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Incretin peptides (glucagon-like peptide-1 (GLP-1) and

glucose-dependent insulinotropic polypeptide (GIP)) are

secreted from enteroendocrine cells in the intestinal epithelium,

and help to coordinate metabolic responses to food ingestion.

A number of molecular mechanisms have recently been

defined that underlie carbohydrate, lipid and protein sensing in

gut endocrine cells. Knockout mice lacking sodium glucose

tranporter-1 (SGLT-1) or the short chain fatty acid sensing

receptor FFAR2 (GPR43), for example, have highlighted the

importance of these molecules in incretin secretion. This review

outlines our current understanding of sensory pathways in

incretin secreting cells and highlights the therapeutic potential

of targeting them for the development of novel therapies for

obesity and diabetes.
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Introduction
The gastrointestinal (GI) tract, in addition to digesting

food and absorbing the available nutrients, releases hor-

mones with important physiological roles in regulating

plasma glucose levels, gut motility and satiety. Amongst

these, glucagon-like peptide-1 (GLP-1) and glucose-de-

pendent insulinotropic polypeptide (GIP) are known as

incretins, based on their ability to enhance glucose-stimu-

lated insulin secretion. The possibility of stimulating the

release of endogenous incretins as a therapeutic strategy for

the treatment of type 2 diabetes (T2DM) and obesity has

led to heightened interest in the physiology of enteroen-

docrine cells and the gut-brain-pancreatic axis. This review
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will focus on our current understanding of the enteroendo-

crine cell populations known as K-cells and L-cells, which

primarily secrete GIP and GLP-1, respectively.

Enteroendocrine cells have historically been difficult to

study as they are found scattered within the intestinal

epithelium, but recent advances in labelling specific cell

populations in transgenic mice with fluorescent reporters

have enabled live cell identification and purification. As a

consequence, there are increasing numbers of published

studies analysing the molecular events underlying stimulus

secretion coupling in enteroendocrine cell types. An unex-

pected outcome of these investigations has been the

observation that enteroendocrine cells are more plurihor-

monal than previously thought. Although L-cells have long

been known to produce peptideYY (PYY) in addition to the

products of proglucagon processing (GLP-1, GLP-2 and

oxyntomodulin), it was surprising to find that most K-cells

and L-cells also produce cholecystokinin (CCK) [1,2].

Many mechanisms described here might also therefore

play a role in the secretion of other enteroendocrine

hormones, although the relative contributions of different

signalling pathways likely differ between cells and along

the length of the GI tract. Thus, whereas GIP secreting K-

cells are predominantly located in the duodenum and are

exposed to nutrients soon after food ingestion, GLP-1 is

also produced more distally where its secretion may be

influenced by slowly digested macronutrients and products

of bacterial fermentation (Figure 1).

L-cells and K-cells, like many of the enteroendocrine

family, consist of an apical pole with microvilli facing

the gut lumen and a broader base where peptides are

released, and it is believed that peptide secretion is a

result of direct sensing of nutrients in the lumen [3].

Recent work has begun to elucidate the mechanisms

underlying nutrient sensing and peptide release, and in
vitro studies suggest that L-cells are electrically active,

exhibiting action potentials and calcium transients in

response to glucose [4]. Whilst minor differences in

glucose sensing by K-cells have been described [5], many

molecular mechanisms described below are active in GIP

and GLP-1 secreting cells and are likely also to be

involved in the release of other enteroendocrine hor-

mones. However, to what extent the different identified

sensory pathways contribute to nutrient detection in vivo
remains to be fully established.

Nutrient signalling
Carbohydrate sensing

Glucose is a robust stimulant of incretin release and

several pathways of carbohydrate sensing have been
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Figure 1
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Model of the molecular mechanisms involved in the secretion of incretin peptides from enteroendocrine cells. Stimulation of nutrient and non-nutrient

pathways ultimately leads to an increase in intracellular calcium via G protein coupled pathways or membrane depolarisation, facilitating the release of

incretin peptides. The effect of incretin peptides on orchestrating the physiological response to nutrient intake, such as potentiating glucose-

dependent insulin secretion, is facilitated through peptide uptake into blood vessels of the portal vein and/or through direct activation of neighbouring

neuronal afferents.
proposed. In the upper small intestine, there is good

evidence that GLP-1 and GIP release are triggered by

Na+ coupled glucose uptake mediated by the brush

border sodium glucose cotransporter (SGLT1). Small

transporter-associated currents appear sufficient to drive

membrane depolarisation, in turn triggering electrical

activity, voltage-gated calcium entry and peptide release

[6�]. This idea is supported by the demonstration that

glucose-dependent GLP-1 and GIP secretion in vitro are

prevented by pharmacological SGLT1 inhibitors [7�] and

that SGLT1 knockout mice have impaired GIP and

GLP-1 release early after glucose gavage [8]. By contrast,

plasma GLP-1 levels measured later after glucose admin-

istration appeared markedly elevated in mice lacking

SGLT1, suggesting that attenuated glucose absorption

in the upper small intestine results in increased delivery

to the L-cell richer distal gut, where alternative sensing

pathways may be recruited [9]. One hypothesis is that an
www.sciencedirect.com 
increased distal glucose load facilitates microbial fermen-

tation and the production of short chain fatty acids, which

in turn activate L-cells via alternative signalling pathways

[10]. SGLT1 independent glucose-sensing pathways

have, however, been identified in enteroendocrine cells,

and may contribute to the delayed elevation of GLP-1

levels in SGLT1 knockout mice. L-cells and K-cells

express glucokinase and ATP sensitive potassium (KATP)

channel subunits, providing the machinery to couple

electrical activity to glucose metabolism. This pathway

seems not to be responsible for the peak incretin levels

detected early after glucose ingestion, which were unaf-

fected in humans treated with KATP channel inhibitors

[11]. Measurement of L-cell glucose concentrations

suggests that although the SGLT1-mediated Na+ flux

is large enough to drive membrane depolarisation, the

accompanying monosaccharide flux is insufficient to alter

intracellular glucose concentrations. L-cells have a high
Current Opinion in Pharmacology 2013, 13:922–927
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phloretin-sensitive glucose flux, however, suggesting that

facilitative glucose transporters could equilibrate cyto-

plasmic with basolateral glucose levels, and that L-cell

metabolism would predominantly be influenced by glu-

cose arriving from the plasma rather than luminal glucose

direction [7�]. The interplay between plasma glucose,

metabolism and GLP-1 secretion remains, however, an

enigma. A third, and highly controversial pathway links

enteroendocrine secretion to activation of sweet taste

receptors. This pathway utilises a G protein coupled

receptor heterodimer (T1R2/T1R3) as the detector of

glucose and other sweeteners and couples through the G

protein a-gustducin. a-gustducin and T1R3 have been

detected in the gut, and in some studies were found

colocalised with GLP-1 and GIP [12–14], but several

findings suggest they may not themselves act as the L-

cell glucose sensor. Convincing arguments against an

important role of sweet taste receptors are the multiple

demonstrations that ingestion of glucose, but not artificial

sweeteners, triggers elevation of plasma incretin levels in

rodents [15] and humans [16].

Lipid sensing

Products of fat ingestion have not been reported to alter

L-cell electrical activity, but are rather thought to be

sensed by G protein coupled receptors (GPCRs). In L-

cells, several GPCRs have been implicated in lipid

signalling, such as GPR120 [17], GPR119 [18,19] and

FFAR1 (GPR40) [20]. FFAR1 and GPR120 respond to

long-chain and medium-chain fatty acids, and are

thought to be Gq-coupled, activating phospholipase C

and thereby triggering IP3 mediated Ca2+ release and

secretion of peptides [21�]. Other lipids that rise in

concentration in the intestine postprandially include 2-

monoacylglycerols, which are produced from triglycer-

ides by lipases and act as ligands for GPR119 [22], which

is expressed both in K-cells and L-cells [4,5,19]. GPR119

is preferentially Gs-coupled and ligand binding results in

activation of adenylyl cyclase, an increase in cAMP levels

and enhanced L-cell secretion [19,23]. Alternative lipid

sensing pathways underlying GLP-1 secretion, involving

uptake by fatty-acid transport protein (FATP4) [24] and

activation of atypical protein kinase C [25] have also been

described.

SCFA are produced in the colon during bacterial fermen-

tation of dietary fibre or, less usually, of non-absorbed

carbohydrate. They may provide one link between fibre

content, the gut microbiome and L-cells [26,27], acting

through two GPCRs, FFAR2 and FFAR3. FFAR2 can

couple to Gq-signalling pathway and Gi/o-signalling path-

way, whilst FFAR3 seems to lack a Gq component [28�]. A

role for FFAR2 in GLP-1 secretion was suggested by the

findings that SCFA triggered Ca2+ transients in primary

L-cells and that circulating GLP-1 levels and SCFA-

dependent GLP-1 release in vitro were impaired in mice

lacking FFAR2 [29].
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Protein sensing

Although protein digestion is an effective stimulus of

GLP-1 release, the optimal size of the digestion products

for triggering secretion remains uncertain. Several amino

acids have been shown to stimulate GLP-1 release in vitro
[30,31]. The effectiveness of L-Gln has been attributed to

its ability both to trigger membrane depolarisation via
electrogenic Na+-dependent amino acid uptake, and to

elevate cytoplasmic cAMP concentrations, perhaps

though activation of an unidentified Gs-coupled GPCR

[30,31]. Ingestion of L-Gln also stimulates GLP-1 release

in healthy and obese and diabetic humans [32]. GPCRs

have been linked to the sensing of other luminal amino

acids by enteroendocrine cells: GPRC6A to ornithine [33]

and the CaSR to phenylalanine [34]. The sensing of larger

protein digestion products simulated by, for example

meat hydrolysate has been linked to activation of mito-

gen-activated protein (MAP) kinases, but the receptors

involved are less clear [35,36].

Non-nutrient pathways

GLP-1 secretion is not only stimulated by nutrients, but

also by other luminal components. Enteral progesterone

has been implicated in incretin secretion through acti-

vation of plasma membrane receptors [37]. Bile acids are

also involved in the integration of metabolic signals and

have been implicated in fibroblast growth factor 15/19

secretion from the distal gut downstream of the well-

characterised nuclear hormone receptor FXR [38]. In L-

cells, however, bile acids appear to stimulate GLP-1

secretion through activation of the predominantly Gs

coupled receptor TGR5 (GPBAR) [39,40]. Recently,

administration of bile acids has been shown to have

positive effects on glucose homeostasis and plasma

GLP-1 levels in human volunteers [41,42]. Interestingly

plasma bile acid levels increase after bariatric surgery,

and bile acid stimulated GLP-1 secretion might con-

tribute to the associated improvements in metabolic

control [43].

Inhibitory pathways

In addition to stimulatory pathways enhancing incretin

secretion, enteroendocrine cells also express GPCRs

coupled to Gi proteins with inhibitory functions. K-cells

and L-cells, for example, express Gi-coupled somato-

statin receptors. Somatostatin impairs the release of

GLP-1 and GIP, and in enteroendocrine cell lines inhibits

forskolin-stimulated cAMP transients, consistent with the

recruitment of a Gi coupled signalling pathway [44,45].

Enhanced somatostatin release is a likely pathway under-

lying the observed inhibition of GLP-1 secretion in

patients treated with GLP-1 mimetics [46]. The Gi-

coupled endocannabinoid receptor Cnr1 has also been

linked to modulation of incretin hormone secretion. Cnr1

is expressed at higher levels in K-cells than L-cells and

preferentially inhibits secretion of GIP rather than GLP-1

[44].
www.sciencedirect.com
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It is becoming clear that enteroendocrine cells receive

signals from multiple inputs, both from ingested nutrients

and components in the gut lumen, and also from other

enteroendocrine cells and tissues. These inputs involve

on the one hand electrogenic pathways, through co-trans-

port of Na+, and the other hand GPCRs and classical

downstream G protein coupled pathways. It is hoped that

a greater understanding of the physiological signalling

pathways employed by enteroendocrine cells in vivo
could be exploited to target the cells for the treatment

of T2DM and obesity.

Therapeutic potential and future possibilities
On the basis of the fundamental importance of incretins

for glucose homeostasis, therapies based on activating the

incretin axis have proved highly effective in treating

T2DM. Stable injectable GLP-1 mimetics and inhibitors

of dipeptidyl peptidase 4 (DPP4), which rapidly inacti-

vates circulating GLP-1, are licensed for the treatment of

T2DM and, in the case of GLP-1 mimetics, offer

additional benefits such as weight loss and cardioprotec-

tion [47,48]. Therapies based on targeting endogenous

enteroendocrine cells, however, could potentially offer

the benefits of releasing more than one peptide, thus

activating appetite suppressants as well as insulinotropic

pathways. Several candidate enteroendocrine targets, in-

cluding FFAR1, GPR119 and GPR120, are currently

under investigation. Amongst these, the FFAR1 agonist

TAK-875 targets pancreatic b-cells as well as L-cells and

exhibits favourable glycaemic effects in patients with

T2DM [49], although the relative contribution of

GLP-1 may be minor. Agonists for GPR119 showed

encouraging efficacy in animal models, but had limited

glucose lowering and incretin activity in humans, for

reasons that remain to be established [50,51]. Somewhat

surprisingly, a dual acting SGLT1/2 inhibitor has recently

been shown to cause elevation in GLP-1 and PYY levels

in rodents and human patients with type 2 diabetes [9,52],

thus mimicking the effect of SGLT1 knockout, perhaps

by feeding the gut microbiome and enhancing SCFA

production in the L-cell rich distal gut [10]. It seems

likely that the markedly elevated post-prandial GLP-1

and PYY levels that follow some forms of bariatric surgery

[53] are similarly linked to increased delivery of nutrients

to the distal gut, and have dramatic effects on appetite

and T2DM resolution [54,55,56��,57,58]. Mimicking the

effects of bariatric surgery by medical interventions

would be a major therapeutic breakthrough.

Conclusion
The enteroendocrine system plays a fundamental role

in orchestrating post-prandial physiology, and is central

to the regulation of glucose homeostasis and satiety.

The success of current GLP-1-based therapies and the

dramatic effects of bariatric surgery on insulin secretion

and appetite greatly support the future development of

therapeutic strategies that exploit targets upstream of
www.sciencedirect.com 
enteroendocrine secretion as novel treatments for

T2DM and obesity. Despite the notable progress made

to date in dissecting the mechanisms of stimulation-

coupled enteroendocrine secretion, there are currently

no drugs clinically approved that directly target

endogenous enteroendocrine cells. The unexpected

success of bariatric surgery in treating T2DM, however,

highlights the benefits that could be achieved through a

gut-based therapeutic approach.
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