approaches are a kind of linear and limited approach, it is difficult to 
capture complex and high-dimensional non-linear structure in integrated networks.

To address above problems, we proposed a novel method, named ImpAESim (disease 
similarity calculation based on an improved Auto-Encoder model), ImpAESim not only 
integrates diverse information from heterogeneous data sources (e.g., disease-gene asso-
ciations, lncRNA-gene associations, miRNA-gene associations) but also copes with the 
noisy and high-dimensional nature of large-scale biological data by utilizing an improved 
Auto-Encoder (AE) model to learn low-dimensional but informative vector representa-
tions of disease features. Then by measuring the distance between pairwise diseases we 
finally obtained the disease similarity. To this end, ImpAESim is not only a novel method 
to calculate disease similarity but also provide a new aspect to enrich human under-
standing of the heterogeneity and relevance of diseases.

Results
Effectiveness

Figure 1 shows the distribution of similarity scores calculated by ImpAESim, SemFun-
Sim and NCRR. After normalization, the similarity score of 1,390,206 disease pairs 
of 1,405,326 range from 0.3 to 0.8. In order to further analyze the performance of the 
proposed method, ImpAESim was compared with disease similarity methods SemFun-
Sim and NCRR. During the experiment, the parameters of these methods are selected 
according to the original paper. To clearly study the density curves, the disease pairs 
with similarity score under 0.2 and 0.3 are omitted for SemFunSim and NCRR, respec-
tively. SemFunSim and NCRR both are similarity methods utilizing disease terms and 
‘is_A’ relationships from Disease Ontology database. From this aspect, similarity score of 
many disease pairs may be 0 because they have no relationships according to semantic 
terms. Therefore, in the figure of distribution density curves of SemFunSim and NCRR, 
they spread wider than the density curve of ImpAESim, this indicates that the results of 
SemFunSim and NCRR are loosely structured, which is not beneficial to study the rela-
tionships of different diseases. To further test the efficiency of ImpAESim. We randomly 
selected five diseases from the disease set as the query diseases, and a list comprising of 
a top-5 most similar diseases to each query disease generated by ImpAESim. The results 
were recorded in Table 1. Take Hyperbilirubinemia for example, ImpAESim has discov-
ered that porphyria was similar or related to it with the given disease set. Many studies 
on these two diseases have revealed their close relationship, such as hyperbilirubinemia 
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Fig. 1 Density curves of three disease similarity methods

Table 1 Top-5 similar diseases for 5 query disease

a Rubinstein–Taybi syndrome

Query Top-5 associated diseases Score

Coronary artery disease FBCP 0.7908

SEMD 0.7886

RT-syndromea 0.7879

PMDS 0.7796

MODY 0.7521

Genetic obesity GSD 0.8131

VSD 0.7925

PC1/3 deficiency 0.7166

LEP deficiency 0.6885

SMS 0.6517

Hyperbilirubinemia SLC anemia 0.8598

Porphyria 0.8396

DJS 0.8376

Rotor syndrome 0.7561

ILL 0.7461

Neuroblastoma macrocolon 0.8136

ADHD 0.8054

HD 0.78821

SCDO 0.78649

PNPO deficiency 0.74891

Growth hormone deficiency IGH deficiency 0.65643

CPHD 0.65444

Hypopituitarism 0.62002

CRMO 0.61325

CAGSSS 0.57399
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is observed in erythropoietic porphyrias [32]. For coronary artery disease and familial 
benign chronic pemphigus, it has been detected that mutations in exons of ATP2C1 
gene in the patients of familial benign chronic pemphigus [33], Nassa et al. found that 
ATP2C1 may induce coronary artery disease [34].

Case study

Three diseases Mitochondrial complex I deficiency, Mitochondrial complex II defi-
ciency, and Mitochondrial complex III deficiency were selected as the targets and ana-
lyzed for further evaluation of the effectiveness of our method. Besides, two non-related 
diseases Precocious puberty and Celiac disease were selected as the contrasts. Table 2 
presents the similarity score of each disease pair measured by our method.

It is known that Mitochondrial complex I deficiency, Mitochondrial complex II defi-
ciency, and Mitochondrial complex III deficiency are all clinically belong to certain con-
genital disorder of metabolism. According to the international statistical classification 
of disease and related health problems (ICD-11) released by world health organization, 
these three diseases are all found to be the children of the term Inborn errors of energy 
metabolism. Moreover, in KEGG pathway maps, they all corresponds to pathway Oxi-
dative phosphorylation (hsa00190), while Mitochondrial complex II deficiency also cor-
responds to pathway Citrate cycle (TCA cycle, hsa00020) and Mitochondrial complex 
III deficiency corresponds to pathway Cardiac muscle contraction (hsa04260). As a 
contrast, precocious puberty is a type of endocrine disease and celiac disease is a kind 
of digestive system disease. Both of them have not been found to have any associations 
with the above three targeted diseases.

Discussion
Existing methods for calculating disease similarity most focus on semantic associations, 
disease gene associations, and gene functional networks. These methods mostly depend 
on ontology, which are not reliable due to the differences between disease terms from 
various databases. However, non-coding RNAs such as lncRNAs and miRNAs are also 
very important in understanding the mechanism of complex diseases. In this article, 
we proposed a novel method, ImpAESim, a framework integrating multiple networks 

Table 2 Simialrity Score of 3 disease pairs measured by ImpAESim

a Mitochondrial complex I deficiency
b Mitochondrial complex II deficiency
c Mitochondrial complex III deficiency

Group Disease-pair Score

Target MCDIa,  MCDIIb 0.67298

MCDI,  MCDIIIc 0.66728

MCDIII, MCDII 0.78042

Contrast1 MCDI, Precocious puberty 0.23109

MCDII, Precocious puberty 0.30141

MCDIII, Precocious puberty 0.33356

Contrast2 MCDI, Celiac disease 0.38606

MCDI, Celiac disease 0.3198

MCDI, Celiac disease 0.36077
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embedding to learn compact feature representations and disease similarity calculation. 
We first utilized three different disease-related information networks to build up a het-
erogeneous network, after a network diffusion process, RWR, a compact feature learn-
ing model composed of classic AE and improved AE is proposed to extract constraints 
and low-dimensional feature representations. We finally obtained an accurate and low-
dimensional feature representation of diseases, then we employed the cosine distance as 
the measurement of disease similarity. This work may facilitate relevant studies and can 
be further improved to attain more accurate results.

Conclusions
Complex diseases are not simply caused by a single gene, single mRNA transcript or 
single protein but the effect of their functional-collaborations. Measuring similarity 
between complex diseases has significant implications for revealing the etiology and 
pathogenesis of diseases and further research in the development of biomedicine, which 
can also support identifying potential therapeutic drugs for diseases.

It has been consentaneous that functional associations between disease-related 
genes and semantic associations can be applied to calculate disease similarity. 
Currently, more and more studies have demonstrated a profound involvement of 
non-coding RNA in the regulation of genome organization and gene expression. 
Non-coding RNA seem to operate at several biological levels such as epigenetic pro-
cesses that control differentiation and development. Thus, taking non-coding RNA 
into account can be useful in measuring disease similarities.

The results of ImpAESim lead us to a further direction in complex disease 
research. In this paper, we focus on the problem of computing disease similar-
ity with disease associated non-coding RNAs and compact feature learning, which 
can improve the accuracy of similarity calculation by solving the problem raised by 
sparse disease associations.

Methods
Work frame

ImpAESim contains two main parts, (1) multiple networks embedding based on 
random walk with restart (RWR) and Auto-Encoder, (2) disease similarity calcula-
tion. In the network embedding process, we first utilized a network diffusion algo-
rithm (RWR) to capture single network topological information and transform it 
into feature representations of each disease node. However, due to the noisy and 
high-dimensional character of biological network, we need further apply the Auto-
Encoder (AE), a deep-learning model to learn the features with extracted constraints 
from different input networks. Then the low-dimensional feature representations for 
each disease are obtained by integrating the constraints and hidden vector of the 
Auto-Encoder by the proposed improved AE model (ImpAE). Intuitively, the low-
dimensional vector representations encode the association information and topo-
logical context of each disease in the heterogeneous network. After obtaining the 
low-dimensional feature representation of diseases, ImpAESim calculates the cosine 



Page 7 of 13Zhang and Zang  BMC Bioinformatics           (2022) 23:89  

distance as the measurement of disease similarity. The workflow of ImpAESim is 
presented in Fig. 2.

Data collection

The heterogeneous network input to ImpAESim is constructed based on the following 
known biomedical entities: disease-gene associations, gene-miRNA associations, gene-
lncRNA associations. Thus, a total of four types of nodes and four types of edges, repre-
senting different diseases-related information, were collected from the public databases 
and used to construct the heterogeneous network for the following work. We collected 
disease-related genes from KEGG DISEASE Database, it contains 6310 gene-disease 
associations between 5236 genes and 1907 diseases. We obtained genes regulated by 
lncRNAs from LncRNA2Target [35]. LncRNA2Target is a database to provide a compre-
hensive resource of lncRNA-target relationships inferred from low-throughput experi-
ments or lncRNA knockdown or overexpression experiments followed by microarray/
RNA-seq. Associations between miRNA target genes and miRNAs are downloaded from 
miRDB database [36]. All the targets in miRDB were predicted by MirTarget, which was 
developed by analyzing thousands of miRNA-target interactions from high-throughput 
sequencing experiments. In addition, we excluded those isolated nodes which means 
we only keep the nodes with at least one edge in the network. Finally, we got 1677 dis-
eases, 2963 genes, 50 lncRNAs and 2728 miRNAs, with 4647 associations between dis-
eases and genes, 170,226 associations between diseases and miRNAs, 5640 associations 
between diseases and lncRNAs 660,401 associations between genes and miRNAs, 10,154 
associations between genes and lncRNAs.

Fig. 2 The pipeline of ImpAESim algorithm. This framework mainly contains two parts, multi-network 
embedding to obtain a compact low-dimensional vector feature representation to describe the topological 
properties for each disease and disease similarity calculation based on distance measurement. First 
we integrate three disease-related information sources to construct three input networks (A), then we 
run RWR to learn global topological properties of the networks. The output of RWR is fed to the classic 
Auto-Encoder (B) to calculate the constraints and obtain low-dimensional vectors of hidden layer. Then 
the low-dimensional vectors and constraints are fed to the ImpAE (C) to obtain the low-dimensional 
representation of disease features after concatenating the hidden vectors. Finally the combined 
representations of diseases can be utilized to measure disease similarity by calculating a cosine distance (D)
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ImpAESim algorithm

Network embedding and compact feature learning

To compile various curated disease-related information, we constructed a heteroge-
neous network which includes three diverse networks (disease-gene association net-
work, disease-lncRNA association network, and disease-miRNA association network, 
as shown in Fig. 3). First we utilized a network diffusion algorithm, random walk with 
restart, RWR, to capture the topological information of each network and transform it 
into feature representations of nodes. RWR introduces a pre-defined restart probabil-
ity at the initial node for every iteration, which can take into consideration of global 
topological connectivity patterns within the network to fully exploit the latent direct or 
indirect relations between nodes. Formally, let A denote the weighted adjacency matrix 
of a molecular interaction network with n diseases. Matrix B is defined as a transition 
matrix, in which  Bi,j denotes the probability of a transition from node i to node j, which 
means,

Then, pti denotes an n-dimensional feature vector of disease i in which each element 
stores the probability of a node being visited from node i after t iterations in the random 
walk process. Thus, the RWR process from node i can be defined as:

(1)Bi,j =
Ai,j

∑

j′ Ai,j′

Fig. 3 Different disease-related information networks feeding to RWR process
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where ei indicates the n-dimensional standard basis vector with ei(i) = 1 and 
ei
(

j
)

= 0, ∀i �= j , and ur denotes the pre-defined restart probability, after a range of iter-
ating process, we can obtain a stationary distribution p∞i  of RWR process.

Then each of the disease information network obtained after RWR process is fed into the 
original autoencoder. For a pair of disease nodes i and j, we first utilized Pearson correlation 
coefficient (PCC) to measure the pairwise similarity between them. Let xi and xj denotes 
the feature vectors of node i and j, the PCC of them can be indicated as:

Constraints extraction using ImpAE

After obtaining the distances between all pairs of disease nodes from each network, two 
thresholds for positive-link and negative-link are set to extract both constraints. Let T1 and 
T2 denote the positive-link threshold and negative-link threshold, respectively. Thus, if the 
PCC value of a pair of nodes is larger than T1 , the pair is considered as a positive-link con-
straint, and if the PCC value is smaller than T2 , the pair is considered as a negative-link 
constraint.

By compiling the both kinds of constraints, we can get a set of positive-link constraints 
which means each pair of nodes in it is strongly associated and a set of negative-link con-
straints which means each pair of nodes in it are unrelated. As a result, the size of constraint 
sets is much smaller than that of the original network. Thus, the constraints can be consid-
ered as the correlation of different networks for the following work.

Constraints integration using ImpAE

AE is a typical unsupervised deep learning model which aims to learn a new encoding rep-
resentation of input data with a superiority in dimensionality reduction. In this work, we 
proposed a novel optimized autoencoder model named ImpAE to learn the low-dimen-
sional feature representation based on integrating correlations of different networks. The 
input of ImpAE includes low-dimension feature vector and constraints obtained from for-
mer layer. Because the constraints are derived from different networks, before feeding into 
the ImpAE, we need to take the intersection of the constraints in case that they may conflict 
with each other. As shown in Fig. 1, the output of RWR process is first input to original AE, 
then the output of original AE is fed to ImpAE.

Original autoencoder model is composed of two parts, encoder and decoder. The 
‘encoder’ operation converts the original high-dimensional data to low-dimensional fea-
ture vectors, and the ‘decoder’ operation recovers the input data from the low-dimensional 
feature vectors. The output low-dimensional feature vectors are considered as a compact 
representation of the original input data. Let xi be the ith input vector indicating the node 
representation of the network, and f, g be the activation functions of the hidden layer and 

(2)pt+1
i = (1− ur)Bp

t
i + urei

(3)

PCCxi ,xj =
cov

(

xi, xj
)

σxi · σxj

=

∑

(xim − xi)
∑

(

xjm − xj
)

√

∑n
m=1 (xim − xi)

2
·

√

∑n
m=1

(

xjm − xj
)2
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the output layer, respectively. Then the output representation of hidden layer and output 
layer can be indicated as follows,

where Ω = (W, b, W ′ , d) are the parameters, f and g are activate functions, here we chose 
the sigmoid function. Then the optimization goal is to minimize the reconstruction error 
between the reconstructed vector yi and the input vector xi,

After obtaining the constraints from the original AE, the low-dimensional feature vec-
tors and constraints are fed into ImpAE to learn the new representation of the feature 
vectors. Intuitively, if node i node j are a pair of positive-link constraint, the distance 
between them should be smaller after encoding. On the contrary, if they are a pair of 
negative-link constraint, the distance between them should be larger after encoding. Let 
hi and hj be the output of encoding operator in the AE, which represent the low-dimen-
sional feature vectors of disease i and j. let xi and xj denotes the original feature vectors 
of disease i and j which are the input of the encoding operator. Let d(hi, hj) and d(xi, xj) 
indicate the error score between disease i and j in the encoding space and original space, 
respectively. From the hypothesis we mentioned above, d(hi, hj ) should be smaller than 
d(xi, xj) if node i and j are a pair of positive-link constraints, d((hi, hj) should be larger 
than d(xi, xj) if node i and j are a pair of negative-link constraints. Hence, we add a pen-
alty on the loss function if disease pair (i, j) is a positive-link constraint and we add a 
reward on the loss function if disease pair (i, j) is a negative-link constraint. Therefore, 
the loss function for modeling constraints is defined as follows:

where P, N indicates the constraints sets of positive-link constraints and negative-link 
constraints, respectively. γ1, γ2 are the weight coefficients restraining the influence of 
penalty and reward, respectively.

To integrate the constraints we proposed an improved autoencoder model named 
ImpAE, which combined Eqs.  (6) and (7) then jointly minimizes the following loss 
function:

(4)hi = f (Wxi + b)

(5)yi = g
(

W ′hi + d
)

(6)argmin
ω∈�

n
∑

i=1

∥

∥yi − xi
∥

∥

2

2

(7)

Lossc = γ1
∑

(i,j)∈P

d
(

hi, hj
)

−

∑

(i,j)∈N

d
(

hi, hj
)

= γ1

n
∑

i,j=1

Pi,j
∥

∥hi, hj
∥

∥

2

2
− γ2

n
∑

i,j=1

Ni,j

∥

∥hi, hj
∥

∥

2

2

(8)arg min
ω∈�

n
∑

i=1

∥

∥yi − xi
∥

∥

2

2
+ γLossc
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The loss function is constituted of two parts, the first part measures the squared error 
between output and input node features, the second part measures the error score of 
constraints in the hidden layer.

Disease similarity calculation

After obtaining low-dimensional feature representations of diseases by ImpAE, we cal-
culated the disease similarity defined as the measurement of cosine distance of their fea-
ture vectors Wdi =

{

W1,1,W1,2, . . . ,W1,i, . . . ,W1,N

}

 as following:

The ImpAESim algorithm

The ImpAESim algorithm mainly contains two parts, a multi-network embedding algo-
rithm for compact feature learning and a disease similarity calculation method based on 
distance measurement of feature vectors. In the compact feature learning part, we first ran 
the RWR process on each of the disease-related information network to learn the topolog-
ical structure information, then we trained the original AE and ImpAE model to learn the 
low-dimensional representations of disease features. As the iterations increase, the model 
tends to be stable eventually. Then the cosine distance of disease feature vectors is com-
puted as the disease similarity. The pseudocode for ImpAESim is shown in Algorithm 1.

(9)Sim(d1, d2) =

∑N
i=1W1,i ·W2,i

√

∑N
i=1W

2
1,i

√

∑N
j=1W

2
2,j
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