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Abstract: Public key algorithms based on quasi-cyclic binary moderate-density parity-check codes
(QC-MDPCs) and QC low-density parity-check codes (QC-LDPCs) codes for key encapsulation
and encryption submitted to the NIST post-quantum competition (Bit Flipping Key Encapsulation
(BIKE), QC-MDPC KEM, LEDA) are vulnerable against reaction attacks based on decoding failures.
To protect algorithms, authors propose to limit the key usage, in the extreme (BIKE) to only use
ephemeral public keys. In some authenticated protocols, we need to combine each key with a
signature, which can lead to increased traffic overhead, especially given the large signature sizes of
some of the proposed post-quantum signature schemes. We propose to combine ephemeral public
keys with a simple Merkle tree to obtain a server authenticated key encapsulation/transport suitable
for TLS-like handshake protocols. This allows a very simple public key verification on the client,
leading to efficient protocols suitable for Internet of Things applications.
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1. Introduction

The fast progress of quantum computing brings new significant threats to Internet of
Things applications. Standard symmetric cryptographic algorithms need to increase key
sizes to resist attacks based on the applications of Grover’s algorithm [1]. While the current
encryption standard AES should still be secure [2], this might not hold in general for many
lightweight IoT ciphers, such as [3], with a low number of AND gates, due to (quantum)
algebraic attacks [4].

An even worse situation happens when considering public key cryptography, as most
of the current cryptographic primitives such as RSA, DSA, ECDSA, the Diffie–Hellman
protocol, and others are considered broken when the attacker has access to a quantum
computer. This is due to the polynomial-time factoring algorithm of Peter Shor [5] and sub-
sequent algorithms that attack the discrete logarithm problem in finite fields and elliptic
curve groups. Fortunately, there is a large number of public key algorithms that can resist
quantum attacks, such as the McEliece algorithm [6]. The area of cryptography that studies
quantum-resistant algorithms is called post-quantum cryptography.

Note that there is still a large number of practical considerations when trying to adopt
post-quantum algorithms for practical areas of interest, especially for IoT applications.
Algorithms, such as McEliece, have often large keys and unbalanced performance for
encryption/decryption or signing/verification [7]. There is also a concern for the secure
implementation of such algorithms that do not leak side-channel information. We study
such post-quantum applications [8] in the area of secure group establishment [9]. In the
current paper, we focus on the question of post-quantum public key verification.

The recent NIST call for public key post-quantum cryptographic algorithms [10] has
motivated many researchers to propose new cryptographic schemes that are believed to be
secure against quantum adversaries. One of the proposed candidates for key encapsulation
is a suite of algorithms named Bit Flipping Key Encapsulation (BIKE) by Aragon et al. [11].
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In the third round of the competition, it was selected in the suite of “Alternate Candidates:
Public key Encryption and Key-establishment Algorithms” [12].

BIKE algorithms are based on quasi-cyclic binary moderate-density parity-check codes
(QC-MDPCs). A basic QC-MDPC KEM was also proposed by Yamada et al. [13]. Another
proposed system, LEDA by Baldi et al., is based on QC low-density parity-check codes
(QC-LDPCs). The class of algorithms based on QC-LDPC and QC-MDPC can achieve
post-quantum security with parameters similar to the currently used RSA cryptosystem.

One of the main problems with LDPC/MDPC based designs is the probabilistic nature
of decoding algorithms. The non-negligible decoding failure rate can lead to various attacks
that can derive the secret key, such as [14–16]. To prevent these attacks, BIKE relies on
generating one time ephemeral keys. The authors of QC-MDPC KEM also recommend
using only ephemeral keys. LEDA limits the number of uses for each key pair, but the
number of key uses might be lower than originally proposed due to new attacks, such as
Fabsic et al. [17].

In the TLS 1.3 handshake protocol [18], an initial session key is negotiated in key
exchange using ephemeral public keys. The handshake is authenticated by the server
signing protocol messages and verified by the client using the server’s certificate. Instead
of (EC)DHE, a post-quantum public key cryptosystem or KEM with ephemeral keys, such
as BIKE, QC-MDPC KEM, or LEDA, can be used to transport initial key shares to provide
post-quantum security. To fully migrate TLS handshakes to the post-quantum era, we also
need to replace server-side signatures and certificates with quantum-resistant routines.
The signature structure can be compatible with the previous TLS 1.2 handshake with
signed keys.

There are multiple candidates for post-quantum signatures with varying public key
and signature sizes. In a typical handshake scenario, both a public key and a signature
need to be sent. Among balanced-size algorithms, the Falcon signature [19] scheme (lattice-
based) provides Level-1 security with a 897 byte public key and a 617 byte (on average)
signature size. Short signatures are achieved by multivariate proposals, led by HiMQ-
3F [20], with 67 bytes needed for signature and 100,878 bytes for the public key. On the
opposite side, hash-based signature schemes provide short public keys and long signatures,
led by Sphincs+ [21] with a 32 byte public key and an 8080 byte signature.

Hash-based signature schemes are based on one time signatures (OTSs) that are
combined with Merkle trees [22] or Goldreich trees [23] to provide multiple-time signatures.
Our observation is that when we use ephemeral public keys, we already have a single-use
key pair with its corresponding secret key. Thus, we do not need to produce a specific one
time signature; we only need to pre-authenticate the sequence of public keys. We propose
to use Merkle trees with leaves directly based on hashes of (precomputed) ephemeral public
keys. An l level Merkle tree will allow us to authenticate 2l ephemeral trees, with the public
key size equal to the size of a single hash value and another l− 1 hash value needed for the
signature (to store the path through the Merkle tree). For example, an l = 20 level Merkle
tree will provide authentication for 220 ephemeral keys, with the total signature + public
key (PK) size for a 128 bit security level equal to 640 bytes. This comes at the additional
cost of storing the Merkle tree on the server with 2l hashes (32 MB in the previous setup).

If the number of one time certificates is not sufficient, with PKI support, the root
of the Merkle tree can be signed by the CA with an algorithm with a different trade-off.
As the public key of the CA can be pre-installed in the client device, the CA’s algorithm
can have a short signature size and a large public key. Different trade-offs with the sizes of
Merkle trees and certification paths can be made for different usage scenarios (depending
on the number of accesses, available storage, tree precomputation time, etc.), e.g., we can
construct another simple Merkle tree on top of 220 OTSs on the server as a Level 1 local
certification authority (whose root is further signed by a real authority). This will provide
a flexible server setup with 240 usable keys.

On the other hand, in IoT applications, we do not need an extra PKI layer to authenti-
cate the keys, as the Merkle tree root can be preinstalled in the client devices at a negligible
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cost. As the root of the tree is a single hash, it suffices to store 32 bytes if the 128 bit security
level is sufficient.

The stateful authentication of public keys based on a Merkle tree retains the forward
secrecy because we can derive private keys on the fly from a secret seed value using a
one way function (old private keys are not needed anymore after they are used). We can
modify the scheme to become stateless if we relax conditions on the key reuse (e.g., for
use with the LEDA cryptosystem [24]). In this case, however, we will lose the forward
secrecy, because we must store the private keys, or the pre-key, that can be used to derive
any private key authenticated in the Merkle tree.

2. Preliminaries

We work in the client-server scenario typical for Internet communication. We rely on
standard cryptographic tools and primitives:

• Public key cryptosystem with a pair of keys: We are only interested in key generation
and authentication. The KeyGen primitive for a cryptosystem should efficiently
generate a pair (SK, PK) (from some randomness; see further), where SK denotes a
secret key, and PK a public key. We suppose that to initiate secure communication
between the client and server, it is sufficient to provide a mechanism to transport the
authenticated public key of the server to the client. We are not interested in further
protocols that realize the rest of the secure channel establishment, etc.

• The KeyGen primitive can be based on a deterministic algorithm KDF : Zn
2 → K,

that computes keypair (SK, PK) from a bitstring k of length n. We call k a pre-key.
In the classical setting, n = λ, where λ is a security level, but in the post-quantum
setting, we use pre-keys n = 2λ to prevent Grover’s algorithm-based speedup.

• A truly random pre-key is required for a secure public key system. In our scheme, we
use a single master (secret) pre-key that is generated as a true random bit-string. All
other pre-keys are derived with a one way function OWF : Zn

2 → Zn
2 .

• In the construction of public key authentication, we also use a specific cryptographi-
cally secure hash function denoted by hash (in practice, instantiated by the standard
SHA-2 or SHA-3). Both OWF and KDF can be implemented with the correct use
of the same hash function (or by a different specific mechanism, as required by the
system/protocol).

3. Merkle Tree

The Merkle tree was introduced by Merkle [22] to allow signing arbitrary documents
with any one way function F. It is the basis of post-quantum secure hash-based signatures.
The Merkle tree is used in conjunction with one time signature (e.g., Lamport [25] or
Winternitz [26]) and extends them for an arbitrary number of uses.

We do not require a full hash-based signature scheme in our use case. Instead, we use
a simple Merkle tree method. A Merkle tree is based on a binary tree with l levels. Let h1
denote the root of the tree. Let each node hi have a left sub-node h2i and a right sub-node
h2i+1. The Merkle tree is a defined by marking each node of the tree by a hash of subnodes
as follows: hi = hash(h2i|h2i+1).

Our goal is to use the Merkle tree for authentication. For this purpose, it is sufficient
to make the root node h1 publicly known. Now, we can prove for any hj that its associated
value is indeed a part of the precomputed Merkle tree without publishing the whole Merkle
tree. Indeed, for every j, there exists a path from h1 to hj in the Merkle tree. Suppose that
this path is h1, hi1 , hi2 , . . . , hj. To authenticate the hash value associated with hj, we need
to publish hash values only for those nodes that were used to construct the hash values
of parent nodes on this path and that are not included in this path. Thus, the verification
string of node hj consists of hashes associated with each missing sub-node h2i or h2i+1
required to compute the hi associated with nodes on the verification path up to the Merkle
tree root h1.
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Suppose that hi1 = h2. We can verify that h2 is indeed in the Merkle tree by providing
a hash value associated with h3 and checking that h1 = hash(h2|h3). As h1 is publicly
known, we verify h2 and can continue with verification recursively, using h2 as the root
node for recursive verification of its subnodes. An example of a Merkle tree verification is
depicted in Figure 1.

Root
h1

h2 h3

h4 h5

h10 h11

h5 = H(h10, h11)

h2 = H(h4, h5)

h1 = H(h2, h3)

Figure 1. Example of a relevant part of a Merkle tree. The validity of h10 can be verified, if we provide
hashes h11, h4, and h3: Firstly, we compute h′5 = hash(h10|h11), and then, h′2 = hash(h4|h′5). Finally,
we verify that h1 = hash(h′2|h3).

Note that the Merkle tree is essentially infinite. In practice, we use a fixed number
of levels, say l. Then, the final leaves have indexes between 2l and 2l+1 − 1 (here, l = 0,
meaning a degenerate tree with only the root node). The verification starts from the bottom
of the tree (on level l). For verification purposes, we need to calculate hashes on the
path from the provided verification string of nodes directly connected to the path. Each
verification string of individual nodes on level l consists of just l hashes, instead of the
whole Merkle tree containing 2l hashes.

4. Authenticating Ephemeral Keys with the Merkle Tree

In the TLS protocol, the server during handshake authenticates itself with a server
certificate. This contains a signed server public key. Depending on the chosen suite of
algorithms, the server public key is either used to encrypt the client secret, or it is only
used to authenticate the ephemeral key used for Diffie–Hellman key exchange.

Current standard algorithms such as RSA or ECDHE are unfortunately not quantum-
resistant and should be replaced by suitable post-quantum cryptographic schemes. The
NIST post-quantum competition selected so far some suitable algorithms and their alter-
natives, which can replace current algorithms in TLS and other cryptographic protocols.
The TLS 1.3 goal of forward secrecy can be achieved by using standardized post-quantum
KEM with ephemeral keys. Such keys however still need to be authenticated by the server’s
certificate, which also needs to be quantum-resistant.

Post-quantum signature schemes have significant disadvantages over currently used
RSA or (EC)DSA signatures, namely the large public key size or signature size.

Our main idea is to replace full digital signatures used in ephemeral server key au-
thentication with the use of the Merkle tree. We can understand this as a problem of
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authenticating a set of public keys, each of which can be used only once. The correspond-
ing secret keys are never revealed, but their ownership is verified in the course of the
underlying protocol.

The set of private keys can be randomly generated and stored in a centralized key
store on a server. A more efficient option is to derive private keys from some master secret
(a secret pre-key). In the pre-key approach, we can derive consecutive secret keys from
the pre-keys chained in a sequence with a one way function OWF that derives the next
pre-key from the previous. Alternatively, we can derive each secret key from a master
pre-key and an index in the set of keys. The sequential generation has the advantage of
forward secrecy: the server can safely remove pre-keys for the ephemeral keys that were
already used. However, the price of forward secrecy is the issue with concurrency and
state-keeping. The index method allows a (pseudo-)random selection of public keys (with
no state and parallel access to the server).

4.1. Sequential Tree Authenticated Ephemeral Keys

To generate an authenticated set of ephemeral keys, the server does the following
precomputation:

1. Generate a random secret seed k0 ∈ Zλ
2 .

2. Use a one way function OWF to define a sequence of derived pre-keys ki = OWF(ki−1).
3. Generate 2l ephemeral key pairs (SKi, PKi) from pre-keys ki using the defined

KDF function.
4. Compute the hashes h2l+i = hash(PKi).
5. Compute the rest of the Merkle tree with hj = hash

(
h2j|h2j+1

)
.

6. Publish (signed by the CA or delivered to devices by a trusted channel) the root h1.
7. Store as an initial (secret) state: S = (0, k0) and the hash path from h2l to the root.

The main idea of the algorithm with precomputed storage structures is depicted in
Figure 2.

Keys

Merkle Tree
Rooth1

h2 h3

h4 h5

h10 h11

h5 = H(h10, h11)

h2 = H(h4, h5)

h1 = H(h2, h3)

h8 h9

h4 = H(h8, h9)

SK1 PK1 SK2 PK2 SK3 PK3 SK4 PK4

k0 k1 k2 k3 k4

Figure 2. Example of a relevant part of a sequential key structure and Merkle tree authenticator built
on top of the precomputed public key hashes.

To initiate the KEM, the server does the following:

• Sends current public key PKi along with the verification string for the path in the tree
from h2l+i to the root.

To verify the authenticity of the public key, the client does the following:
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• Verifies that h2l+i = hash(PKi) and that for each hash in the path to the root:
hj = hash

(
h2j|h2j+1

)
.

After the handshake part is finished and keypair (SKi, PKi) is no longer needed, the
server prepares a new key pair from state S = (i, ki):

1. Derive the next ki+1 = OWF(ki).
2. Recompute the hash path.
3. Store a new (secret) state: S = (i + 1, ki+1) and the hash path from h2l+i+1 to the root.

To recompute the hash path, there are two possibilities. The first option is that
the whole Merkle tree is stored on the server. Note that the storage requirements grow
exponentially with the height of the tree l. When we store the whole tree, generating a
new signature is trivial. We just need to traverse the tree and look up the hashes that
complement the path.

We can save some storage space by recomputing the required parts of the Merkle
tree after the key use. We only need to store the current ki and the path from h2l+i to the
root. All the left-hand sub-nodes for the path from h2l+i+1 were already computed when
verifying the path from h2l+i. Only the right-hand child nodes need to be recomputed,
similar to the original Merkle tree precomputation. In this case, we never need to store k j
with j < i; thus, old seed values can still be removed (to preserve forward secrecy).

Thus, to save storage, we do not need to store the (remaining) Merkle tree and the
associated keys. On the performance side, this means that after each ephemeral key is used,
the server needs to recompute all the remaining keys and the verification path for the next
ephemeral key. However, if the key generation is too slow, we might prefer a compromise:
store the remaining key-pairs, but recompute hash paths for each new verification path.
This option, however, is more vulnerable to data-retention attacks and does not save much
space (less than half of the space, depending on the ratio between ephemeral key size and
hash size). For some algorithms, such as BIKE-2 [11], tree generation can be combined with
more efficient batch key generation.

4.2. Parallel Tree Authenticated Ephemeral Keys

In some sensor and IoT applications, as well as other scenarios, values encrypted in
the past are not of much use. In such a case, forward secrecy is not needed. Furthermore,
we might also relax the key reuse requirements and only demand that one “ephemeral”
key is not used too often (key reuse limitation).

In such cases, we can use a more efficient version of the tree authentication as follows.
To generate an authenticated set of ephemeral keys, the server does the following

precomputation:

1. Generate a random secret seed k0 ∈ Zλ
2 .

2. Define pre-keys with ki = OWF(k0|i), for i = 1, 2, . . . , 2l .
3. Generate 2l ephemeral key pairs (SKi, PKi) from pre-keys ki using the defined KDF

function.
4. Compute the hashes h2l+i = hash(PKi).
5. Compute the rest of the Merkle tree with hj = hash

(
h2j|h2j+1

)
.

6. Publish (signed by CA or delivered to devices by a trusted channel) the root h1.

The main idea of the algorithm with precomputed storage structures is depicted in
Figure 3.

To initiate the KEM, the server does the following:

1. Selects random i from the set {1, 2, . . . , 2l}.
2. Computes pre-key ki = OWF(k0|i).
3. Generates ephemeral key pairs (SKi, PKi) from pre-key ki using the defined KDF

function.
4. Sends public key PKi along with the verification string for the path in the tree from

h2l+i to the root.
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To verify the authenticity of the public key, the client does the following:

1. Verifies that h2l+i = hash(PKi) and that for each hash in the path to the root:
hj = hash

(
h2j|h2j+1

)
.

Keys

Merkle Tree
Rooth1

h2 h3

h4 h5

h10 h11

h5 = H(h10, h11)

h2 = H(h4, h5)

h1 = H(h2, h3)

h8 h9

h4 = H(h8, h9)

SK1 PK1 SK2 PK2 SK3 PK3 SK4 PK4

k0

k1 k2 k3 k4

1 2 3 4

Figure 3. Example of a relevant part of a parallel key structure and Merkle tree authenticator built on
top of the precomputed public key hashes.

In this scenario, we need to store the whole Merkle tree (a preferred version) or
recompute it on demand. The random key selection limits a potential number of uses of a
certain public key by a factor of 2l .

The main advantage of the parallel version is the state-less nature of the protocol,
suitable for client-server scenarios with multiple parallel client connections. Although this
scenario is also manageable in the sequential version, it needs more overhead (e.g., using a
specific cache for keys and paths that are still in use). Furthermore, the sequential scenario
assumes that there is only a limited number of pre-authenticated ephemeral keys. After all
of the keys are used, we need to build a new authentication tree and redistribute the root
of the tree. In the parallel version, we only need to rebuild the tree and redistribute the key,
if the number of key reuses reaches the prescribed security limit.

Unlike the sequential version, the parallel version of the protocol does not inherently
provide forward secrecy. If the attacker compromises the server and extracts k0, she/he
can reconstruct all past keypairs by using ki = OWF(k0|i), followed by the computation of
(SKi, PKi) from KDF(ki).

We can introduce forward secrecy to the parallel protocol by a modification of the
data storage. In this case, we need to store all precomputed keys in a large secure storage,
instead of storing k0. The pre-key k0 is safely removed after all keypairs are precomputed.
Thus, in the KEM initialization phase, the pre-key is not used at all; instead, a valid keypair
(SKi, PKi) to be used in the next session is taken directly out of the secure storage. Once
the pre-generated key pair (SKi, PKi) is used in a session, the secret key SKi needs to be
securely deleted, and the position should be marked as invalid. If random i (selected in
the initiation phase) points to an invalid key pair, i is incremented until a valid position is
found. If the key storage is compromised, past keys are already removed, and the attacker
cannot break already finished sessions.
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5. Security Analysis

In this section, we analyze the security of the proposed scheme. While this is not a
full formal analysis, we believe it is sufficient in the context of the general proposal due to
the properties of the underlying building blocks. However, for specific uses in the more
complex protocols, authors should analyze their design with respect to the whole scheme.

We base our analysis on the standard security notions based on challenger-attacker
security games. An attacker is any probabilistic polynomial time (PPT) algorithm, which
has a goal to win some proposed challenge game. In our scenario, the attacker can present
any public key PK with an arbitrary authentication path (H1, H2, . . . , HM−1). The attacker
“wins” if the PK gets accepted by the verifier. Our scheme provides a public key authentica-
tion, if any PPT attacker has only a negligible chance to win the challenge game. As usual,
negligible chance means that the probability of winning the game is less then 1/poly(λ)
for all λ greater than some λ0, for any polynomial function poly.

Let us analyze the hypothetical situation when the attacker wins the challenge. This
happens only when after evaluating the hash path with the initial h(PK), the verifier gets
value HM. It is easy to see that if the attacker provided a valid HM to the verifier, he/she
is able to create a preimage of a hash function h in some of the points of the original Merkle
tree. The security of the scheme is reduced to the security of the used hash function.

Let us do a more in-depth analysis. For the sake of simplicity, let us suppose that the
authentication path is always evaluated from the right side. The attacker’s PK and the se-
quence (H1, H2, . . . , HM−1) induce a sequence of hash values g0 = h(PK), gi = h(gi−1|Hi).
The attacker’s success means that gM = h1. This means that either the attacker has con-
structed a preimage for h1 or that gM−1 = h2 and HM−1 = h3, respectively. We can now
repeat the argument to finding the preimage of h2,h4, etc., up to h2M, which is the hash of
an original public key in our database, which was authenticated by the Merkle tree. We
have thus established that if the attacker succeeds, he/she has constructed a preimage
for the function h. Thus, we can conclude that the authentication property of the scheme
reduces to preimage resistance of the used hash function.

In the basic analysis, we ignored that the Merkle tree contains exponentially many
nodes related to the parameter M. Thus, the situation, in this case, is slightly more
complicated: an attacker can try to create a preimage to any of the 2M+1 hash values
included in the Merkle tree. In the ideal case, the probability of creating a preimage with
random tries is 2M+1/2n, where n is the length of the hash. Thus, the attacker needs to
test approximately 2n−M values to succeed with at least 50% probability. Note that the
attacker does not need to generate as many public keys, as he/she can try to combine
hashes of randomly generated public keys with hashes already in the public Merkle tree.
However, this optimization does not reduce the expected work factor, expressed as the
number of hash calls. If hash size n = 2λ, where lambda is the chosen security level,
the Merkle tree can contain up to M = λ levels to resist preimage attacks (the work factor
is 2n−M = 22λ−λ = 2λ). In practice, M is significantly lower than λ (due to practical size
constraints on the database of public keys), and the generic attack is not possible. We give
a formal argument in the next section (Section 5.1).

5.1. Formal Security

In this section, we formalize the security of the proposed scheme. Firstly, let us sum-
marize the security assumptions. We base our scheme on the IND-CPA (indistinguishable
under chosen plaintext attack) secure public key encryption system defined by algorithms
(Gen, Enc, Dec). IND-CPA security means that any PPT adversary has only a negligible
advantage when trying to distinguish between encryption of two chosen plaintexts. One
corollary of IND-CPA security is that it is infeasible to compute secret key SK from a
corresponding public key PK (otherwise, the attacker would just compute SK and decrypt
the challenge ciphertext).

Furthermore, we use a secure hash function hash to build the Merkle tree. We require
that hash be (at least) preimage resistant. This means that any PPT adversary has only a
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negligible probability of producing any value x that hashes to a known hash value y. When
our security level is λ, we require that Pr(A(1λ) = x : hash(x) = y) ≤ 2−λ for any PPT
attacker A.

In our schemes, ephemeral key pairs are derived from pre-keys by using the key
derivation function KDF. We model KDF by a pseudo-random generator (PRNG) with n
bit seed, where n is determined depending on the parameters of the scheme. We require
that PRNG output be indistinguishable from a random bit string. This means any PPT
attacker’s advantage in guessing whether the output is random or produced by our PRNG
bounded by 2−n.

Our security goal is to provide key authentication for the underlying public key
scheme. This means that we must not compromise the IND-CPA property and add a
property that only a server that established trust with the challenger before the game starts
can decrypt messages. We can model these security goals by the following security game.

The challenger is instantiated with a Merkle tree root h0. We suppose that the whole
Merkle tree, as well as pre-authenticated public keys PKi’s are available for the attacker.
The attacker does not have access to SKi’s or to pre-keys.

During the security game, attacker A sends two chosen messages m0, m1 to the chal-
lenger, along with a public key PK and its authentication path {hij}

M
j=1. The challenger

verifies the authenticity of the received PK by computing hashes following the authentica-
tion path. He/she generates a random bit b. If the final computed hash is different from
the pre-selected h0, he/she generates a random challenge string c′. Otherwise, he/she uses
the attacker’s PK to encrypt message mb and sends c← Enc(mb, PK). The attacker’s goal
is to recover random bit b using the received c. He/she wins the game if he/she outputs
the correct b.

We can see that if the attacker did not provide PK, which the challenger considers
authentic, he/she has no information about b and can only guess it with a probability of
1/2. Otherwise, he/she might be able to derive some information from c and has some
advantage in the game, where Adv(A) = Pr(A(c) = b)− 1/2. Our scheme is secure if the
advantage of any PPT attacker is negligible.

We prove the security of the scheme by contradiction. Let us suppose that there exists
an attacker A that has a non-negligible advantage in the security game as defined above.
To consistently win the game, the attacker has to be able to:

1. provide PK, which is accepted by the attacker with non-negligible probability (other-
wise, his/her advantage would remain negligible due to random challenge strings c′);

2. distinguish messages encrypted by the provided PK with non-negligible advantage.

If the attacker can distinguish messages, this means that he/she can either break the
underlying public key scheme, which breaks the security assumptions we used, or he/she
knows the corresponding secret key. Thus, we can conclude that a successful attacker
must be able to authenticate key pairs (SK, PK), generated by him/her, to succeed in the
security game.

To successfully authenticate the attacker’s PK, the PK with the generated authenticated
path {hij}

M
j=1 must produce the pre-determined value h0 as the output of hash function

hash, with non-negligible probability. However, by reduction, such an attacker can be used
to compute preimages of the hash function, and thus violates the security assumptions.

There is one exception to the above argument: if the attacker can reuse (part) of the
authentication path, which already exists in the Merkle tree. If the attacker reuses only
a part of the path, we still get a reduction to the hash function preimage; in this case,
the attacker can use this to compute preimages of some of the hashes stored in the nodes of
the Merkle tree. If the attacker uses the whole path from the Merkle tree, this means that
he/she can generate such a keypair (SK, PK) that hashes to one of the final leaves in the
Merkle tree. If PK is not one of those used to build the Merkle tree, this again violates the
preimage resistance of the hash function. Notice that the attacker can succeed (by chance)
in constructing a preimage of any of the hashes stored in the Merkle tree. Thus, we need to
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ensure that the preimage resistance of the used hash function is higher than 2λ+M to keep
the attacker’s advantage below 2−λ.

Finally, the attacker might be able to randomly generate one of the 2M precomputed
ephemeral public keys used to build the Merkle tree. Due to the security assumption on
KDF, this can only happen with probability 2M−n (otherwise, the attacker would be able
to break KDF, which violates the security assumptions). Again, to keep the attacker’s
advantage below 2−λ, we require that n ≥ M + λ, i.e., we need to use random seeds
(pre-keys) for generated keypairs with at least λ + M bits.

To conclude the proof, our scheme provides IND-CPA security with key authentication
with security level λ, under the assumption that the underlying public key scheme is
already IND-CPA secure (on the same security level), and we use a secure hash function
with at least λ + M output bits and a pre-key with a seed of at least λ + M random bits.

6. Prototype Implementation of the Protocol

We created an experimental implementation of the proposed protocol in the Master’s
thesis [27]. The main aim of the implementation was to verify the feasibility of the protocol
on standard computing platforms (simple PC) and estimate the practical height of the
Merkle tree suitable for basic Internet servers. The proposed protocol was integrated with
TLS 1.2 flow; thus, it is readily available to use in real-world client-server communication.

In our implementation of the protocol, the server pre-generates a set of ephemeral
keys and the Merkle tree structure that authenticates them (see Figure 4). This part can
be done anytime during server initialization, either directly on the server or in dedicated
hardware. During the TLS handshake, the server provides an ephemeral key to the client,
and the client validates the key using the Merkle tree root (see Figure 5). We use the basic
version of the protocol with sequential tree authenticated ephemeral keys. After each key,
the server needs to recompute the authentication path for the next key in the series (see
Figure 6).

The server preparation phase is detailed in Figure 4. In this case, we use a security
model similar to PKI. Thus, we need a dedicated certification authority (CA): a trusted
entity in the PKI infrastructure. The workflow of the key preparation is started on the
server by generating a set of 2l ephemeral key pairs. In the next step, public keys are
hashed, and a Merkle tree is built in l levels on top of the public key hashes. As a result
of this stage, we obtain the Merkle tree and the hash value associated with the root of the
Merkle tree. This root hash authenticates the whole set of key pairs, and thus, it plays the
role of the long-term authentication public key. In the third step, the root hash is sent to the
CA for signing. The CA creates a public key certificate. We do not prescribe any specific
algorithm, but if we need long-term post-quantum security, the CA needs to use some
specific quantum-resistant signing algorithm. In the final stage, the signed certificate must
be installed on the server. This certificate is then shared with each client when the client
initiates the TLS communication.

In IoT scenarios with limited resources under the manufacturer’s control, it is possible
to skip the PKI and certificates. Instead, the hash stored in the root node of the authen-
tication tree is preinstalled on the manufactured devices. It is then used as a (pinned)
server certificate, e.g., when downloading updates. The main advantage is that the server
certificate has the smallest possible length (a single hash value) necessary to provide the
desired security level.

The main flow of the TLS protocol enhanced with an ephemeral key authenticated
with the Merkle tree is presented in Figure 5. As usual, the client starts the protocol with
the ClientHello message. After the server receives a ClientHello, it must respond with
its public key included in the ServerHello message. During this phase, the server needs
to access the key storage and select an ephemeral key that will be used in this particular
session. The server computes the ephemeral key’s authentication path. To protect from DoS
attacks, the actual authentication path for the next key should be stored and recomputed
only once the key is actually used for communication (after finishing the TLS handshake).
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Key preparation

Server

Generate set of key pairs

Build Merkle tree structure

Get root hash from Merkle tree

Obtain signed certificate

Share certificate with clients

CA

Sign root hash
Create certificate

Server sends his
Merkle tree root hash

as a public key
to Certification Authority (CA)

to confirm its validity
in a form of

public key certificate

Client

Initiate communication
with the server

Figure 4. Preparation of keys on the server side [27].

The client is presented with the selected ephemeral public key along with its authenti-
cation path and the certificate of the Merkle tree root node. The client then must verify the
obtained hash path in its entirety and confirm the validity of the Merle tree root’s certificate
(if the Merkle tree root is not already pinned on the client device). Once the client has
verified the server’s ephemeral public key, it can use this key to send an encrypted key
material (e.g., by using the key encapsulation method for a randomly chosen session key).

Finally, the server uses the private key part belonging to the presented ephemeral
public key to finalize the underlying symmetric key exchange. Once both parties have
the same symmetric key established, they can then communicate with a standard TLS
record protocol.

An important part of the enhanced protocol is the state update phase on the server
depicted in Figure 6. As discussed earlier, these steps can be done upon a new key request
(as depicted in Figure 6) or can be postponed after the communication is established. In the
latter case, the trigger is not “receive communication request”, but the trigger event is
“previous communication established”.
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Figure 5. Overview of the protocol use within TLS 1.2 scope for client-server communication [27]. PK, public key.
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Prepare next key state structures

Send authentication package
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Figure 6. Update of the authentication path for the next ephemeral key on the server [27].
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The “get next key index” procedure depends on whether we are using a sequential
(see Section 4.1) or a parallel (see Section 4.2) key structure at the bottom of the Merkle tree.
In the case of the sequential structure, the key index is increased by one, and previous keys
are purged from the storage if the keys are precomputed (they can be kept in the cache if
still needed in active communication). In the case of the parallel structure, the next key
index is selected randomly.

Once we have established the next key index, the process of preparing the next key is
started, and we must access or generate the actual ephemeral key pair. If the key pairs are
precomputed and stored in a secure memory, we just access the key from secure storage
to runtime cache. If the actual ephemeral keys are not stored, we generate the next key
depending on the key structure. In the case of the sequential key structure, we update the
pre-key via a one way function (we use SHA-2 in our experimental software), obtaining
the seed for a new ephemeral key. In the case of a parallel key structure, we access the
pre-key in the secure storage and generate an ephemeral key seed by hashing it with the
new key index.

After having obtained the ephemeral key seed, we use the key generation algorithm
from our (post-quantum) public key encryption (or KEM) algorithm to obtain the actual key
pair. We then compute the hash of the public key part and the verification path. This can
be either done by just accessing the hash nodes in the stored Merkle tree or be recomputed
from a previously known hash path. The first option is memory intensive, but very fast;
the second option is slow, but can be used in cases where memory is limited. Note that the
Merkle tree structure we are storing is not actually secret. Thus, any standard storage can
be used for a precomputed Merkle tree (but not the secret keys that underlie the tree).

After a new verification path is computed, it can be packaged and stored on the server
cache for handling the next request or directly sent to the client in the case that we are
handling the update directly on the communication request. In the case of a server with
heavy traffic, we might consider preparing a set number of ephemeral keys along with
their authentication paths in advance. This can be done in a background thread. Note that
in this case, we need to ensure that private keys are securely stored in the server cache.
Note that to prevent exhausting the ephemeral keys quickly, we should also implement the
management of TLS sessions, so we do not need to send multiple ephemeral keys to the
same client too often (e.g., by reusing pre-shared symmetric keys on reopening the session).

7. Experimental Results

To verify our theoretical results, we initiated and supervised thesis [27], where the tree
authentication of ephemeral public keys was implemented and tested. Due to the thesis
being written in Slovak, in this section, we summarize important experimental results of
that work for the sake of completeness of this article.

The implementation was only focused on a sequential version, which is more compli-
cated due to more complex state management. We chose to combine tree authentication
with post-quantum KEM BIKE [11]. We used the (open-source) reference implementation
from the NIST challenge [28], with a slight change required to generate key pairs from
a fixed seed. For the hashing and KDF , we used the SHA-256 implementation from the
OpenSSL library, Version 1.1.0g.

The following tests were run on a PC with processor Intel(R) Core(TM) i7-4712MQ CPU @
2.30 GHz. The operating memory size was 8 GB. The testing PC can compute 75 million SHA-
256 hashes per second (using 16 B input blocks, tested using the openssl speed command).

We ran the experiments with three sizes of the Merkle tree: l = 18, l = 21, and l = 24,
respectively. Every time measurement is an average from 10 (randomized) experiments.
Table 1 shows the total time required for individual operations. Keypair generation is
the time required to compute 2l−1 individual BIKE key pairs (only a basic BIKE-1 key
generation algorithm was used; no batch generation). After that, the Merkle tree building
consisted of hashing public keys and computing hashes in the tree nodes. In our experi-
ments, the whole Merkle tree was always stored in the RAM of the experimental computer.
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Finally, we ran through the signature generation for all public keys and one verification of
the signature per key. Note that signature generation is faster than signature verification
because we stored the whole Merkle tree in the memory. If we re-computed (part of the)
Merkle tree for each signature, the total time for a single signature would be upper bounded
by the Merkle tree building time (for all keys).

Table 1. Total time required to run an individual algorithm in the protocol.

Total Time for All Keys (ms)

Merkle Tree Levels 18 21 24

No. of Keypairs 217 220 223

Keypair Generation 35,442 285,894 2,254,612

Merkle Tree Building 57 451 3662

Signature Generation 188 1821 16,819

Signature Verification 971 9085 82,695

To normalize the times between different sizes of the Merkle tree, we computed
the average time per key in Table 2. We can see that the cost of building the Merkle
tree is amortized when storing the tree in memory, and both signature generation and
signature verification are small compared to the key generation algorithm. Note that if we
re-generated the whole tree for each signature, the (maximum) time for creating the key
signature would grow quickly. We do recommend storing the whole Merkle tree in the
memory once it is generated.

Table 2. Average time required to run an individual algorithm in the protocol (per keypair).

Total Time for All Keys (µs)

Merkle Tree Levels 18 21 24

No. of Keypairs 217 220 223

Keypair Generation 270.402 272.650 268.771

Merkle Tree Building 0.437 0.431 0.437

Signature Generation 1.440 1.737 2.005

Signature Verification 7.412 8.665 9.858

The maximum level that was possible to store in the 8GB of memory on our testing
PC was l = 26 (approximately 30 million key pairs). The BIKE key generation for this level
took 2.5 h of real-time computation (note that the sequential key generation cannot be sped
up by parallel computing). Once the keys were generated, the building of a Merkle tree
was fast: it took only 17 s of computational time. Thus, in a scenario with a busy server
requiring a large number of ephemeral keys, these are preferably generated in advance,
and parallel storage (see Figure 3) is preferred (note that the server might lose the forward
security property; see Section 4.2).

8. Discussion

Public key encryption schemes (or KEMs) with ephemeral keys only (or keys with
a limited number of uses) are sufficient to build TLS-like handshake protocols. While
the authentication of the protocol can be solved with an additional signature scheme, we
can also authenticate the ephemeral public keys directly by employing the Merkle tree
technique. In a post-quantum setting, this technique can provide a building block to more
efficient and flexible authenticated key establishment schemes.

Selected components and their well-known security properties should provide tools
to create a key exchange mechanism (with underlying KEM) with server authentication
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(through the use of Merkle tree-based signatures) and, optionally, forward secrecy (by the
use of ephemeral keys). If our use case requires a client authentication as well, we can also
precompute ephemeral keys and the related Merkle tree on the client device. The client
then registers his/her device with the Merkle tree root (which has the role of the client’s
public key) and presents the server with an ephemeral public key and authentication path
in the key exchange phase of the TLS protocol.

The main advantage of the client keys is that both sides of the communication are
authenticated, and we do not need to implement other authentication measures at the
application level. It is not necessary to prevent man-in-the-middle attacks (server certificate
is sufficient). Note that the client certificate does not protect the client device against a
key compromise. However, if client-side authentication is employed, the server has more
control over the connections. While the compromised client device can, e.g., try to exhaust
keys by launching many connection requests, the server can employ higher level controls,
such as monitoring the number of connection attempts, to detect and block the malicious
client behavior.

In the TLS setting, the lifetime of the set of authenticated keys can also be extended
by using pre-shared keys for clients that re-connect to the server and with suitable use of
hierarchical PKI.

Our experimental results confirm the feasibility of the scheme in practice. For the
selected KEM (algorithm BIKE), the most difficult part was the key generation, which is
also mandatory in any scheme with ephemeral keys regardless of the chosen authentication
method. Merkle tree building took only a very small fraction (less than 0.2%) of the key
generation time (per key).

Signature generation, however, is fast only if the whole Merkle tree is precomputed
in the memory. The Merkle tree is not secret; thus, there is no need for a special protected
memory to store it (unlike the master secret key or the precomputed secret keys). In our
experimental PC with 8 GB of memory, we were able to store a tree of level l = 26 without
negatively affecting the performance of the computer. This means that such a Merkle tree
can authenticate approximately 30 million key pairs, which allows almost 46 thousand
active connections per day on average for two years. On the client-side, we can use a
smaller Merkle tree (with a lower number of levels l), depending on the expected number
of connections the client will be doing in the lifetime of the authentication key, and the
resources available.

Due to very fast signature generation and easy verification on the client (short public
key, short signature, fast verification using just the standard hash function), this scheme
can be very useful for IoT applications. If the number of clients or connections is limited or
known in advance, we can optimize the parameters (mostly the height of the tree l) used
on the server: if we increase l, we increase the number of connections available during
the lifetime, but also (slightly) increase the length of the signature and the complexity of
the key verification. Note that the Merkle tree has an advantage over directly storing a
limited set of the server’s ephemeral public key hashes on the client. We save the storage
required on the client (a single Merkle tree root takes less space than multiple public key
hashes). Furthermore, if the number of connections of various clients is not uniform, we
are not limited by the expected maximum number of connections any client might require,
but only by an expected total number of connections of all clients during the lifetime of the
server’s public key.

On the other hand, the fixed number of authenticated keys pre-authenticated with
the Merkle tree limits the use of the scheme in servers with heavy traffic. In such a case,
we recommend using the parallel version of the protocol with possible key reuse (should
be limited based on the security restrictions of the underlying KEM and requirements of
possible forward security).
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9. Summary

We propose a novel protocol that employs Merkle trees to provide post-quantum
authentication for a set of ephemeral keys. Our scheme has two variants. The sequential
variant uses a single pre-key from which ephemeral keys are derived in a one way sequence.
This variant provides inherent forward secrecy: keys used in the past cannot be recovered.
On the other hand, session management is more complicated, as the ephemeral keys can
only be accessed in a sequence. The parallel variant uses a master key that can derive any
pre-authenticated ephemeral key. This allows us to enable parallel sessions and possible
key re-use (if allowed by underlying key exchange mechanism), but removes forward
secrecy. Forward secrecy for the parallel version can be implemented at the cost of secure
storage by precomputing and storing all ephemeral keys.

Furthermore, we experimentally verified the feasibility of the proposed protocol,
by instantiating it with the BIKE KEM algorithm and the corresponding key generator,
as well as the SHA2 function as a one way function. Our experiments show that the cost
of the Merkle tree setup and use takes less than 0.2% of the time compared to overall
key generation. It is also favorable in comparison to using one of the proposed post-
quantum signature algorithms, mainly because we do not need an extra signature key (we
replace the public key with the Merkle tree root and the private key with the knowledge of
the ephemeral private key, or the pre-key, respectively). The running time and memory
requirements show that Merkle tree authentication is suitable for deployment on a server
and PC-like clients, but its use might be limited in restricted devices. On the other hand,
IoT clients can verify the server they are connecting to very quickly using only a standard
hash function.
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