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ABSTRACT

In mammals, DNA methyltransferases DNMT1 and
DNMT3’s (A, B and L) deposit and maintain DNA
methylation in dividing and nondividing cells. Al-
though these enzymes have an unremarkable DNA
sequence specificity (CpG), their regional specificity
is regulated by interactions with various protein
factors, chromatin modifiers, and post-translational
modifications of histones. Changes in the DNMT ex-
pression or interacting partners affect DNA methy-
lation patterns. Consequently, the acquired gene ex-
pression may increase the proliferative potential of
cells, often concomitant with loss of cell identity as
found in cancer. Aberrant DNA methylation, includ-
ing hypermethylation and hypomethylation at vari-
ous genomic regions, therefore, is a hallmark of most
cancers. Additionally, somatic mutations in DNMTs
that affect catalytic activity were mapped in Acute
Myeloid Leukemia cancer cells. Despite being very
effective in some cancers, the clinically approved
DNMT inhibitors lack specificity, which could result
in a wide range of deleterious effects. Elucidating
distinct molecular mechanisms of DNMTs will facil-
itate the discovery of alternative cancer therapeu-
tic targets. This review is focused on: (i) the struc-
ture and characteristics of DNMTs, (ii) the prevalence
of mutations and abnormal expression of DNMTs
in cancer, (iii) factors that mediate their abnormal
expression and (iv) the effect of anomalous DNMT-
complexes in cancer.
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DNA METHYLATION

DNA methylation involves the covalent addition of a
methyl group (-CH3) to the 5" position of cytosine (5SmC)
by DNA methyltransferases (DNMT) (1,2). The structures
and catalytic mechanisms of DNA methyltransferases are
highly conserved from bacteria to mammals; thus, DNA
methylation is the most prevalent DNA modification (3). In
mammals, it is predominantly found at CpG dinucleotides,
70-80% of which are methylated (4). DNA methylation is
critical for mammalian development, differentiation, and its
defects are implicated in several human diseases, including
cancer (5).

In mammalian genomes, the non-uniform distribution
of DNA methylation is strongly influenced by the over-
all depletion of CpG dinucleotides. Regions in mammalian
genomes which contain expected or slightly higher levels
of CpG are called CpG islands (CGI). DNA methylation
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shows the highest density at the repetitive and transpos-
able elements and lowest levels at CGls (6-8). CGlIs are
further categorized as high, intermediate, and low CG con-
tent. Interestingly, high CG content CGIs (>60%) are least
methylated and are present at over two-thirds of all mam-
malian promoters, including housekeeping genes and a few
developmental genes. The transcriptionally active state of
housekeeping genes, which are critical for cellular function,
is maintained by their unmethylated CGI promoters (9-11).
Methylation changes associated with changes in gene ex-
pression are mostly found in intermediate and low CG con-
tent CGls, which reside at tissue-specific promoters, differ-
entially methylated regions (DMRs), enhancers, and super-
enhancers (12-15). Interestingly, in cancer, enhancer DNA
methylation was more closely associated with the aberrant
gene expression profiles than the gene promoters, empha-
sizing the regulatory role of DNA methylation at low CG
content sites (16-18). Regulation of CGI DNA methyla-
tion is also critical because aberrant CGI hypermethylation
is prevalent in almost all cancers (19). Several mechanisms
have been shown to regulate DNMT activity at CGI, includ-
ing interactions with H3K4me, H3K36me and H4K20me3
histone tail modifications (20-23). Protection of CpGs from
methylation can be achieved either directly by transcription
factor (TF) binding or indirectly by TF-mediated targeting
of chromatin remodeling enzymes (12,24,25). On the other
hand, DNA methylation at regulatory elements can result
in loss or gain of TF binding, affecting gene expression (26—
28). In any case, aberrant methylation in cancer is either a
direct consequence of DNMT mutations or indirectly due
to misregulation of DNMTs, the enzymes that catalyze this
modification.

Contrary to their regulatory elements, highly transcribed
genes have abundant intragenic or gene body methylation
(6). At intragenic regions, the predominant presence of the
histone mark H3K36me3 recruits DNA methyltransferases
(29,30). Correlation studies have demonstrated that gene
body methylation antagonizes the activity of polycomb re-
pressive complex (PRC2), hence, promoting transcription
(31). Furthermore, DNA methylation plays a role in al-
ternative promoter usage, alternative splicing, and in pre-
cluding cryptic transcription initiation (3,6,32-35). Aber-
rant hypermethylation of CGI’s, which reside in the gene
body, has been shown to correlate with increased expres-
sion of the corresponding genes and is predictive of elevated
oncogene expression in cancer (36).

DNA methylation contributes to heterochromatin for-
mation at repetitive and transposable elements by creat-
ing a target motif for methyl-binding domain (MBD) pro-
teins (37,38). The histone modifiers such as methyltrans-
ferases and deacetylases in a complex with MBD proteins
create a condensed chromatin state that prevents transcrip-
tion (39,40). Aberrant hypomethylation and loss of hete-
rochromatin are highly prevalent in cancer, leading to an
increase in DNA recombination and loss of genome in-
tegrity. DNA methylation defects have been used as a sen-
sitive marker for cancer diagnosis. Alone or in combination
with other therapies, DNA demethylation therapy has been
successfully used for some leukemias and myeloblastic syn-
dromes (19). However, these methods are nonspecific and
have global effects on DNA methylation, which can poten-

tially have strong side effects and may even foster metastasis
(41-44).

DNA METHYLTRANSFERASES

The DNA methyltransferases (DNMTs) are a family of
enzymes that catalyze the transfer of the methyl moiety
from the donor S-adenosylmethionine (SAM) to DNA (45).
Mammalian DNMTs specialize in de novo methylation and
maintenance methylation (46). The de novo methyltrans-
ferases (DNMT3A and DNMT3B) establish methylation
patterns during embryonic development, while the mainte-
nance methyltransferase DNMT]1 copies methylation pat-
terns from parent to daughter strand during DNA replica-
tion (47-49).

Structure/Function relationship of the DNMT1 methyltrans-
ferase

DNMT]I is a maintenance methyltransferase that is highly
expressed in dividing cells (50). DNM T knockout in mice
results in a 90% loss of methylation and death mid-gestation
(51). Inducible knockout of DNMTI in hESCs and human
colon cancer cells HCT116 results in a rapid loss of methy-
lation genome-wide accompanied by substantial cell death
(52,53).

DNMT]1 is a multi-modular enzyme comprising an N-
terminus that contains a DNA-binding CXXC domain, a
replication foci-targeting sequence (RFTS), two Bromo-
adjacent homology (BAH) domains, and a C-terminal cat-
alytic domain with an innate preference for hemimethy-
lated DNA (54,55). The N-terminal domain of DNMTI
interacts with proteins that guide the methylation activ-
ity of DNMT1 (56). These interaction partners include
PCNA (proliferating cell nuclear antigen), which targets
DNMTT to replication foci (57), the histone methyltrans-
ferase G9a (58) and HP1 (heterochromatin protein 1) (59).
The DNMT1 RFTS domain, which constitutes the homod-
imer interface (60), interacts with the catalytic domain, pre-
venting DNA binding (61,62). At hemimethylated sites, this
autoinhibition is relieved by the interaction of the RFTS
domain with UHRF1 (63). Additionally, the interaction of
DNMTI RFTS domain with H3K9me3 and H3UD was re-
cently shown to recruit DNMT]1 to specific sites and in-
crease its activity (64). The specificity of DNMTT is fur-
ther influenced by the interaction of its CXXC domain with
unmethylated CpG sites. This interaction triggers a confor-
mational change, positioning an autoinhibitory linker be-
tween the catalytic site and the DNA (65). Little is known
about the role of the two tandem BAH domains, though
they are conserved in all mammalian DNMT1 homologs
(66). New insights, however show that the interaction of
DNMTI1 BAH domain with the repressive H4K20me3 is
involved in heterochromatin formation (23).

The DNMT] catalytic domain shares similarity in cat-
alytic motifs with DNMT3 enzymes and is responsible
for substrate binding, DNA binding, and catalysis (56).
Though mammalian DNA methyltransferases utilize the
same catalytic mechanism, they have unique catalytic pa-
rameters (46,55). DNMTI is a highly processive enzyme
and can methylate up to 30 CpG sites before dissociating



from the DNA, a well-adapted property for its role in main-
tenance methylation (67,68). Although DNMTT has a high
preference for hemimethylated DNA, it also performs de
novo DNA methylation at unmethylated CCGG sites and
targets transposable elements for de novo methylation dur-
ing development (67,69-72). DNMT1 can also perform de
novo methylation by cooperating with the DNMT3 de novo
methyltransferases (73).

Structure/Function relationship of the DNMT3 methyltrans-
ferases

The DNMT3 family consists of two catalytically active
members, DNMT3A and DNMT3B, and a catalytically-
inactive member, DNMT3L (48,74). The DNMT3s are ex-
pressed primarily during embryonic development and in
adult stem cells (75). DNMT3A and DNMT?3B are highly
homologous with roughly 40% sequence identity and a sim-
ilar domain organization (76). DNMT3 B knockout in mice
is embryonic lethal, while DNM T3 A knockout mice survive
to term but die within six weeks after birth (47). In addition
to unique targets, DNMT3 enzymes methylate many sites
redundantly (52,77). DNMTS3L is expressed explicitly dur-
ing male and female germ cell development and plays an
essential role in establishing methylation imprints (78-82).
Knockout of DNMT3L in mice results in male sterility and
defects in female oocytes (83-86).

The N-terminal regulatory regions of DNMT3A and
DNMT3B consist of two domains, a Pro-Trp-Trp-Pro
(PWWP) domain, and a cysteine-rich zinc-binding region
called the ARTX-DNMT3-DNMT3L (ADD) domain (87).
The PWWP domain interacts with both DNA and his-
tone H3 methylated at the lysine 36 residue (H3K36me2/3),
directing DNMT3 activity to intergenic regions (88-90).
Studies show that DNMT3A interacts with H2AK119ub
through an uncharacterized amino-terminal ubiquitin-
dependent recruitment region targeting DNMT3A to spe-
cific regions (91). The ADD domain recruits DNMT?3 en-
zymes to gene regulatory elements by binding to unmethy-
lated histone H3 lysine 4 (H3K4) (92,93). When not bound
to H3K4, the ADD domain interacts with the DNA binding
region of DNMT3A, resulting in auto-inhibition (20,92).

The mammalian DNMTs contain ten conserved motifs in
their C-terminal methyltransferase (MTase) domain. Mo-
tifs I — III are involved in SAM binding, while motifs IV
and VI are required for catalysis (94,95). The target recog-
nition domain (TRD), responsible for DNA binding, spans
the region between the start of motif VII and the end of mo-
tif IX. The MTase domains of DNMT3A and DNMT3B
share about 80% sequence similarity and can function inde-
pendently of their N-terminal regions (96). DNMT3L lacks
the motifs IX, X, and TRD, making it catalytically inactive
(92). However, DNMTS3L interacts with the catalytic do-
main of DNMT3A and DNMT3B, and allosterically stim-
ulates their catalytic activity (80,84,97).

DNMT3A and DNMT3L co-crystallize as a hetero-
tetrameric complex, with two DNMT3A monomers at the
center, flanked by two DNMT3L monomers on either
side (98). The two active sites of the central DNMT3A
dimer are ~40 A apart, allowing for concurrent methyla-
tion of two CpGs separated by one helical turn of the DNA
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(87). In the absence of DNMT3L, DNMT3A can form
homo-tetramers, which further oligomerize in the pres-
ence of DNA (32,99). The oligomerization of DNMT3A
also supports its cooperative catalytic mechanism (99,100).
The dimer interface of DNMT3A primarily constitutes the
electrostatically interacting Arg and Asp residues (101).
Given that DNMT3A monomers have low catalytic activ-
ity, the residues at the dimer interface are critical for opti-
mal catalysis. This is further highlighted by a high preva-
lence of somatic substitution of the dimer interface residue,
Arg882His, in acute myeloid leukemia (AML), resulting
in about 80% loss of the catalytic activity of the mutant
enzyme (102,103). Unlike DNMT3A, DNMT3B performs
DNA methylation in a processive manner independent of
interactions at the dimer interface (104). Although recent
co-crystallization of DNMT3B with DNMT3L revealed
a similar hetero-tetramer mediated by conserved residues,
mutations of these residues in DNMT3B have little to no
effect on the catalytic activity of the enzyme, emphasizing
the specific role of dimer interface in the catalytic activity of
DNMT3A (105). Recent structural analysis of the ternary
complex of DNMT3A2, DNMT3B3 and a nucleosome core
particle flanked by linker DNA indicates that the catalyt-
ically inactive accessory, DNMT3B3 binds to the acidic
path of the nucleosome core, orienting the DNMT3A2 en-
zyme to bind to the linker DNA (106). These studies explain
the observed methylation of linker DNA positioned nucle-
osomes by the DNMT?3 enzymes (107).

CANCER-ASSOCIATED DNMT MUTATIONS

Recent large-scale cancer genomics consortia such as The
Cancer Genome Atlas (TCGA) and the Genomics Evidence
Neoplasia Information Exchange (GENIE) identified com-
mon somatic mutations across cancers. Whereas many epi-
genetic regulators carry somatic mutations, relatively few
occur in the DNMT enzymes (reviewed in (108)). Mutations
to DNMT 1 have been identified in a small proportion of pa-
tients with colorectal carcinoma (109), while DNMT3B mu-
tations have only been identified in patients with the genetic
disorder immunodeficiency, centromeric instability, and fa-
cial anomalies (ICF) syndrome (110). Conversely, there is a
high prevalence of DNMT3A somatic mutations in patients
with acute myeloid leukemia (AML) (111). Some of these
mutations have been extensively studied to understand their
impact on DNMT catalytic activity. These data suggest a
critical role of DNMTs in development, weak redundancy
in their function, and lack of synonymity in their sequence.

DNMT3A mutations in acute myeloid leukemia

DNMT3A plays an important role in somatic stem cell dif-
ferentiation in addition to its role in establishing methy-
lation patterns during development (112). Knocking out
DNMT3A in hematopoietic stem cells (HSCs) leads to
decreased levels of cell differentiation and increased self-
renewal (113). DNMT34—/— HSCs display significant
genome-wide hypomethylation with focal areas of hyperme-
thylation (114,115). The phenotype of these cells is similar
to what is observed in human hematological malignancies
harboring DNMT3A loss-of-function mutations (116).
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Genomic studies identified somatic DNMT3A muta-
tions associated with poor prognosis in 22% of adult pa-
tients with acute myeloid leukemia (AML) (111,117). Sim-
ilar DNMT3A mutations are also observed in chronic
myelomonocytic leukemia (118). The PWWP and ADD do-
mains harbor nonsense and frameshift mutations, while the
MTase domain mostly acquires missense mutations (119).
Most DNMT3A MTase domain mutations are located in
the conserved motifs, dimer interface, and the TRD (119).

In AML, about 65% of DNMT3A heterozygous missense
mutations affect codon Arg882, with the majority occur-
ring as an Arg-to-His substitution (111,120). The muta-
tion typically arises during the early stages of cancer de-
velopment and is associated with significantly lower rates
of overall and discase-free survival (121). This substitu-
tion disrupts intermolecular interactions at the dimer in-
terface and decreases DNA binding, resulting in a 40—
80% loss of catalytic activity (99,101,103,122). Addition-
ally, the DNMT3A Arg882His variant has altered flank-
ing sequence preference around the target CpG site com-
pared to wild-type DNMT3A (123). The flanking sequence
preference of the DNMT3A Arg882His variant resem-
bles DNMT3B more closely than that of WT DNMT3A,
which may lead to aberrant methylation of DNMT3B
targets in AML (124) (Figure 1A). In addition to al-
tered flanking sequence preference, the Arg882His vari-
ant has weak interface interactions that disrupt the co-
operative mechanism (124) (Figure 1B). Through its in-
teraction with the WT enzyme, the Arg882His variant is
suggested to have a dominant-negative effect on cooper-
ativity (103,122,125). Other variants of Arg882, such as
Arg882Cys, Arg882Ser and Arg882Pro are also found in
AML patients and were shown to have reduced catalytic
activity similar to Arg882His, with some differences in cat-
alytic properties (126).

Aberrant expression of MEIS1 has been previously asso-
ciated with poor prognosis in AML (127), and DNMT3A
mutation can activate the MEIS1-mediated transcrip-
tion program following M EISI promoter hypomethylation
(128). In vitro studies using MEIS1 enhancer as a substrate
showed significantly lower activity of DNMT3A Arg882His
variant at all except one CpG site with flanking sequence
preferred by DNMT3B, emphasizing the influence of this
AML mutation on the substrate specificity of the enzyme
(124). These in vitro experiments suggest that besides caus-
ing genome-wide hypomethylation due to loss of catalytic
activity, the AML mutation can result in a gain of func-
tion activity by which the variant DNMT3A enzyme could
preferentially methylate DNMT3B target sites. Although
biological outcomes of a change in the substrate prefer-
ence have not been described, the data suggest a potential
occurrence of aberrant methylation leading to changes in
gene expression. Hypomethylation resulting from loss of
DNMT?3A catalytic activity causes widespread gene dys-
regulation, including the overexpression of the Hox fam-
ily genes and Idhl (129). Conditional expression of the
mouse DNMT3A R878H mutant (the mouse equivalent
of R882H) initiates AML and mimics features of human
leukemia (130). The mechanism of pathogenesis in this
mouse model was found to be related to aberrant mTOR
activation resulting from DNA hypomethylation (130).

Over ten additional missense DNMT3A mutations have
been identified in AML patients, but they occur at lower fre-
quencies than the Arg882His. In vitro studies of DNMT3A
variants such as Arg635Gly, Ser714Cys, Trp893Ser,
Pro904Leu, Arg736His and Arg771GIn/Pro/Gly dis-
played reduced catalytic stimulation by DNMT3L and
a substrate-dependent decrease in catalytic activity, sug-
gesting biological effects similar to Arg882His variant
(131).

DNMT GENE EXPRESSION CHANGES IN CANCER

Alterations in DNA methylation patterns can result in
changes in oncogene and tumor suppressor gene expres-
sion (132). DNA methylation is maintained through a
myriad of factors, including the DNA methyltransferases,
TET methylcytosine dioxygenases and histone-modifying
enzymes. As the proteins chiefly responsible for establish-
ing and maintaining methylation patterns, the DNMTs have
been widely implicated in methylation changes in cancer
cells. Significant focus has been placed on studying the con-
sequences of DNMT expression changes observed in vari-
ous cancers.

Mouse models of cancer have proven extremely useful
in ascertaining the role of DNMTs in cancer pathogene-
sis. In a mouse model of pancreatic cancer, DNMT1 hy-
pomorphic mice had a reduction in tumor burden coupled
with decreased DNA methylation at a subset of cancer-
associated genes in the pancreas (133). These findings are
relevant to the observation that aberrant DNA hyperme-
thylation is observed in tumors from early- and late-stage
pancreatic cancer [120, 121], indicating that DNMT1 may
drive some of these initial altered methylation patterns. In
a mouse model of intestinal neoplasia, overexpression of
DNMT3BI resulted in enhanced colon tumorigenesis and
tumor size (134). DNMT3A inhibition in a mouse model of
melanoma inhibited tumor growth and affected the expres-
sion of various tumor-related genes, including class I and
IT MHC genes and various chemokines (135). These stud-
ies cumulatively imply a role for DNMTs in enhancing the
pathologic characteristics of cancer cells.

Some studies also point to DNMTs as having roles as tu-
mor suppressors in cancer. In mouse models of lung ade-
nocarcinoma, DNMT3A knockout negatively impacts an-
giogenesis and cell adhesion (136). This observation is in
line with a study showing that increased DNMT3A expres-
sion in lung adenocarcinoma is associated with a favorable
prognosis (137). Similarly, DNMT3A deficiency results in
attenuated progression of peripheral T cell lymphoma (138),
and DNMT?3B loss hastens the progression of MLL-AF9
leukemia (139). These studies exemplify that DNMT ex-
pression level changes can have broad effects that lead to
pathogenesis.

Effect on the global methylation pattern

Altered genome-wide methylation has long been related to
genome instability, increased chromosomal translocations,
and widespread gene dysregulation in cancers (132,140-
142). Therefore, overall changes in methylation related to
DNMT expression variation are critical in cancer pathogen-
esis.
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Figure 1. Catalytic properties of DNMT3 enzymes and the DNMT3A R882H mutant. (A) DNMT3A and DNMT?3B preferentially methylate specific
targets. The DNMT3A R882H is a somatic mutation found predominantly in AML patients, accounting for about 65% of all DNMT3A mutations in
AML, and at lower frequencies in other cancers such as MDS, MPN, T-ALL and AITL (116,268). The DNMT3A R882H mutation ablates the ability of
DNMTS3A to target DNMT3A-preferred sites, while its activity at DNMT3B-preferred sites is unaffected. (B) DNMT3B methylates CpG sites in a pro-
cessive manner, whereas DNMT3A methylates cooperatively by recruiting additional DNMT3A subunits. The DNMT3A R882H mutation also disrupts
DNMT3A cooperativity that reduces the overall catalytic activity of the enzyme. AITL: angioimmunoblastic T- cell lymphoma; MDS: myelodysplastic
syndrome; MPN: myeloproliferative neoplasms; T-ALL: T-cell acute lymphoblastic leukemia.

Publicly available data from The Cancer Genome Atlas
(TCGA) illustrates that significant alterations in DNMT
mRNA expression are observed in a wide variety of can-
cers (Figure 2). Although the gene expression data in Fig-
ure 2 are not normalized to proliferation-specific control
(143), the overexpression of DNMTs in most of these
cancers has been verified in several studies (reviewed in
(144,145)). High DNMT3B expression levels correlate with
a particular colorectal cancer phenotype characterized by
high global DNA methylation levels, particularly at CpG
islands (146). In colorectal and gastric cancers, overex-
pression of DNMT3B was also correlated with disease
progression and increased levels of methylation in tumor
cells (147,148). Irrespective of changes in DNMT expres-
sion, genome-wide hypomethylation coupled with focal

hypermethylation is a feature of almost all cancers (re-
viewed in (149)). Hypomethylation itself has been tied
to the pathogenicity of various cancers. For example, in-
creased chromosomal rearrangement is associated with
DNA hypomethylation in hepatocellular carcinoma (150)
and prostate cancer (151). Dnmt1 knockout mice show ge-
nomic instability, hypomethylation of repetitive elements,
and increased macroadenoma load in intestinal cancer
(152).

Tumor suppressor gene silencing

TSG silencing resulting in cancer pathogenesis is a perva-
sive feature, making the mechanisms resulting in this silenc-
ing an intriguing avenue for cancer research. In many cases,
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Figure 2. Differential expression of DNM T from TCGA data. Box plots of RNA-seq data comparing TCGA tumor samples (red) to TCGA normal and
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the altered expression of a DNMT can result in aberrant
methylation at TSG promoters, resulting in TSG silencing
in cancer cells.

DNMT3A overexpression in gastric cancer leads to si-
lencing the p/8INK4C gene, a cyclin-dependent kinase in-
hibitor that regulates cell cycle progression (153). The si-
lencing of pI8INK4C by DNMT3A leads to cell cycle dys-
regulation and accelerated G1/S transition, promoting can-
cer progression (153). In hepatocellular carcinoma (HCC),
64% of tissue samples overexpressed DNMT3A, and it was
implicated in the methylation and subsequent silencing of

the PTEN gene, which encodes a phosphatase critical for
cell cycle regulation (154). In lung squamous cell carci-
noma, DNMTI, DNMT3A and DNMT3B are expressed
at higher levels in cancer tissue relative to healthy tissue
controls (155). DNMT1 and DNMT3B expression in can-
cerous lung tissue is correlated with gene promoter hyper-
methylation at multiple TSG promoters, including FHIT
and p16"VK# (155). A recent study found that in endome-
trial cancer, concurrent DNMT3B and EZH?2 upregulation
in cancer cells results in the epigenetic silencing of TCF3
(156). TCF3 is a transcriptional activator of CCKNI1A



(p21WAF1/Ciply “and its silencing results in accelerated en-
dometrial cancer cell proliferation (156).

Gene body methylation of oncogenes

Though DNA methylation at gene promoters is associated
with transcriptional silencing, methylation in gene bodies
is associated with the active transcription of genes (36).
Gene body methylation of oncogenes, therefore, can re-
sult in oncogene overexpression, driving cancer pathogen-
esis. A broad analysis of seven solid tumor types found a
correlation between gene body hypomethylation and over-
expression of ~43% of homeobox genes, many of which
are oncogenes (157). Researchers found that this overex-
pression could be recapitulated by targeting DNMT3A to
specific homeobox gene bodies for hypermethylation (157).
In liver cancer, gene body and 5-UTR methylation of
oncogenes are associated with their overexpression (158).
This pattern of oncogene gene body methylation and in-
creased gene expression was observed in 56% of patients
(158). Treatment of HCC cells with the DNMT inhibitor
decitabine reduced gene body methylation, gene expression
levels and transiently reduced the tumorigenic properties
(158). In renal clear cell carcinoma and lung adenocarci-
noma, the CARDI1 gene is significantly overexpressed con-
current with increased CARDI1 gene body methylation rel-
ative to healthy cells (159). In the context of these can-
cers, CARD11 aberrantly activates the mTOR pathway and
suppresses autophagy (159). Again, treatment of cells from
both cancer types with decitabine decreased CARDI1I ex-
pression (159), suggesting a direct role DNMTs in hyperme-
thylation and cancer-specific changes in gene expression.

Cancer cell growth and proliferation

Aside from DNA methylation and gene expression changes,
DNMT expression level alterations have been linked to var-
ious other oncogenic properties in cancer cells, including
cancer stem cell maintenance and proliferation.

The ability of colon cancer cells to initiate tumors was
significantly reduced upon DNMT]1 knockout, but their
ability to grow otherwise was not affected (160). This ob-
servation is partially attributed to a reduced proportion of
cancer-initiating cells in the DNMT1 knockout colon can-
cer cell line (160). DNMT1 was also found to be neces-
sary for the maintenance of bilinear myeloid-B lymphoid
leukemia stem cells (161). In mammary cancer, DNMT1
loss results in limitation of the cancer stem cell popula-
tion (162). These studies indicate a potentially larger role
for DNMTTI in cancer stem cell maintenance, reminiscent
of DNMT’s critical role in maintaining several human stem
cell lineages (52,162,163).

Other than stem cell maintenance, DNMTs have also
been found to affect cancer cell pathogenic properties, in-
cluding proliferation and migration. In Burkitt lymphoma,
both DNMT1 and DNMT3B are overexpressed, and treat-
ment of Burkitt lymphoma cell lines with the DNMT in-
hibitor decitabine decreases DNMT levels and inhibits cell
growth (164). DNMTS3L expression supports the growth of
embryonal carcinoma cells and is known to be significantly
overexpressed in testicular germ cell tumors (165).
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Prognostic value

Given its high prevalence in various cancers, DNMT ex-
pression level changes can predict patient prognosis and
stage cancers. For example, in glioblastoma, DNMT3B and
DNMT1 are highly overexpressed, and their expression lev-
els can be used as markers for cancer staging (166). Inves-
tigation into these expression changes revealed hypomethy-
lation at the DNMT1 and DNMT?3B gene promoters along
with a distinct euchromatin signature at the DNMT1 pro-
moter in tumors (167). Similarly, in AML, DNMT3B ex-
pression at high levels independently carries an unfavor-
able patient prognosis (168), in addition to the known poor
prognosis for patients carrying mutations in DNMT3A
discussed above (169,170). Pancreatic ductal adenocarci-
noma (PDAC) patients with higher levels of DNMTI1 have
a lower survival rate than those with lower expression (171).
In PDAC, high DNMTT levels were also correlated with
nerve infiltration, TNM staging, degree of cell differentia-
tion, and advanced stages of the disease (171). In chronic
pancreatitis, DNMT3A and DNMT?3B expression is corre-
lated with tumor size, and patients with higher DNMT3A
and DNMT?3B expression have a lower survival rate (172).
DNMT3B is also overexpressed in endometrial cancer and
is even more highly expressed in poorly-differentiated than
well-differentiated endometrial cancer cell lines (173). In
agreement with the role of DNMT3B in endometrial can-
cer pathogenesis, treatment of an endometrial cancer cell
line with a DNMT inhibitor inhibited cell proliferation and
increased apoptosis (174). Cumulatively, research points to-
ward DNMT levels being a physiologically relevant readout
of cancer progression and attractive as a means of deducing
patient prognosis.

MECHANISMS CONTROLLING DNMT EXPRESSION
IN CANCER

Since changes in DNMT expression levels can have se-
vere consequences in terms of cancer patient prognosis, the
mechanisms by which DNMT expression is dysregulated in
cancer have also been thoroughly investigated. DNMT ex-
pression can be altered through many mechanisms, includ-
ing aberrant DNMT pre-mRNA splicing, polymorphisms
within DNMT promoters, and epigenetic mechanisms at
DNMT gene regulatory elements.

Transcription factor complexes

Alterations in DNMT expression levels are often attributed
to aberrantly expressed transcription factor complexes or
epigenetic remodelers acting upon the DNMT promoter
regions. In non-small cell lung cancer, overexpression of
DNMTTI along with the transcription factor Spl is associ-
ated with poor patient prognosis (175). The overexpression
of DNMT1 was found to be partly mediated by p53 muta-
tions that abrogate its interaction with Spl at the DNMT1
promoter, which would normally repress DNMTI expres-
sion (175). DNMT3A and DNMTT1 are both overexpressed
in pancreatic cancer, in which GLI1 promotes the expres-
sion of both DNMT3A and DNMTT1 (176). GLII is an ef-
fector protein in the Hedgehog signaling pathway, which
is aberrantly activated in pancreatic cancer (177). In lung
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adenocarcinoma, the HOXB3 transcription factor binds the
DNMT?3B gene and increases DNMT3B expression (178).
This increased DNMT3B expression leads to the epige-
netic silencing of the RASSFIA tumor suppressor gene,
which could be reversed using DNMT inhibitor treatment
(178). In breast cancer, DNMT3A expression is repressed
by the MTA1/HDAC1/YY1 co-repressor complex (179).
High expression of MTA1 coupled with low DNMT3A ex-
pression predicts a poor prognosis for breast cancer patients
(179).

Viral proteins

Multiple cancer-associated viral proteins have been impli-
cated in DNMT expression alterations, leading to genome-
wide methylation pattern changes and gene dysregula-
tion (Reviewed in (180)). In hepatitis B virus (HBV)-
associated hepatocellular carcinoma (HCC), the overex-
pression of the viral-encoded HBx regulator protein can
upregulate DNMT1, DNMT3A1 and DNMT3A2 (181).
The upregulation of these DNMTs is coincident with the
overall hypomethylation coupled with focal hypermethyla-
tion phenotype observed in HCC tumor cells (182). The
hepatitis delta virus (HDV) enhances the development of
hepatocellular carcinoma in infected patients (183). The
HDV-encoded delta antigen upregulates DNMT3B by ac-
tivating the STAT3 pathway, resulting in hypermethyla-
tion at specific loci, including the TSG transcription fac-
tor E2F1 (184). Hepatitis C virus (HCV) -positive HCCs
have a unique DNA methylation signature consisting of
both DNA hypo- and hypermethylation (185,186). Con-
sistently, the HCV core protein was shown to upregulate
both DNMT1 and DNMT?3B, resulting in promoter hyper-
methylation of the CDHI TSG (187). These studies indi-
cate that DNMT overexpression downstream of hepatitis
viral proteins is an overarching pathogenic mechanism in
hepatitis-associated HCC.

Promoter polymorphisms

Polymorphisms in the DNMT promoter regions that alter
promoter activity have been characterized in multiple can-
cers. The DNMT3B promoter —149C— T single-base tran-
sition, correlated with increased promoter activity, is asso-
ciated with more than a two-fold increased risk of develop-
ing lung cancer (188). This same promoter polymorphism
is also associated with an earlier onset of hereditary non-
polyposis colorectal cancer in patients with this polymor-
phism than those carrying the wild-type allele (189). The
DNMT3B promoter —579G—T polymorphism is associ-
ated with a higher risk of developing thymoma in myas-
thenia gravis patients (190), along with a higher risk of de-
veloping multiple other cancers, including lung cancer and
head and neck squamous cell carcinoma (191,192). The
DNMT3A promoter —448A— G polymorphism is a com-
mon SNP associated with alterations in DNMT3A pro-
moter activity (193). The —448A allele increases promoter
activity and has been associated with an increased risk of
developing gastric cancer (193).

Alternative splicing

Aberrant alternative splicing can also be a component of al-
tered DNMT expression in cancer, especially in the case of
DNMT3B, which has over 30 described splice isoforms re-
sulting from alternative splicing events and alternative pro-
moter usage (194,195). In Myc-induced lymphoma, expe-
dited lymphomagenesis is associated with increased expres-
sion of a truncated catalytically-inactive dominant-negative
isoform, DNMT3B7 (196). This observation is corrobo-
rated by a recent study that showed that mice express-
ing a catalytically-inactive DNMT3B isoform from one or
both alleles develop B-cell lymphomas among other hema-
tologic malignancies (197). In non-small cell lung cancer
(NSCLC), the ADNMT3B subfamily was described, con-
sisting of at least seven DNMT3B variants resulting from
alternative splicing, some lacking enzymatic activity (198).
These different ADNMT3 B isoforms can differentially reg-
ulate methylation of specific genes, including the tumor sup-
pressor RASSFI1A, which is specifically methylated by the
ADNMT3B family member ADNMT3B4 (199). A recent
study found that DNMT3B isoforms lacking catalytic ac-
tivity were highly expressed in HCC relative to healthy liver
tissue (200). Upon hepatocyte-specific DNM T3 B deletion,
mice exhibit a higher incidence of HCC relative to control
mice, suggesting that catalytically-active 3B may play a pro-
tective role against hepatocarcinogenesis (200).

INTERACTIONS OF DNMTS AND THEIR MISREGU-
LATION IN CANCERS

The interactions of DNMTs with proteins and post-
translationally modified histones regulate DNA methy-
lation at specific genomic regions in various cell types
(6,97,201,202). Spurious DNA methylation in cancer may
be caused by the disruption of conventional DNMT inter-
acting partners or the formation of new complexes due to
the aberrant expression of developmental factors that mis-
direct DNMTs to atypical genomic sites (Table 1).

Interaction of DNMTs with DNA binding factors

Site-specific DNA methylation is regulated by transcrip-
tion factor-mediated recruitment of DNMTs to their bind-
ing sites, leading to specific changes in gene expression
(Figure 3). For example, p53, a tumor-suppressing tran-
scription factor, interacts and stimulates DNMT1 activity,
which consequently represses the SURVININ promoter in
human fibroblasts (203). In osteosarcoma cells, MYC tar-
gets DNMT3A to MYC-specific gene promoters to medi-
ate gene repression (204). In NTH3T3 cells, PU.1, a master
regulator for myeloid and B-cell lineage development, re-
cruits DNMT3A/B to methylate promoters of the TSGs
pl6 and p27 (205). Further, in HCT116 cells, DNMT3A
interacts with DAXX and functions as a co-repressor for
DAXX target genes independent of its methyltransferase
activity (206). PML-RARaq, a chimeric oncoprotein formed
by an aberrant translocation of PML gene next to RAR«,
recruits DNMT3A and DNMT1 to silence the promoter of
the tumor suppressor RARB2 gene in acute promyelocytic
leukemia (207). DNMT3A also interacts with ISGF3vy, a
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Table 1. List of DNMT interacting partners in human cancers. This table shows a list of DNMT interactions with proteins which play important roles in

several human cancers as described in the listed references

Interacting partner (s)

DNMT

Evidence in human cancer

Ref.

DNA-bound proteins

Chromatin-modifiers

CFP1
pS3
DAXX

MECP2

PCNA
MYC

Rb

MAFG
ZNF304
PU.1
PML-RAR«

ISGF3y

UHRF1

STAT3

SETDBI

hNaalOp

HDACI/2

HPI1

LSH

MBD3
NsPcl
DMAPI

USP7

EZH2
KDMIA

G9a

PRCI

Suv39H1

DNMTI1
DNMT3A
DNMTI1

DNMTI1

DNMTI1
DNMT3A

DNMTI

DNMT3B

DNMTI
DNMT3A/B
DNMT3A/ DNMTI

DNMT3A

DNMTI1

DNMTI1

DNMT3A

DNMTI

DNMTI/DNMT3A/B

DNMTI

DNMT3B

DNMT3A/B
DNMTI
DNMTI

DNMTI

DNMTI1
DNMT]I

DNMTI1

DNMT3A R882H

DNMTI1/3A/3B

Disruption of this interaction reduces
tumor growth in glioma cells.

Represses p53-mediated gene expression
DAXX recruits DNMTT to specific
genomic loci to regulate autophagy
programs in prostate cancer

Interaction mediates hypermethylation at
ESRI, survivin and cdc25¢ genes in breast
cancer.

Disruption of this interaction is an
oncogenic event in tumorigenesis
Induces promoter methylation and
miR-200b silencing in breast cancer

Rb inhibits the methyltransferase activity
of DNMT1, which may lead to global
hypomethylation in osteosarcoma
Silencing of CIMP genes in colorectal
cancer

Silencing of CIMP genes in colorectal
cancer

Recruits DNMTs to silence TSGs in
NIH3T3 cells

Silences the RARB2 gene in acute
promyelocytic leukemia

Disruption of this complex enhances the
efficiency of chemotherapy in mice
tumors

Disruption of this complex induces
tumorigenesis in astrocytes, breast, lung,
and mesothelial cells

May be involved in STAT3 mediated
transcriptional repression of tumor
Suppressor genes

Mediates transcriptional repression of
tumor suppressor genes

Recruits DNMT]1 to suppress TSG
expression and enhances DNMT1
activity

Mediates maintenance of
heterochromatin in normal and cancer
cells

Disruption of this interaction promotes
tumorigenesis in mice

Depletion of LSH reduces DNMT3Bs’
association with DNA in
erythroleukemia

Mediates gene silencing on the MT-1
promoter in lymphosarcoma cells
Silences HOX genes

Disruption of this interaction increased
sensitivity of cancer cells to
chemotherapy in colorectal cancer
Interacts with and stabilizes DNMT]1,
promoting the catalytic activity of
DNMTI

Mediates silencing of miR-484 and
contributes to cervical cancer progression
Localized to heterochromatin in a cell
cycle-dependent manner in cancer cells
Coordinates DNA and histone
methylation during replication and has
been implicated in small cell lung cancer
Silences differentiation in a
DNA-methylation independent manner
May be responsible for Snail-mediated
E-cadherin repression in breast cancer

(214)
(221)
(270)

(203)

(220)
@271)

(212)

(209)
(210)
(205)
(207)

(208)

(219)

(272)

(231)

(273)

(211,233.274)
(227

(245)

(241)
(232)
(227,234)

(275,276)

(277)
(237)

(278.279)

(230)

(280)
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Figure 3. Schematic representation of transcription factor-mediated recruitment of DNMTs in cancer. (A) Unmethylated promoter regions typically pro-
mote transcription. Transcriptional repressors potently recruit DNMTs to mediate site-specific DNA methylation at promoter or enhancer regions that
attenuate transcription of genes, especially TSGs in cancer. (B) Gene repression by recruitment of DNMTs by transcription factors can be independent of
the methyltransferase activity of DNMTs. TR-bound DNMTs may function as an artificial co-repressor or recruit chromatin-modifiers that mediate gene
repression at target sites. DNMT — DNA methyltransferase; -Me — methyl group on methylated DNA; CM - chromatin modifier. TR — Transcriptional

Tepressor .

transcription activator induced upon interferon o stimula-
tion (202). High levels of DNMT3A /ISGF3+y complex indi-
cate a poor prognosis in tumors, and subsequent disruption
of this interaction enhances the efficiency of chemother-
apy in mice tumors (208). It is proposed that MAFG, a
transcriptional repressor, recruits a co-repressor complex
that includes DNMT?3B to methylate and silence CpG is-
land methylator phenotype (CIMP) genes in BRAF mu-
tant colorectal tumors (209). Similarly, promoter-bound
ZNF304 recruits DNMTI as part of a co-repressor com-
plex to methylate and silence transcription of CIMP genes
in KRAS mutant colorectal cancer (210).

DNMT]I, via its CXXC domain, directly interacts with
the Rb TSG and represses reporter constructs contain-
ing E2F binding sites without detectable changes in pro-
moter methylation (211). On the other hand, in osteosar-
coma cells, the interaction of Rb with DNMTI1 was
shown to inhibit its methyltransferase activity by disrupt-
ing DNA/DNMTI complexes, contributing to global hy-
pomethylation defects, which is a general phenomenon
in most cancers (212). CXXC finger protein 1 (CFPI1), a
component of the Setdl A and Setd1B methyltransferase
complexes, directly interacts with DNMT1. CFP1-deficient
ESCs show global hypomethylation and loss of DNMT]1
protein suggesting the role of CFP1 in DNMT1 protein sta-

bility. (213). Disruption of the DNMT1/CFP1 interaction
strongly increases the sensitivity of tumors to chemother-
apy in mice and reduces tumor growth of glioma cells
(214). Based on more recent studies demonstrating a ro-
bust allosteric regulation of DNMTT1 activity (215), it will
be interesting to study the impact of the Rb/DNMT1 and
CFP1/DNMT]1 interaction on the activity and specificity
of DNMTT in normal and cancer cells.

DNMTI also interacts with PCNA, a processivity fac-
tor of DNA polymerase, to mediate post replication main-
tenance of DNA methylation (216,217). p21, a cell cycle
regulator, and DNMTT interact with PCNA in a mutu-
ally exclusive manner (216). It is speculated that the loss of
p21 in most cancers may result in an opportunistic interac-
tion of PCNA with DNMTT leading to mistargeting and
spurious DNA methylation (218). However, the disruption
of DNMT1/PCNA interactions promotes carcinogenesis
and tumorigenesis in several human cancer cells (219,220).
Thus, it is imperative to study the mechanisms underlying
the Ying Yang effects caused by DNMT interactions in can-
cer. Additionally, DNMT3A directly interacts with p53 to
repress pS3-mediated transactivation of p21 in breast cancer
cells, independent of its methyltransferase activity (221). Al-
together, with or without affecting their methyltransferase
activity, the interactions of DNMTs with other DNA bind-



ing complexes are essential for the proper regulation of gene
expression and genome stability, misregulations of which
are implicated in cancer.

Interaction of DNMTs with chromatin modifiers

Anomalous interactions between chromatin-modifying
proteins with DNMTs have been implicated in cancer.
Underscoring a functional relationship that facilitates the
cooccurrence of deacetylated histones and DNA methy-
lation, early studies showed interactions between histone
deacetylases HDAC1 and HDAC2 with DNMT3A/B and
DNMTI in mammalian cells (222-224). In human can-
cer cells, the combined activity of these enzymes has been
targeted by a combination of inhibitors which leads to
the re-expression of densely hypermethylated and tran-
scriptionally silenced TSGs. (225). Loss of DNMT]1 in
HCT116 cells is associated with an increase in H3K9 acety-
lation and a decrease in H3K9 methylation with concomi-
tant loss of HDACs and HPI, suggesting that DNMT1
mediates the maintenance of heterochromatin in human
colon cancer cells (226). Additionally, the disruption of
DNMT]I interaction with DNMT3B or HP1 promoted tu-
morigenesis in mice (227). Repressive chromatin is also in-
duced by an interaction of DNMTs with the SUV39H1
and EZH2 histone methyltransferases, which methylate hi-
stone H3K27 (46,59,228). Studies using peptides to dis-
rupt DNMT3B interaction with HDAC1 and EZH2 en-
hanced tumorigenesis in a mouse glioma model (227). Al-
though DNMTS3A interacts with polycomb group proteins
to mediate gene repression through its DNA methylation
activity (229) the DNMT3A R882H AML variant interacts
and recruits PRC1 to the PU.1 URE region, suggesting a
DNA methylation-independent silencing of cell differentia-
tion and lineage commitment in leukemogenesis (230).
Other examples of a collaboration between DNMTs and
chromatin-modifying enzymes include the specific inter-
action of DNMT3A with the histone methyltransferase,
SETDBI, that localizes DNMT3A to methylate and inac-
tivate the promoter of RASSF1A, a TSG commonly si-
lenced in human cancers (231). DNMTI1 associates with
a neural-specific polycomb, NSPcl and EzH2 to form a
complex that silences HOX genes (232). Some interac-
tions were shown to affect the DNMT activity, including
DMAPI-DNMT]I interaction, which enhanced the enzy-
matic activity of DNMT1 (233,234). DMAP1 participates
in the TIP60-p400 histone acetyltransferase (HAT) com-
plex, which acetylates histone H4 at lysine 16 (H4K16)
to relax condensed chromatin (235). Disrupting DMAPI-
DNMTI interaction resulted in an increased sensitivity
of glioma cancer cells to chemotherapy and irradiation-
induced cell death potentially due to repression of TSGs
(227). Correspondingly, the reduction in DMAP1 protein
by lentiviral sShRNA showed a decrease in DNA methy-
lation at the p16 promoter with a concomitant reduction
in cell proliferation (234). Additionally, DNMT1 activity
is affected by its interaction with LSD1. Demethylation of
DNMT]I protein by LSD1 was shown to be essential for its
stability. Although the loss of LSD1 in embryonic stem cells
resulted in progressive loss of DNA methylation (236), de-
pletion of LSD1 in cancer cells had no such effect (237). In
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cancer cells, however, LSD1-DNMT1 interaction is highest
during the S-phase, suggesting a role of this interaction in
cell cycle progression and pathogenesis (237-239).

At repetitive elements, DNMT3A and DNMT?3B inter-
act with specific histone modifications and the heterochro-
matin binding protein 1 (HP1), thus accumulating DNA
methylation at these genomic elements (47,88,240). DN-
MTs also interact with MBD2/3 and MeCP2 methyl CpG
binding proteins, leading to gene repression in normal and
cancer cells (46). For instance, in mouse lymphosarcoma
cells, DNMT3A/B interacts with MBD3 to mediate gene
silencing on the MT-I promoter (241). An ATP-dependent
chromatin remodeling protein, LSH, associates with DN-
MTs to mediate DNA methylation at specific genome sites
and repress transcription (242,243). Consistent with the ob-
servation that DNA hypomethylation is prevalent in can-
cer (244), the deletion of LSH in mice resulted in the re-
duced association of DNMT3B with DNA and the global
loss of DNA methylation leading to the development of ery-
throleukemia (245).

Interaction of DNMTs with modified histone tails

DNMTs interact with specific post-translational modifica-
tions on histones through their N terminal motifs, thus po-
tentially targeting DNA methylation and regulating the re-
gional specificity of DNMTs (reviewed in (246)). DNMT?3
enzymes have two chromatin interacting domains, the ADD
(ATRX-DNMT3-DNMT3L) domain, and the PWWP do-
main, both of which mediate interactions of DNMTs with
chromatin and regulate their activity on nucleosomal DNA.
(247). The PWWP domain of DNMT3B interacts with his-
tone H3K36me3, and its catalytic domain allosterically in-
teracts with DNMT?3A catalytic domain. Thus a concerted
interaction of DNMT3B3, a catalytically inactive isoform
of DNMT3B, with DNMT3A and histone H3K36 was
shown to recruit and enhance the activity of DNMT3A at
H3K36me3 gene regions and CpG islands in colorectal can-
cer cells (248,249). Similarly, DNMT?3A via its PWWP do-
main interacts with H3K36me?2 to mediate intergenic DNA
methylation (22). The ADD domains of DNMT3L and
DNMT3A specifically interact with unmethylated H3K4,
thereby triggering de novo DNA methylation at these sites
(92,93,250). An interaction between the ADD domain of
DNMT?3A with H3K4me0 releases DNMT3A from an au-
toinhibited conformation (20,92,93,251) (Figure 4). These
observations are consistent with findings that DNA methy-
lation inversely correlates to H3K4 methylation in em-
bryonic stem and somatic cells (11,252,253). This mech-
anistic feature allows dynamic regulation of DNMT3A
activity wherein loss of histone H3K4me can potentially
recruit/trigger the activity of DNMT3A via the interac-
tion of its ADD domain with unmethylated histone H3K4.
Indeed recent studies elucidated such a mechanism that
involves the interaction of DNMT3A with the LSDI1-
Mi2/NuRD complex and targets DNA methylation to the
enhancers of pluripotency genes during ESC differentia-
tion. As pluripotency is turned off post differentiation, re-
pression of PpGs is orchestrated by a series of chromatin-
associated enzymatic activities of the LSD1-Mi2/NuRD —
DNMT3A complex. Histone deacetylation and demethyla-
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Figure 4. Illustration of cross-talk between DNMT3A and the LSD1-Mi2/NuRD complex in normal versus cancer cells. The ADD domain alloster-
ically inhibits the methyltransferase activity of DNMT3A via direct interaction with the catalytic domain. Inactive DNMT3A interacts with the
LSD1/MI2/NuRD complex and is recruited to active enhancers via interactions with transcription factors such as OCT4. Notably, the demethylase
activity of LSDI is inhibited by OCT4, and its loss thereof activates LSD1 to demethylate H3K4. This releases the ADD domain to interact with unmod-
ified H3K4, which relieves the activity of DNMT3A to methylate DNA. The deacetylation of H3K27 by the MI2/NuRD complex in concert with DNA
methylation creates a repressive environment that hinders gene expression. However, in cancer cells with elevated OCT4 expression, OCT4 remains bound
to enhancer regions and inhibits the activity of LSD1, thus, retaining H3K4 methylation. The methylated H3K4 maintains DNMT3A in an autoinhibited
state, preventing its participation in mediating a repressive chromatin environment, leading to spurious expression of genes such as PpGs in cancer.

tion by LSD1-Mi2/NuRD complex facilitates the interac-
tion of DNMT3A-ADD domain with histone H3 leading
to subsequent activation of DNA methyltransferase activ-
ity at PpG enhancers (254) (Figure 4). These observations
are crucial given that about a third of all cancers abnor-
mally express PpGs. A disruption in the enhancer repression
mechanism could potentially allow spurious expression of
PpGs in cancer. In line with this hypothesis, a subsequent
study showed incomplete PpG repression in differentiating
embryonal carcinoma cells, owing to a failure in LSD1 and
DNMTS3A activity at their respective enhancers. Interest-
ingly, it was shown that in differentiating ECC, high OCT4
expression leads to its continued interaction with LSDI1
and that OCT4 inhibits LSDI1 activity. This inhibits DNA
methylation through the retention of H3K4me at the PpG
enhancers in ECCs (255).

Besides the canonical histone tail modifications that in-
teract with DNMTs, the association of DNMT1 with ubiq-
uitinated H3 activates its enzymatic activity (256,257). In-
teraction of DNMTs with modified histone tails has been
implicated in cancer. Particularlyy, DNMTs are enriched

at high CpG density class genes in embryonic carcinoma
cells (ECC). Notably, this high enrichment of DNMTs
correlates with the increased enrichment of H3K27me3,
H2AK119ub and H3K36me3 histone modifications in EC
cells (258).

CONCLUSIONS/OUTLOOK

Here we review the enzymatic and biological properties of
DNMTs, and the effects of their activity in normal and can-
cer cells. We discuss the known effects of DNMT3A mu-
tations in Acute Myeloid Leukemia in light of the struc-
tural and enzymatic properties of DNMT3A and regulation
of DNMT function by transcriptional, post-transcriptional
mechanisms, and protein—protein interactions.

Our understanding of the regulatory processes that con-
trol the activity of DNMTs is far from complete. This
is partly because the effect of DNA methylation on gene
expression is ‘context’ dependent, and ‘context’ could be
defined by DNA sequence, position relative to genes,
and chromatin environment. For example, whereas DNA



methylation at gene promoters coincides with gene repres-
sion, highly transcribed genes have high DNA methylation
in their gene bodies. As a result, loss of DNMT regulation
has varying effects in cancer, resulting in both hyper- and
hypomethylation of the genome.

DNMTs sustain one of the most well-studied epigenetic
regulatory mechanisms, putting them at the forefront of re-
search related to TSG silencing, oncogene expression, and
cancer cell proliferation. Expression changes in DNMTs,
particularly overexpression of DNMT3B, are reported in
many cancers. DNMT expression can be upregulated by di-
verse factors, including Spl and Sp3 zinc finger proteins,
Wilms tumor 1, Homeobox B3 and various human viruses
(259-261). Both losses of transcriptional repression con-
trol and gain of spurious induction have been reported
to explain high DNMT expression in cancers. Nucleoside
analogs, azacytidine, and decitabine, which target DNMTs
are used to treat myeloid malignancies. However, the effec-
tiveness of these drugs is limiting due to their low bioavail-
ability, relative toxicity, and non-specific effects at high
doses. (reviewed in (262)). A new class of non-nucleoside
drugs targeting DNMTs in cancers is currently being devel-
oped to potentially mitigate these challenges (263,264).

Targeting of DNA methylation to regulatory elements
is orchestrated by a complex interplay of DNA and
chromatin associating factors that associate with DN-
MTs. A list of factors directly or indirectly interact-
ing with DNMTs is compiled in Table 1. For exam-
ple, a cross-talk between LSD1/Mi2NuRD complex with
DNMT3A at the PpG enhancers ensures deposition of
DNA methylation at these sites when the genes are
turned off. Disruption of this mechanism leads to in-
complete gene repression in embryonal carcinoma cells
(255). Similarly, repression of NY-ESOI gene in glioma
and mesothelioma cells occurs through sequential re-
cruitment of three chromatin-modifying complexes: (i)
HDACI1/mSIN3a/NCOR complex deacetylates the pro-
moter, (i) DNMT3B/HDAC1/EGRI1 complex establishes
site-specific DNA methylation and histone deacetylation,
and (iii) DNMTI1/PCNA/UHRF1/G9a complex main-
tains DNA methylation and initiates heterochromatiniza-
tion by introducing H3K9me?2 repressive mark (265). A sim-
ilar strategy at repetitive elements establishes and maintains
heterochromatin, preventing chromosomal aberrations and
ensuring centromere maintenance. The process involves
cross-talk between DNMT3A /3B with HP1 and H3K9me3
(266). The importance of the discovery of cross-talk mech-
anisms is emphasized by the success of combination thera-
pies targeting DNMTs and other chromatin-modifying en-
zymes, such as HDACS in various cancers. (41,267).

Although DNA methylation is pervasive across the mam-
malian genome, in cancer cells, an aberrant increase in DNA
methylation occurs at defined sites, suggesting mistarget-
ing rather than increased enzymatic activity. Therefore, in
the simplest model, inhibitors that disrupt the interactions
mistargeting DNMTs in cancer cells can potentially prevent
aberrant targeting and hypermethylation. For more com-
plex mechanisms, the cascades of regulatory reactions that
affect DNMT activity can be modeled to design inhibitors
that disrupt DNMT activity during cancer development.
A thorough analysis of similarities and differences in the

NAR Cancer, 2021, Vol. 3, No. 4 13

allosteric regulation and structure-function relationship of
DNMTs will enable the development of inhibitors that se-
lectively target these enzymes. Furthermore, owing to the
tissue-specific expression of DNMTs, their pathways may
also vary in different cancers. Understanding the tissue-
specific mechanism of DNMTs could potentially lead to an
effective cancer-specific therapeutic strategy.

In conclusion, an in-depth understanding of DNMTs,
their enzymatic control, interaction partners, chromatin lo-
calization, and interaction with various signaling pathways
is needed for the discovery of new cancer drug targets and
to deepen our understanding of mechanisms that define cell
identity.
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