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Proof of principle study of ultrasonic particle
manipulation by a circular array device
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A feasibility study of a circular ultrasonic array device for acoustic particle manipulation
is presented. A general approach based on Green’s function is developed to analyse the
underlying properties of a circular acoustic array. It allows the size of a controllable
device area as a function of the number of array elements to be established and
the array excitation required to produce a desired field distribution to be determined.
A set of quantitative parameters characterizing the complexity of the pressure landscape
is suggested, and relation to the number of array elements is found. Next, a finite-
element model of a physically realizable circular piezo-acoustic array device is employed
to demonstrate that the trapping capability can be achieved in practice.
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1. Introduction

The acoustic radiation force (King 1934) is the basis of ultrasonic methods of
particle manipulation. The technique is complementary to optical and dielectric
methods, in particular for larger biological cells (Hultström et al. 2007; Bazou
et al. 2008) where optical methods reach their limits, and for particles that do not
posses high optical contrast in a medium. Owing to the typical micrometre scale
of the fields and nanoNewton force magnitudes, ultrasonic particle manipulation
techniques are used in applications where large numbers of particles need to
be handled, as in particle fractionation (Yasuda et al. 1995; Ratier & Hoyos
2010), sorting (Johnson & Feke 1995) and medium exchange (Augustsson et al.
2009) devices or for cell agglomeration that allows filtering of cells from fluids
(Coakley 1997; Coakley et al. 2000). Also, the acoustic radiation force was
reported to be used in the production of meta-materials (Saito et al. 1998, 1999;
Mitri et al. 2011).

Of high interest are more general-purpose acoustic devices that allow
particles to be manipulated around the acoustic cavity rather than driven
to specified locations determined by a stationary acoustic field. A review in
Courtney et al. (2012) indicates four types of acoustic particle manipulation
approaches. These are: mode switching, ‘acoustical tweezers’, linear arrays and
counter-propagating waves.
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The mode switching manipulation method is based on trapping the particles at
the nodes of resonant standing waves and spatially shifting the nodes by means
of switching between resonant frequencies (Trinh et al. 1986; Min et al. 1992;
Glynne-Jones et al. 2010). The acoustic tweezers method is similar in principle to
the optical tweezer technique (Ashkin et al. 1987) and operates by trapping the
particles in the focal point of an acoustic beam (Wu & Du 1990; Wu 1991; Lee &
Shung 2006; Lee et al. 2009). Particle manipulation in this method is achieved by
physical displacement of the transducers generating the field. A development of
this approach based on manipulation by propagating Bessel beams was analysed
in the work of Marston (2006) and Mitri (2008). In the method based on linear
arrays, two-dimensional traps are formed by activating selected elements of the
array opposing a passive reflector (Kozuka et al. 1998; Démoré et al. 2010).
Here, the manipulation is achieved by selective switching of the transducers.
The last approach involves generating a standing wave as a sum of two counter-
propagating waves. This allows the locations of the field nodes to be changed by
varying the relative phase between the two sources. The problem of generating
counter-propagating standing waves without generating resonant standing waves
(Kwiatkowski & Marston 1998) was resolved by using transducers acoustically
matched to the fluid with an absorbing backing to prevent reflections leading to
resonant modes (Courtney et al. 2010). This method allows a manipulation of
particles on a two-dimensional plane to be achieved using a pair of orthogonal
phase-controlled counter-propagating waves (Courtney et al. 2012).

The last approach allows multiple particle traps located at the nodes of a two-
dimensional lattice to be moved en masse but does not allow the independent
control of individual traps. Greater flexibility is therefore required to match the
particle manipulation dexterity achieved using the optical tweezers (Ashkin et al.
1987). Thus, the principles of the device design reported by Courtney et al. (2012)
are taken a step forward to produce a dextrous acoustic manipulation system. It
is based on a circular ultrasonic array such as shown in figure 1. This conceptual
device consists of a piezo-ceramic ring divided into a number of identical separated
elements, an absorbing backing layer, a matching layer and a fluid chamber.
The matching layer is used to optimize the coupling of the acoustic signal into
the fluid chamber in which the particle trapping and manipulation take place.
To generate an acoustic radiation force landscape f (King 1934) related to acoustic
force potential U (Gor’kov 1962) as f = −VU , each transducer in the array is
individually excited through a dedicated control channel. The device excitation
is designed to create a force potential landscape with wells in which particles
can be trapped, where the force potential U on a spherical non-elastic particle is
given by

U = pa3 1
rc2

(
1
3
f1|p|2 + 1

2k2
f2|Vp|2

)
, (1.1)

where p is the total pressure field, a is the radius of the particle, r is the medium
density, c is the speed of sound and the coefficients f1 and f2 are defined as

f1 = 1 − c2r

c2
0r0

and f2 = 2(r0 − r)
2r0 + r

, (1.2)
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Figure 1. Schematic of a 16 element circular piezo-electric transducer array device. Each element
in the array is excited by an individual voltage source. Matching between the transducers and the
fluid is achieved using a quarter-wavelength matching layer and the attenuating backing is used to
absorb the waves reflected from the back face of the transducers. (Online version in colour.)

where r0 and c0 are the density and the speed of sound in the particle, respectively
(Gor’kov 1962). Because the force potential field in equation (1.1) created by a
pressure distribution Ja(r), where Ja(r) is a Bessel function of the first kind of
order a, produces a potential with a local minimum at r = 0 for orders a > 0
(Marston 2006; Mitri 2008), such pressure distribution is capable of trapping
particles with densities r0 > r and would be a natural choice of the physically
viable field in a circular geometry characteristic of the device considered here. For
particles with small densities r0 < r, a J0(r) field similar to the optical tweezers
(Ashkin et al. 1987) should be considered.

The purpose of the analysis presented in the manuscript was to demonstrate
the feasibility of the circular ultrasonic array device to form and independently
manipulate multiple acoustic radiation force traps for dextrous particle
manipulation.

The analysis of the device is divided into two parts. In the first part,
fundamental properties of a generic circular acoustic array device are examined.
Here, the range of acoustic traps obtainable in the device is found, the dependance
between the fraction of the device area in which control over the acoustic field
can be achieved and the number of array elements is established, and the relation
between the field at the boundary and the field inside the area enclosed by
the boundary is determined. This relation allows the required excitation of
the array elements in a practical device to be calculated and the complexity
of the radiation force landscape to be characterized by a set of quantitative
parameters. The maximum complexity attainable for a given number of array
elements is found.

In the next part of the analysis, these general properties are applied to
the more realistic device shown in figure 1. The major difference from the
first part of the analysis is the model of the source of acoustic radiation at
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the device boundary. Whereas in the first part of the analysis, the boundary
is formed by an array of non-reflecting matched sources, in the realistic
device, the piezo-elements forming the boundary are mutually reflective because
the transducer-to-fluid matching is not perfect. Therefore, finite-element (FE)
modelling is required in the latter case to establish the acoustic field generated
by an excited array element. This field, together with the relation between the
fields on the boundary and in the area enclosed established in the previous
part, is used to determine the excitation of the array that produces the required
trapping field.

2. General formalism

(a) Green’s function approach

Control over the field distribution in the fluid is achieved by imposing the field on
the fluid boundary using a transducer array. The required field on the boundary
can be found using a reciprocity relation by starting with a physically viable
field in the volume enclosed, and tracing it back to the boundary. However,
the reciprocity cannot be implied straightforwardly for a discontinuous and open
boundary. In the following discussion, an analysis is presented to establish the
relation between the boundary and volume fields in such cases.

In general, the relation of the fields on the boundary and in the fluid volume
enclosed can be found using an integral representation derived from Green’s
theorem for steady-state harmonic waves (Morse & Feshbach 1953, p. 803). For
a fluid volume with no body forces, the pressure at an internal point P ∈ V can
be written as (Morse & Feshbach 1953, p. 806)

p(r1) =
∫
S

[
G(r1, r0)

vp(r0)
vn(r0)

− p(r0)
vG(r1, r0)

vn(r0)

]
dS(r0), (2.1)

where G(r1, r0) is Green’s function and n(r0) is the coordinate in the direction
of the normal on a boundary S . This integral representation is not directly
applicable because to calculate the pressure at an internal point, both the pressure
p and its normal derivative on the boundary must be known. However, taking
G(r1, r0) as a combination of fundamental solution of the Helmholtz equation
due to a point source −d(r1 − r0) inside the volume V and a homogeneous
solution, one of the terms in equation (2.1) can be dropped (Schmerr 1998,
pp. 157–159).

The circular array device is described in two-dimensional plane by the
coordinate system shown in figure 2, where r0 = (r0, q0) and r1 = (r1, q1) are
defined in accordance with equation (2.1) as polar coordinates of the internal
point P and the point source relative to the common origin O1, whereas r2 =
(r2, q2) is the polar coordinate of an internal point P with respect to the origin
O2 located on boundary S . The boundary S in equation (2.1) is defined by a
circle of a fixed radius r0 = R and the corresponding volume V enclosed by this
circular boundary is an infinitely long cylinder of radius R. The fundamental
solution of the Helmholtz equation in cylindrical coordinates due to a harmonic
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Figure 2. Definition of coordinate systems used in the integral representation in equation (2.1).

line source of wavelength l located at r0 (figure 2) can be written using Graff’s
addition theorem as (Martin 2006, pp. 29–61) follows:

i
4
H 1

0 (kr2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n

i
4
H 1

n (kr0)Jn(kr1) ein(q1−q0) if r0 > r1,

∑
n

i
4
Jn(kr0)H 1

n (kr1) ein(q1−q0) if r0 < r1,
(2.2)

where the wavenumber k = 2p/l. Green’s function satisfying the boundary
condition G(r1, r0)r0=R = 0 is

G(r1, r0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
n=−∞

i
4

(
H 1

n (kr0) − H 1
n (kR)

Jn(kR)
Jn(kr0)

)
Jn(kr1) ein(q1−q0) if r0 > r1,

∞∑
n=−∞

i
4

(
H 1

n (kr1) − H 1
n (kR)

Jn(kR)
Jn(kr1)

)
Jn(kr0) ein(q1−q0) if r0 < r1.

(2.3)

With this choice of Green’s function, the first term in equation (2.1) vanishes and
the pressure inside the volume p(r1) is uniquely determined by the pressure on
the boundary p(R, q0),

p(r1) =
∫ 2p

0
dq0p(R, q0)

∞∑
n=−∞

Jn(kr1) ein(q1−q0)

2pJn(kR)
. (2.4)

The relation of the boundary and volume pressures implied by equation (2.4) is
just an expression of the uniqueness theorem for the Helmholtz equation, stating
that for a given boundary condition, the solution inside the volume enclosed is
uniquely determined. Practically, this implies that by controlling the pressure
distribution on a boundary, any pressure distribution satisfying the Helmholtz
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Figure 3. Definition of coordinate systems used in the Graff’s transformation equation (2.5) with
a prototypical J1(kr2) trap located at (RT, qT).

equation can be generated inside the volume enclosed. In the case of single-
frequency devices, the acoustic landscape is constructed from linear combinations
of Bessel functions of the first kind, which are the physically viable non-divergent
solutions of the Helmholtz equation. Bessel function traps p(r) ∝ Ja(r) eiaq, of
orders a > 0 will be considered in the following because only such traps generate
a trapping field at the centre r = 0 for particles that are denser than the fluid
(Marston 2006; Mitri 2008).

A Bessel pressure distribution of order a centred at a point r0 with r0 = RT and
q0 = qT (figure 3) can be expressed in terms of r1 using Graff’s addition theorem as

p(r1) = p0

∞∑
m=−∞

Ja−m(kRT) ei(a−m)bTJm(kr1) eimq1 , (2.5)

where bT = qT − p and p0 is the pressure amplitude. The corresponding pressure
on the boundary is

p(R, q0) = p0

∞∑
m=−∞

Ja−m(kRT) ei(a−m)bTJm(kR) eimq0 . (2.6)

The fact that this boundary pressure gives exactly the pressure distribution as in
equation (2.5) can be readily verified by substituting the last expression into the
integral in equation (2.4)

p(r1) = p0

∑
m,l

Jm(kR)
Jl(kR)

Ja−m(kRT) ei(a−m)bTJl(kr1) eilq1

(
1
2p

∫ 2p

0
dq0 ei(m−l)q0

)
(2.7)

and using ∫
dq0 ei(m−l)q0 = 2pdlm . (2.8)

A practically important case of a discontinuous boundary will be considered next.
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(b) The effects of a discontinuous boundary and the number of array elements

In the circular array device analysed here, the fluid boundary is controlled by a
periodic array of separate piezo-elements. The effect of replacing the continuous
circular boundary by a finite number N of sources equally distributed along the
boundary can be qualitatively understood using the Nyquist theorem. Assuming
a linear array and substituting the spacing of D = 2pR/N between the elements
into the Nyquist condition 1/D > 2/l gives the minimum number of elements
to achieve a non-aliased signal Nmin = 4pR/l. If this requirement is violated,
aliasing will occur at large angles relative to the normal to the inner surface
of the boundary, i.e. in a ring Nl/4p � r < R adjacent to the inner boundary
surface. To evaluate the effect of replacing the continuous boundary by a finite
number N of sources in a circular array quantitatively, we start by representing
the boundary by a piecewise constant function of constant pressure on segments
of D4 < D length, where D = 2p/N , and with gaps of zero pressure in between.
The integral in equation (2.7) is then replaced by the sum

1
2p

∫ 2p

0
dq0 ei(m−l)q0 → 1

N

N /2∑
s=−N /2

1
D4

∫ sD+D4/2

sD−D4/2
dq0 eimsD−ilq0 , (2.9)

which, using the Poisson summation formula, can be expressed as

∞∑
s=−∞

d(m − l − sN )sinc
(

lD4

2

)
,

and the pressure in the volume becomes

p(r1) = p0

∞∑
m,s=−∞

sinc
(

mD4

2

)
Jm+sN (kR)

Jm(kR)

× Ja−sN−m(kRT) ei(a−sN−m)bTJm(kr1) eimq1 . (2.10)

To further simplify the analysis, we consider the case of infinitely small sources
D4 → 0 such that sinc(mD4/2) → 1. The practical validity of this assumption is
demonstrated towards the end of this section.

The sum in the last equation can be broken into
∑

m,s=0 + ∑
m,s �=0, where the

s = 0 part gives the principal term pT(r1) = p0Ja(kr2) eiaq2 and the remainder
contributes to the artefact field p̃(r1) created owing to the boundary discontinuity.
To determine the artefact field

p̃(r1) = p0

∑
m,s �=0

Jm+sN (kR)
Jm(kR)

Ja−sN−m(kRT) × ei(a−sN−m)bTJm(kr1) eimq1 , (2.11)

we consider the asymptotic behaviour of the Bessel function for large orders
(Abramowitz & Stegun 1964, p. 365),

JN (z) ∼
√

1
2pN

( ez
2N

)N
, (2.12)
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from which one can conclude that while the first term in equation (2.11),
Jm−N (kR)/Jm(kR), is limited for m < peR/l, the second term, Ja−sN−m(kRT),
becomes zero for |m + sN − a| > pe(RT/l). Therefore, if there exist m such that
Jm−N (kR)/Jm(kR) is limited ∀m : |m + sN − a| < pe(RT/l), the artefact field
p̃(r1) can be estimated by the sum over a finite number of orders of m,

p̃(r1) = p0

∑
|m+sN−a|<DM

|s|≥1

AmsJm(kr1) eimq1 , (2.13)

where DM = peRT/l and Ams are the appropriate coefficients in equation (2.11).
When RT increases, the largest order for non-zero Ja−sN−m(kRT) (e.g. N + a +

pe(RT/l) for s = −1) becomes greater than peR/l. In this case, only the lower
order terms in m can be neglected such that in general the artefact field can be
approximated by

p̃(r1) = p0

∑
|m|>|s|N−a−DM

|s|≥1

AmsJm(kr1) eimq1 . (2.14)

In order to understand the structure of equation (2.14), consider first the
RT = 0 case, in which the only contribution comes from m = ±N + a terms. In
this case,

p̃(r1) ≈ p0AN+aJN+a(kr1) ei(N+a)q1 + Aa−N Ja−N (kr1) ei(a−N )q1 , (2.15)

which, with the help of the asymptotic behaviour equation (2.12), indicates that
the artefact field introduces a disturbance outside a circle of radius r1 = l(N −
a)/pe. The disturbance field is determined by JN±a(kr1) and goes to zero for
r1 < l(N − a)/pe. This case is depicted in figure 4, where p(r1) calculated using
equation (2.7) for a = 1, N = 60 and a set of different values of RT is shown.
Because DM increases with RT, the lowest order m contributing to the artefact
field p̃(r1) decreases as implied by equation (2.14). Thus, the disturbance-free
region is reduced to r < l(N − a)/pe − RT, as shown in figure 4.

The maximum value of RT can be found by demanding that the trap lies
inside the distortion-free region. This requirement implies that the useful area of
the fluid chamber is defined by

RT <
1
2

(N − a)
pe

l. (2.16)

In the example shown in figure 4, the maximum value of RT corresponding to
N = 60 and R = 10l is RT ∼ 3.5l. The plots of p(r1), calculated according to
equation (2.4), show that indeed, for RT < 3.5l, the trap field appears undistorted;
for RT = 4l, the trap starts to overlap with the artefact field, and for RT = 6l, the
trap is completely destroyed in the artefact field. This set of plots also illustrates
how the undistorted region decreases with increasing RT.

Reversing the argument used to obtain the condition on the maximum useful
region in equation (2.14), the minimum number of elements such that the useful
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Figure 4. A J1 Bessel trap generated by a 60 element point-source array with R = 10l. In two of
the cases shown, the trap centre distance from the centre of the array is RT < 1/2l(N /pe) ∼ 3.5l

and in the other two cases, this condition is violated.

region is at least as large as the inner radius of the fluid chamber R can be
found to be

N >
2epR

l
+ a. (2.17)

This is a more stringent condition than the well-known Nyquist sampling
condition N > 4pR/l on account of the cylindrical geometry of the device.

Up to this point in the analysis, the effect of the finite source size D4 > 0
has been neglected. This assumption is justified if sinc(mD4/2) varies slowly
for m � 10. From here, the maximum size of the source can be estimated as
Dl ∼ pR/20, which is readily satisfied if the number of sources is N > 40.

This section can be summarized by indicating that as a result of a boundary
discontinuity, an artefact field appears in addition to the principal trapping field.
Because the artefact field is negligibly small inside the circular area defined by
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equation (2.14), it affects the principle field only outside this circle, whereas
the field inside remains virtually undisturbed. This means that potentially any
pressure field satisfying the Helmholtz equation can be generated by an array of
N elements within the area defined by equation (2.14), and the finite number
of array elements limits only the spatial extent of the controllable area but not
the complexity of the pressure landscape. The complexity of the landscape is
determined by the interaction of pressure fields of individual traps, which, in
the case of a single operating frequency device considered here, are given by
Bessel functions.

(c) Multiple trapping

Selective manipulation of multiple particles is an essential capability of the
device analysed here for which an ability to generate complex force landscapes
with separated particle traps is required. The trapping complexity grows with
the number of traps Np introduced; thus, given the number of traps Np, the
minimum average spacing between the traps dmin is established to characterize
the configuration complexity. For example, it is clear that for two particles,
the minimum spacing will be l, because at closer distance, two separate traps
will blur into one.

The average spacing between the particles is defined using the area S occupied
by the particles as

d =
√

S√
Np − 1

, (2.18)

where S is the area of the smallest rectangle enclosing all the particles, and dmin is
defined as the smallest spacing d between the traps for which the force potential
U contains Np individual and separate potential wells that allow Np particles to be
trapped. This loose definition of dmin is better explained graphically. In figure 5,
a potential landscape U given for configurations of Np = 6 traps with different
average spacings d is shown. Clearly, for d = 1.5l, the trapping ability of the field
is absent but appears for the spacing of d = 2.0l; in that case, six separate closed
traps become apparent. Thus, dmin = 2.0l for Np = 6 configuration.

The parameter dmin is independent of the number of array elements N . This
can be further seen from figure 5. The plots shown in figure 5a correspond to an
ideal case with a continuous boundary, and in figure 5b, the same configurations
are obtained with a 60 element point-source array. One can see that in the case
of an array with a finite number of elements, the field inside the circle defined by
equation (2.14) is identical to the field generated by a continuous boundary. This
indicates that dmin is independent of N ; however, the maximum spatial extent of
the configuration is limited according to the condition in equation (2.14).

Heuristically determined minimum average spacing dmin, minimum area Smin,
minimum extent Rmin and the minimum number of array elements Nmin required
are shown in table 1 for different Np. For example, for a configuration with Np = 6
traps, a minimum of Nmin = 48 array elements are required to contain the area of
Smin = 8l2 lying within a circular controllable area of radius Rmin = 2l, where Nmin
is found by substituting Rmin into equation (2.14). Thus, any of the parameters
listed in the table can be regarded as a function characteristic of the configuration
complexity with a variable Np. Also, one can see that these functions grow as a
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Figure 5. Force potential U for a polystyrene bead with six traps generated by (b) a 60 element
point-source array and (a) a continuous boundary. Potential landscapes with different average trap
spacing d are shown.

function of Np. For estimation of the complexity, an approximate formula for the
minimum extent Rmin can be used,

Rmin � 0.168N 2
p · l. (2.19)
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Table 1. The minimum average spacing dmin, the minimum area Smin of the configuration, the
minimum lateral extent of the configuration Rmin and the minimum number of array elements
required for generation of the configuration Nmin as a function of trap number Np.

Np dmin Smin Rmin Nmin

2 l 0.5l 9
4 l l2 0.5

√
2l 12

6 2l 8l2 2
√

2l 48
9 5l 100l2 5

√
2l 120

12 12.2l 900l2 15
√

2l 362
16 20l 3600l2 30

√
2l 724

3. Finite-element model of the device

In §2, the underlying properties of a circular acoustic array were derived by
assuming some pre-existing boundary conditions and by analysing their effect
on the field in the volume enclosed. However, the question of how the required
boundary conditions can be realized in practice was not addressed and is the
subject of this section.

In a practical device such as the one shown in figure 1, the field in the fluid
volume is produced by a piezo-ceramic transducer array. The field generated by
each element in the array is evaluated using an FE model. This calculated field
is then used to establish the excitation of the array elements required to produce
a boundary condition such as determined in §2.

The FE model of the device was obtained using a commercial FE package
(PZFlex; Weidlinger Associates Inc.). The device consists of a piezo-ceramic ring
(PZ26, Ferroperm piezoceramics A/S) of inner radius 5.35 mm and wall thickness
1 mm, divided into 16 elements, separated by air-filled gaps and with a backing
layer and a quarter wave (341 mm at 2 MHz) matching layer (15% by volume
alumina-loaded epoxy).

A two-dimensional model, assuming plane strain in the perpendicular direction,
was used and solved with a time-stepping algorithm. In order to reduce the
size of the model, only half the system was modelled with a symmetrical
boundary condition at the mid-plane x = 0 and, rather than model a backing
layer thick enough to absorb all incoming radiation, backing material (10%
by volume tungsten-loaded epoxy) was modelled extending the modelled area
out to a square of width 4 mm wider than the outer diameter of the piezo-
electric array, and absorbing boundary conditions applied to remove reflections
from the boundaries of the model. In a practical device (Courtney et al. 2012),
the backing layer of 9 mm thickness was used, absorbing 99 per cent of the
incident energy.

Since all the array elements are assumed to be identical, it is sufficient
to calculate the system response to a single excited element, e.g. the bottom
element in figure 1. This element was excited with a single cycle at 2 MHz and
the model run until pressure in the device had decayed to negligible levels.
Steady-state responses (in terms of pressure complex amplitudes) were calculated
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Figure 6. FE-based calculation of a force potential U in a 16 element device. (a) Single device
excited at the bottom of the array. (b) All the elements excited to generate a trap at RT ∼ 0.937l

distance from the centre.

by performing Fourier transforms of the response at each node of the model,
extracting the complex amplitude at 2 MHz and normalizing to the applied
voltage amplitude at the corresponding frequency.

Given the response of the system to excitation of one element (figure 6a),
the response to excitation of multiple elements can be calculated as the linear
superposition of the single-element response, rotated appropriately and scaled
with a complex amplitude to allow different excitation amplitudes and phases to
be applied to each transducer. The total field in the fluid chamber is thus given by

p(r) =
N∑

i=1

Vipi(r), (3.1)

where p(r) is the total pressure in the fluid chamber, pi(r) is the pressure response
of the system to the excitation of an element i and Vi is the excitation amplitude
of the element.

According to §2, in order to generate the required pressure landscape p(r),
it is sufficient and necessary to impose the corresponding boundary pressure
p(r = R, q) at some R. However, given only an N element device, it is only
possible to satisfy this boundary condition approximately. To determine the
optimal amplitudes (Vi) giving the best approximation, the quadratic average
error function between the required boundary pressure p(R, q) and the boundary
pressure generated is defined as

E =
∫

dq

∣∣∣∣∣p(R, q) −
∑

i

Vipi(R, q)

∣∣∣∣∣
2

, (3.2)

and the values of Vi are found by solving the set of 2 × N linear equations derived
from the condition

vE
v Re Vi

= 0 and
vE

v Im Vi
= 0. (3.3)
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The force potential distribution with a trap at RT ∼ 0.937l, corresponding to the
maximum displacement distance according to equation (2.11), obtained using
the outlined optimization procedure, is shown in figure 6b. Here, similar to the
idealized case analysed in §2, the field inside the area defined by equation (2.11)
is distortion free, and the field outside this area is dominated by the artefact field
contribution.

This analysis demonstrates that it is possible to impose the boundary
conditions necessary for creating pressure traps using a physically realizable
ultrasonic array (figure 1) based on the fields predicted by an FE model. However,
it is clear that the successful operation of a physical device using this method
depends on how accurately the FE model represents the performance of each
array element. For example, a real device is three dimensional, there will be
inter-element variability and there may be other manufacturing imperfections
leading to deviations between a numerical model and the true performance. The
robustness of the proposed method depends on its insensitivity to such deviations,
which are likely to impact on the physical design of the device. This is the subject
of ongoing research.

4. Conclusions

A circular transducer array device (figure 1) for manipulation of particles was
analysed. The purpose of the analysis was to examine the ability of the device
to produce pressure landscapes required for particle manipulation. This proof
of principle analysis was carried out in two steps. First, a general theoretical
approach based on Green’s function integral representation of volume pressure
as a function of the boundary pressure was developed. This formalism has been
used to establish the upper limit of controllable area of the operational volume as
a function of the number of array elements and to evaluate the complexity price
function as a function of the number of traps. Using the conclusions drawn from
the formal approach, an FE model of a practically realizable device was used
to obtain a preliminary assessment of its feasibility. Although a further in-depth
modelling of the practical device is essential, the preliminary results presented
indicate the feasibility of using such a device for particle manipulation.

Support from the EPSRC of the United Kingdom (grant no. EP/G012067/1) is gratefully
acknowledged. The authors also thank the collaborators of the Sonotweezers project.
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