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Urbanization and humidity shape the
intensity of influenza epidemics
in U.S. cities
Benjamin D. Dalziel1,2*, Stephen Kissler3, Julia R. Gog3, Cecile Viboud4,
Ottar N. Bjørnstad5, C. Jessica E. Metcalf 6,7, Bryan T. Grenfell4,6,7

Influenza epidemics vary in intensity from year to year, driven by climatic conditions
and by viral antigenic evolution. However, important spatial variation remains
unexplained. Here we show predictable differences in influenza incidence among
cities, driven by population size and structure. Weekly incidence data from 603 cities
in the United States reveal that epidemics in smaller cities are focused on shorter
periods of the influenza season, whereas in larger cities, incidence is more diffuse.
Base transmission potential estimated from city-level incidence data is positively
correlated with population size and with spatiotemporal organization in population
density, indicating a milder response to climate forcing in metropolises. This suggests
that urban centers incubate critical chains of transmission outside of peak climatic
conditions, altering the spatiotemporal geometry of herd immunity.

P
redicting the epidemiology and evolution
of influenza is an important goal for public
health and an approaching milestone in
the study of complex systems (1, 2). Patterns
of influenza spread and diversification are

shaped by interacting ecological and evolution-
ary processes, including viral antigenic evolution
(3–6), climatic conditions affecting transmission
potential (7), and spatial heterogeneity in trans-
mission among hosts, from local (8, 9) to regional
(10, 11) to global scales (12). A global latitudinal
gradient in epidemicperiodicity (withmore strong-
ly seasonal epidemics at temperate latitudes) is
associatedwith climatic variation (13), with fluc-
tuations in specific humidity as a key climatic
driver (14). In temperate regions,multiyear “boom
and bust” cycles in strain-specific incidence are
associatedwith epochal evolution, involving inter-
mittent jumps through antigenic space driven by
antigenically localized susceptible depletion (3, 4).
This process is coupled to an evolutionary back-
bone shaped by global migration patterns in the
virus (15), including repeated seeding from per-
sistent regions, particularly in Asia (16, 17). At
regional scales, differences in epidemic timing
are correlated with patterns of human contact,
including commuting patterns and the timing of
school terms (10, 11, 18, 19). Robust epidemic and
antigenic forecasts require a predictive under-

standing of the emergent properties of these in-
teracting processes (20, 21).
Cities are the principal locations for influenza

transmission in humans (22), and therefore the
primary context where drivers of transmission
interact. However, recent comparisons of city-
level influenza transmission patterns have re-
vealed unexplained differences among cities
within the same broad climatic and antigenic
regimes, suggesting that endogenous differences
among citiesmay interact with climatic and evo-
lutionary drivers to cause divergent epidemic
dynamics at the city level (23, 24). Cities can differ
from each other in several ways that could po-
tentially influence influenza transmission, includ-
ing variation in the timing and coverage of public
health interventions (25, 26) and variation in
population health and socioeconomic conditions
(27–29). Cities also differ fundamentally in pop-
ulation size, spatial structure, and connectivity,
in ways that may affect infectious contact pat-
terns (30, 31). These have the potential to sub-
stantially alter epidemic dynamics, including
responses to climate forcing, and the impacts
of public health interventions (28, 32, 33). How-
ever, the role of city size and structure in shap-
ing transmission patterns of seasonal influenza
is not well understood.
We address this here using 6 years (2002 to

2008) of data on weekly incidence of influenza-
like illness (ILI) in 603 three-digit postal (ZIP)
codes across the United States, assembled from
medical claims data (34). ZIP codes are designed
for efficient mail distribution such that the first
three digits typically represent a contiguous geo-
graphic area surrounding amajor city. Incidence
in a ZIP code is measured as the proportion of
physician visits that are for ILI in a given week,
and is strongly correlated with U.S. Centers for
Disease Control and Prevention (CDC) reference
influenza surveillance time series (Spearman’s

r > 0.88). Our analysis corrects for sensitivity
and specificity of ILI surveillance as an estimate
of influenza incidence by incorporating city-
specific reporting rates that vary temporally be-
tween the peak and off-peak influenza season
(materials and methods).
The ILI data showpersistent differences among

cities in how influenza incidence is distributed
throughout each season (Fig. 1, A and B). Let the
incidence distribution pij represent the fraction
of ILI incidence in influenza year j (centered on
Northern Hemisphere winter: 1 July to 30 June)
that occurred during week i (weeks from 1 July
of the current influenza year) in a given city, and
define epidemic intensity, nj, as the inverse of
the Shannon entropy of incidence distribution in

a given city and year, nj ¼
�
�
X
i

pij log pij

��1
,

which we normalize to be between 0 and 1 by
subtracting the global minimum and then di-
viding by the global maximum across all cities.
Epidemic intensity thus defined is minimized
when incidence is spread evenly across weeks
and increases as incidence becomesmore inten-
sively focused in particular weeks. Because nj is
a function of incidence distribution, rather than
raw incidence, it is invariant under differences
in overall reporting rates and/or attack rates
among cities and years.
We find that differences in nj among cities per-

sist across years—some cities have consistently
more intense epidemics than others, year after
year. These differences among cities are epidemi-
ologically significant, comparable in magnitude
to differences in intensity among years associ-
ated with antigenic shifts [e.g., the increase in epi-
demic intensity across all cities in the 2003–2004
season associatedwith theA/Fujian/411/02 (H3N2)
strain variant is comparable in magnitude to dif-
ferences in intensity among cities in any season;
Fig. 1C], and are also apparent in separate publicly
available data, and across wider time scales, in-
cluding since the 2009 pandemic (29) (fig. S1).

Differences inmean intensitynº
X

j

nj show

a geographic pattern, with intense epidemics
focused in the east (Fig. 1D). Mean intensity also
varies with population size (Fig. 1E) and cli-
mate (Fig. 1F). In particular, n tends to be higher
in smaller populations, especially those with
high amplitude in seasonal fluctuations of spe-
cific humidity.
We hypothesize that these patterns are caused

by differential responses to climate forcing,
mediated by divergent spatiotemporal patterns
of transmission potential in cities of different
sizes. By transmission potential, we mean the
propensity for two randomly selected hosts in a
population to attain spatiotemporal proximity
sufficient for influenza transmission—sufficient
proximity for the transfer of respiratory droplets
from one host to the other. As specific humidity
decreases in the winter, influenza virus remains
viable outside a host for longer, expanding the
spatiotemporal “cloud of risk” generated by an
infected host and increasing transmission poten-
tial in the population. Seasonal, climate-driven
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increases in transmission potential thus drive
the reproductive number of the infection (the
expected number of secondary cases caused by
an index case) upward in winter, eventually
leading to an epidemic (23, 24, 35). However,
climate is less important when the spatiotem-
poral distance between a pair of hosts is small,
as is the case for a subset of potential contacts,
such as those that reside, travel, or work in
close proximity (fig. S2). This base transmis-
sion potential—transmission potential that is
not strongly modulated by climate—could in-
fluence epidemic dynamics by facilitating in-
fluenza transmission over a wider range of
climatic conditions, in turn reducing popu-
lation-level susceptibility during the peak in-
fluenza season.
We thus propose that elevated base transmis-

sion potential in the presence of climate forcing
leads to divergent epidemics among cities: In-
creased base transmission potential in urban
centers enhances influenza spread outside of
peak season, which elevates herd immunity to
currently circulating strains, and subsequently
attenuates explosive spread when climatic con-
ditions aremost favorable for transmission. This
leads to the counterintuitive outcome that larger
cities, with higher base transmission potentials,
havemore diffuse influenza epidemics. Base trans-
mission potentialmay be elevated in large cities as
a consequence of increased spatial organization,
including aggregation of residences and work-

places, and the prevalence of high-density mass
transit, among other factors (30, 31).
We first demonstrate this effect using a

standard climate-forced susceptible-exposed-
infected-removed-susceptible (SEIRS) compart-
mental model for influenza epidemics (Fig. 2;
materials and methods). Individuals enter the
susceptible compartment in the model via im-
munewaning following infection. New infections
are generated by exposure of a susceptible indi-
vidual to an infectious individual, at rate bSI

N ,
where N represents populations size, and S(t)
and I(t) are functions of time that represent the
number of susceptible and infectious individuals,
respectively. For a given number of susceptible
and infected individuals, the rate of appearance
of new infections is governed by the transmis-
sion function b(t) = k + se−wq(t), where k repre-
sents city-level base transmission potential, s
the maximum gain in transmission potential at
0 specific humidity, and w the rate of loss in
viral viability due to specific humidity q(t), in
units of kg/kg. The transmission function b(t)
thus consists of a sum of two components: a
seasonally invariant base transmission potentialk,
representing transmission among contactswhose
close spatiotemporal proximity renders climatic
conditions moot; and additional transmission
modulated by specific humidity, se−wq(t), which
increases as drier conditions in U.S. cities in the
winter increase the risk of transmission over
larger spatiotemporal distances. This transmis-

sion function has been successfully used to fit
and forecast seasonal influenza epidemics in
previous studies (14, 24).
The SEIRS model shown in Fig. 2 is proof of

concept that increasing base transmission poten-
tial can decrease epidemic intensity, as predicted.
However, there are several obstacles to confront-
ing the model with incidence data in its current
form. First, the model is a forced nonlinear os-
cillator, so small changes in parameter values
may produce large changes inmodel predictions,
which substantially complicates model fitting.
Second, whereas the model assumes that inci-
dence is perfectly observed in continuous time,
the data consist of discrete (weekly) observations
in each city, affected by city-specific time-varying
differences in reporting rates. Finally, the model
does not include interyear variation in transmis-
sion rates due to antigenic evolution.
Following previous work (35–37), we con-

structed a time-series approximation of the
SEIRS model to work with city-level ILI data
that accounts for variation in observed incidence
driven by reporting and antigenic evolution
(materials and methods). The resulting city-level
time series models had 11 fitted parameters per
city, i.e., <2 per year of incidence data, yet pro-
duced a strong match with the data, via n-week
ahead (1 < n < 303) epidemic simulations (hind-
casts; Fig. 3, A to C; Spearman’s r = 0.93 for
comparison of observed and model-predicted in-
tensity). Out-of-sample simulation performance
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Fig. 1. Systematic differences among U.S. cities in the intensity
of seasonal influenza epidemics. (A to C) Differences among cities
in epidemic intensity are preserved across years, indicated by compar-
ing the temporal dynamics of the cities with the highest and lowest
average intensity. Points show means, vertical lines show interquartile
ranges, and polygons enclose the central 95% of ILI incidence data
that have been corrected for intercity variation in background incidence

and reporting, by linear transformation of each city’s time series to
have minimum 0 and a common total attack rate over the 6-year period.
(D to F) Cities with higher mean intensity tend to be located in the
east, have smaller population sizes, and have higher-amplitude
seasonal fluctuations in specific humidity. In (F), the vertical axis is
standard deviation (SD) and the labeled points are Atlanta (A) and
Miami (M).
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was similarly strong (fig. S3). However, randomly
reassigning k estimates to cities destroyed the
correspondence between the simulations and
the data (fig. S4). Assessing the performance of
n-week ahead time-series simulations requires
comparingmultiple features of thedata andmodel
predictions (38), andwe also include time-series
plots of observed and simulated data in each city
in the supplementary materials.
Fitting the model to ILI time-series data

from each city reveals that differences in k, inter-
acting with local patterns in specific humidity,
are sufficient to explain observed differences
in epidemic intensity among cities (Fig. 3, C,
E, and F). Base transmission potential is cor-
related with overall population size in a city
(N), with the average population size of a cen-
sus block (�m), and with the level of crowding in
each city (m*) (Fig. 3, E and F, and fig. S5).
Crowding is measured as the expected block-
level population size experienced by a ran-
domly selected individual within a city, m*¼
�mþ s2m

�m � 1 (31, 39). As individuals within a city
become aggregated within fewer focal loca-
tions, m* increases above �m . We find that
both m* and �m scale with city size (Fig. 3E),
such that in large cities, residential and day-
time population distribution are more highly
organized. Moreover, circadian cycles of ag-
gregation are more profound in large cities
(steeper slope in daytime mean crowding com-
pared to residential mean crowding as func-
tions of population size in Fig. 3E: daytime
slope = 0.537 ± 0.036, residential slope = 0.412 ±
0.023 SE).
Data on crowding substantially improve pre-

dictions of k, relative to using population size
alone, assessed using Akaike information cri-
terion (AIC; DAIC = 37.36; Fig. 3F). Moreover,
after adjusting for the effects of population size,
residual crowding in cities is correlated with re-
sidual base transmission potential—cities that
have more crowding for their size also have
higher fitted values for k than expected for their
size (p < 0.0001 for linear regression of excess
connectivity as a function of excess residential
crowding and p = 0.03 for linear regression of
excess connectivity as a function of excess
daytime crowding)—consistent with the hypo-
thesis that increased spatial organization in
larger cities is driving increases in k. Finally,
interactions between k and specific humidity
provide a much stronger statistical fit to ob-
served intercity variation in epidemic inten-
sity, n, relative to models featuring only specific
humidity and/or population size (Fig. 3, D
and G).
Regional correlations in seasonal influenza

incidence have been linked with regional vari-
ation in city sizes and associated variation in
intercity connectivity: All else being equal, ran-
dom epidemic extinctions are less likely in large
populations, and metropolises are more strongly
interconnected by patterns of human travel,
which synchronize epidemics among cities (10).
However, influenza transmissiondynamicswithin
cities have generally been assumed to conform to

the assumptions of mass action, precluding sys-
tematic intercity differences in epidemic dynam-
ics that are driven endogenously by differential
contact patterns. By contrast, our results show
that processes underlying epidemic persistence
and interconnectivity are rooted at the intracity
scale and drive divergent, yet highly predictable,
responses to climate forcing among cities of
different sizes, which then scale up to influence
regional epidemic patterns. Because large cities
are also hubs in the intercity travel network,
spatial aggregation of populations in large cities
could be a proxy for the intensity of infectious
contact both within and among cities. In this
context, a key uncertainty is how external seed-
ing of infections may drive epidemic patterns
among cities of different sizes, and more gen-
erally, how transmission processes within cities
drive patterns in epidemic intensity at different
scales of observation (29).
Our model predicts that changes in urbaniza-

tion and climate will lead to specific changes in
the intensity of future influenza epidemics. In
particular, increasing the amplitude of seasonal
fluctuations in specific humidity leads to more
intense epidemics in ourmodel; however, elevated
base transmission potential in metropolises could

counteract this effect (fig. S6). Notably, vaccina-
tion early in the season could mimic the accumu-
lation of population-level immunity via off-peak
transmission, increasing both direct and indirect
protection (40) and regulating the intensity of
seasonal epidemics; this illustrates an additional
population-level benefit to influenza vaccination
under increasingly extreme climate cycles. At the
same time, state-level variation in vaccination cov-
erage is not associated with variation in epidemic
intensity across cities (fig. S8), perhaps because
yearly variation in vaccine efficacy dwarfs geo-
graphic differences in vaccine coverage, obscuring
any residual effect of vaccination on the spatial
patterning of epidemics (29, 40).
The scale of influenza epidemics can sometimes

mirror that of pandemics—for example, the recent
influenza seasonal outbreak in winter 2017–2018
had a similar epidemic size and peak intensity as
that of the 2009 pandemic in the United States.
More research is needed to understand and pre-
dict the scale and intensity of influenza out-
breaks, as a function of population susceptibility
and spatial organization, and the potential trade-
offs between these epidemic parameters. Our
work indicates potential trade-offs between scale
and intensity of epidemics that raise important
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Fig. 2. Increasing base transmission potential can decrease epidemic intensity in a
seasonally forced compartmental epidemic model. (A) Diagram of a susceptible-exposed-
infected-removed-susceptible (SEIRS) model. The seasonally varying transmission rate
b depends on specific humidity q and the base transmission potential of the population,
k. See materials and methods for details. (B) Diagram of transmission in two hypothetical
populations. Points represent individual hosts and yellow lines show transmission events. In
populations with higher base connectivity, chains of transmission are longer during the early
influenza season, when climatic conditions are not yet ideal for wider spread. (C) Simulations
of the model for two levels of base transmission (red and blue lines), which yield corresponding
variation in epidemic intensity. (D) Incidence distributions in U.S. three-digit ZIP codes (e.g.,
Atlanta and Manhattan) show comparable variation in epidemic intensity, and also evidence
of seasonal variation in transmission rates and reporting, which are included in the model
during fitting (Fig. 3; materials and methods).
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questions for future work on the optimization
of health systems against endemic and pandemic
threats.
Increased epidemic intensity demands in-

creased surge capacity in the public health sys-
tem, including primary care facilities and clinical
laboratories (41). This is particularly important
for influenza, where the impact of vaccination
depends on timely development and distribu-
tion of annual vaccines (40). Our analysis shows
that some of the cities with the most intense
influenza epidemics (driven by low base trans-
mission potentials) are also among those with
the most challenging socioeconomic conditions
(fig. S7) (27). This is congruent with recent analy-
ses of socioeconomic determinants of influenza
mortality at the intracity level (28). Statistical
associations between socioeconomic conditions
and influenza dynamics may thus be caused in
part by underlying variation in human aggre-
gation patterns: For instance, metropolises have

highly aggregated cores with high base trans-
mission potentials, where median per-capita in-
come is also higher. Our results also underscore
the importance of considering spatial hetero-
geneity when assessing the impacts of climate
forcing on infectious disease dynamics. As has
recently beendemonstrated for diarrheal diseases
(33), spatial patterns in population density within
cities can modulate the impact of climate vari-
ation ondisease transmission patterns. By extend-
ing this result to include influenza, our findings
indicate the potential for systematic effects of
metropolises on climate-driven disease dynamics
across a range of pathogens.
The ecological and evolutionary dynamics of

influenza depend on the locations of “fertile
ground” for transmission: places and timeswhere
critical chains of transmission incubate immigrat-
ing viral lineages (5, 42). Our results show how
metropolises play a disproportionately impor-
tant role in this process, as epidemic foci, and as

potential sentinel hubs, where epidemiological
observatories could integrate local strain dynam-
ics to predict larger-scale patterns (4, 43, 44). As
the growth and form of cities affect their func-
tion as climate-driven incubators of infectious
disease, it may be possible to design smarter
cities that better control epidemics in the face
of accelerating global change.

REFERENCES AND NOTES

1. S. Gandon, T. Day, C. J. E. Metcalf, B. T. Grenfell, Trends Ecol.
Evol. 31, 776–788 (2016).

2. D. H. Morris et al., Trends Microbiol. 26, 102–118 (2018).
3. K. Koelle, S. Cobey, B. Grenfell, M. Pascual, Science 314,

1898–1903 (2006).
4. M. Łuksza, M. Lässig, Nature 507, 57–61 (2014).
5. D. Zinder et al., BMC Evol. Biol. 14, 272 (2014).
6. T. Bedford et al., Nature 523, 217–220 (2015).
7. M. Lipsitch, C. Viboud, Proc. Natl. Acad. Sci. U.S.A. 106,

3645–3646 (2009).
8. S. Cauchemez et al., Proc. Natl. Acad. Sci. U.S.A. 108,

2825–2830 (2011).

Dalziel et al., Science 362, 75–79 (2018) 5 October 2018 4 of 5

Fig. 3. Base transmission potential and specific humidity predict
observed differences in the intensity of influenza epidemics across
U.S. cities. (A and B) n-step ahead simulation performance of the fitted
SEIRS model, 1 < n < 303 weeks, in two cities. (C) Observed versus
forward simulated average epidemic intensity in all cities. (D) Observed
and simulated incidence in all cities and years. (E) Larger cities have
more organized spatial population distributions and mobility patterns.
Gray points show expected population size in a randomly selected
census block in each city; colored points show expected block-level
population size experienced by a randomly selected individual in each
city [Lloyd’s mean crowding m� ¼ �mþ s2m

�m � 1, where �m represents mean
population size in a census block, and s2m variance in population size

across census blocks (31, 39)]. Mean crowding increases above mean
block-level population size as spatial locations of individuals become
more highly organized. (F) Population size and crowding estimated from
census data predict base transmission potential estimated from ILI
incidence data. Blue line shows fit for population size alone; yellow line,
population size and crowding. Polygons enclose 1 SE around the fitted
curves. Yellow points show the 20 cities with the most residential
crowding. (G) Information-theoretic comparison of population size,
climatic fluctuations, and fitted base transmission potential (i.e., base
transmission potential predicted from population size and crowding
rather than fitted to the incidence data) as predictors of observed
epidemic intensity, via generalized linear models.

RESEARCH | REPORT
on A

pril 8, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


9. L. Bourouiba, E. Dehandschoewercker, J. W. M. Bush, J. Fluid
Mech. 745, 537–563 (2014).

10. C. Viboud et al., Science 312, 447–451 (2006).
11. V. Charu et al., PLOS Comput. Biol. 13, e1005382 (2017).
12. M. Tizzoni et al., BMC Med. 10, 165 (2012).
13. J. D. Tamerius et al., PLOS Pathog. 9, e1003194 (2013).
14. J. Shaman, M. Kohn, Proc. Natl. Acad. Sci. U.S.A. 106,

3243–3248 (2009).
15. T. Bedford, S. Cobey, P. Beerli, M. Pascual, PLOS Pathog. 6,

e1000918 (2010).
16. C. A. Russell et al., Science 320, 340–346 (2008).
17. F. Wen, T. Bedford, S. Cobey, Proc. Biol. Sci. 283, 20161312

(2016).
18. S. Cauchemez, A.-J. Valleron, P.-Y. Boëlle, A. Flahault,

N. M. Ferguson, Nature 452, 750–754 (2008).
19. J. R. Gog et al., PLOS Comput. Biol. 10, e1003635 (2014).
20. I. Chattopadhyay, E. Kiciman, J. W. Elliott, J. L. Shaman,

A. Rzhetsky, eLife 7, e30756 (2018).
21. S. Pei, S. Kandula, W. Yang, J. Shaman, Proc. Natl. Acad.

Sci. U.S.A. 115, 2752–2757 (2018).
22. United Nations, Department of Economic and Social Affairs,

Population Division, “World Urbanization Prospects” (2014),
pp. 1–32.

23. J. B. Axelsen, R. Yaari, B. T. Grenfell, L. Stone, Proc. Natl. Acad.
Sci. U.S.A. 111, 9538–9542 (2014).

24. W. Yang, M. Lipsitch, J. Shaman, Proc. Natl. Acad. Sci. U.S.A.
112, 2723–2728 (2015).

25. R. J. Hatchett, C. E. Mecher, M. Lipsitch, Proc. Natl. Acad.
Sci. U.S.A. 104, 7582–7587 (2007).

26. E. M. Galarce, S. Minsky, K. Viswanath, Vaccine 29, 5284–5289
(2011).

27. R. Chetty et al., JAMA 315, 1750–1766 (2016).

28. K. H. Grantz et al., Proc. Natl. Acad. Sci. U.S.A. 113,
13839–13844 (2016).

29. E. C. Lee et al., PLOS Comput. Biol. 14, e1006020 (2018).
30. L. M. A. Bettencourt, J. Lobo, D. Helbing, C. Kühnert, G. B. West,

Proc. Natl. Acad. Sci. U.S.A. 104, 7301–7306 (2007).
31. B. D. Dalziel, B. Pourbohloul, S. P. Ellner, Proc. Biol. Sci. 280,

20130763 (2013).
32. B. D. Dalziel et al., PLOS Pathog. 10, e1004455 (2014).
33. P. P. Martinez, A. A. King, M. Yunus, A. S. G. Faruque,

M. Pascual, Proc. Natl. Acad. Sci. U.S.A. 113, 4092–4097
(2016).

34. C. Viboud et al., PLOS ONE 9, e102429 (2014).
35. D. E. te Beest, M. van Boven, M. Hooiveld, C. van den Dool,

J. Wallinga, Am. J. Epidemiol. 178, 1469–1477 (2013).
36. O. N. Bjørnstad, B. F. Finkenstadt, B. T. Grenfell, Ecol. Monogr.

72, 169–184 (2002).
37. B. D. Dalziel et al., PLOS Comput. Biol. 12, e1004655 (2016).
38. L. Held, S. Meyer, J. Bracher, Stat. Med. 36, 3443–3460

(2017).
39. M. Lloyd, J. Anim. Ecol. 36, 1–30 (1967).
40. N. Arinaminpathy et al., Am. J. Epidemiol. 186, 92–100 (2017).
41. J. M. Crawford et al., Emerg. Infect. Dis. 16, 8–13 (2010).
42. N. J. Hill et al., Emerg. Infect. Dis. 23, 654–657 (2017).
43. C. J. E. Metcalf et al., Lancet 388, 728–730 (2016).
44. K. S. Xue et al., eLife 6, e26875 (2017).

ACKNOWLEDGMENTS

Suggestions by three anonymous reviewers improved an
earlier version of this paper. Funding: This work was supported
by the Bill & Melinda Gates Foundation Grant OPP1091919;
the RAPIDD program of the Science and Technology
Directorate Department of Homeland Security and the

Fogarty International Center, National Institutes of Health.
This work is licensed under a Creative Commons Attribution
4.0 International (CC BY 4.0) license, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited. To
view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/. This license does not apply to figures/
photos/artwork or other content included in the article that
is credited to a third party; obtain authorization from the
rights holder before using such material. Author
contributions: Conceptualization: B.D.D.; Data curation:
S.K., J.R.G., C.V.; Formal analysis: B.D.D.; Funding acquisition:
C.J.E.M., B.T.G.; Investigation: B.D.D.; Methodology: B.D.D.,
S.K., J.R.G., O.N.B., C.V., C.J.E.M., B.T.G.; Software:
B.D.D.; Visualization: B.D.D.; Writing, original draft: B.D.D.;
Writing, review and editing: B.D.D., S.K., J.R.G., O.N.B., C.V.,
C.J.E.M., B.T.G. Competing interests: The authors declare
no competing interests. Data and materials availability:
Data on epidemic intensity in each city and scripts for
reproducing the statistical analyses are located at https://
github.com/BenjaminDalziel/InfluenzaGeometry.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/362/6410/75/suppl/DC1
Materials and Methods
Figs. S1 to S10
Table S1
Data Files
References (45, 46)

15 March 2018; accepted 10 August 2018
10.1126/science.aat6030

Dalziel et al., Science 362, 75–79 (2018) 5 October 2018 5 of 5

RESEARCH | REPORT
on A

pril 8, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/BenjaminDalziel/InfluenzaGeometry
https://github.com/BenjaminDalziel/InfluenzaGeometry
http://www.sciencemag.org/content/362/6410/75/suppl/DC1
http://science.sciencemag.org/


Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities
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climate variation.
epidemics, presumably because of higher rates of personal contact, which makes influenza transmission less subject to
less residential density and lower household incomes. Larger, more densely populated cities had more-diffuse 
epidemics, and others showed a longer, more diffuse influenza season. The surges tended to occur in smaller cities with
(see the Perspective by Wallinga). Some ZIP codes regularly experienced sharply defined peaks of cases, or intense 

 obtained a geographical distribution of doctor visits for influenza-like illness for more than 600 U.S. citieset al.Dalziel 
breaking point. Change in environmental humidity is a key driver, but many other seasonal and social factors contribute. 

Influenza virus strikes communities in northern latitudes during winter, straining health care provision almost to the
Seasonal flu by ZIP code
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