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ABSTRACT

Motivation: Identification of flexible regions of protein structures is

important for understanding of their biological functions. Recently,

we have developed a fast approach for predicting protein structure

fluctuations from a single protein model: the CABS-flex. CABS-flex

was shown to be an efficient alternative to conventional all-atom mo-

lecular dynamics (MD). In this work, we evaluate CABS-flex and MD

predictions by comparison with protein structural variations within

NMR ensembles.

Results: Based on a benchmark set of 140 proteins, we show that the

relative fluctuations of protein residues obtained from CABS-flex are

well correlated to those of NMR ensembles. On average, this correl-

ation is stronger than that between MD and NMR ensembles. In con-

clusion, CABS-flex is useful and complementary to MD in predicting

protein regions that undergo conformational changes as well as the

extent of such changes.

Availability and implementation: The CABS-flex is freely available to

all users at http://biocomp.chem.uw.edu.pl/CABSflex.

Contact: sekmi@chem.uw.edu.pl

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Proteins exist in solution as ensembles of structurally different

conformational states. These ensembles can exhibit different de-

grees of structural diversity, ranging from almost static to highly

mobile protein regions. Structural flexibility is one of the key

characteristics of proteins and allows them to play important

functional roles in living organisms. Thus, knowledge of con-

formational states in native-state ensembles can provide import-

ant insights into protein functions (e.g. molecular recognition,

protein allostery) (Fenwick et al., 2011; Gerek et al., 2013;

Hilser, 2010; Wrabl et al., 2011) as well as protein evolution

(Gerek et al., 2013; Wrabl et al., 2011).
Most of the known protein structures have been solved by

X-ray crystallography and deposited in the Protein Data Bank

(PDB) as a single model. A single crystal structure,

however, gives little information about conformational

heterogeneity or model accuracy, and this is why the crystal-

lographic community has been urged to deposit an ensemble of

solutions whenever possible (Furnham et al., 2006). An ensemble

view of protein structures comes predominantly from NMR

spectroscopy, which is the method of choice for the determin-

ation of protein structure and dynamics in solution (Markwick

et al., 2008). NMR spectroscopy routinely provides an ensemble of

protein models, which usually consists of 20 conformers on average.

The precision and accuracy of NMR ensembles have been a subject

of a long-standing dispute in the field (Spronk et al., 2003). The

structure diversity of NMR-derived ensembles may depend not

only on the quality and amount of collected data but also on the

computational procedures used for generating and selecting low-

energy models that fit experimental data. Nevertheless, it has been

demonstrated that NMR ensembles may provide valuable insights

into protein flexibility that is of practical use in structure-to-function

studies (Bolstad and Anderson, 2008; Damm and Carlson, 2007;

Isvoran et al., 2011; Knegtel et al., 1997). Among these studies,

particularly interesting is probably the first comparison of NMR

ensembles and a collection of crystal structures from the point of

using them in structure-based drug design, performed by Damm

and Carlson (2007). They demonstrated that for human immunodefi-

ciency virus-1 protease (HIV-1p), there is more structural

variation between 28 structures in an NMR ensemble than between

90 crystal structures bound to a variety of ligands. Because the NMR

ensemble-derived model provided the most general, yet accurate,

representation of the active site of HIV-1p, the authors strongly

encourage the use of NMR models in structure-based drug design.
Except for experimental sources, the present views on protein

flexibility have been largely obtained, thanks to the use of molecular

dynamics (MD). In the past decades, MD has become an indispens-

able tool for determining conformationally heterogeneous states of

proteins, most often through unbiased simulations starting from

experimental static structures or in combination with experimental

data (Fisette et al., 2012; Vendruscolo, 2007). The idea that unbiased

MD simulations capture the true dynamic nature of proteins was

supported by a study showing that various MD force-fields provide

a consensus picture of protein fluctuations in solution (Rueda et al.,

2007). Using the MD simulation data from this study, we recently

demonstrated that the structural and dynamics characteristics of

MD trajectories are fairly consistent with simulation results from

a coarse-grained protein model—the CABS model (Jamroz et al.,

2013b). Importantly, the computational cost of obtaining near-

native dynamics by CABS simulations was proved to be much

lower (�6� 103 times) than that of MD [technically, this is the

cost of achieving a residue fluctuation profile that best fits that

obtained from 10 ns MD simulations, see details in Jamroz et al.

(2013b)]. Following this work, we implemented the developed

CABS-model-based protocol for fast simulations of near-native

dynamics in a web server called CABS-flex (Jamroz et al., 2013a).*To whom correspondence should be addressed.
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In previous works, we compared CABS-flex predictions of pro-

tein flexibility with a large set of MD simulation data (Jamroz

et al., 2013a, b). The comparison tests showed that the CABS-

flex method is a computationally efficient alternative toMD. The

present work describes a comparison of protein fluctuations

obtained from CABS-flex and MD simulations with fluctuations

derived from NMR ensembles.

2 METHODS

2.1 Benchmark set

We used a protein benchmark set constructed and reported by Jamroz

et al. (2012). The benchmark set contains 140 non-redundant proteins

determined by NMR (with NMR ensembles consisting of410 models in

their PDB files) andMD simulation trajectories deposited in the MoDEL

database (Meyer et al., 2010). The protein set is non-redundant in the

sense that it contains no two proteins that have sequence identity higher

than a 35% cutoff according to the PISCES database (Wang and

Dunbrack, 2003).

2.2 CABS-flex method

The CABS-flex method follows our earlier work (Jamroz et al., 2013b)

where we demonstrated that the consensus view of protein near-native

dynamics obtained from 10 ns MD simulations (all-atom, explicit water,

using the four most popular force-fields for all protein metafolds) is

consistent with dynamics from the CABS model. The CABS-flex

simulation length has been optimized to obtain the best possible

convergence with the 10 ns MD simulations [see details in Jamroz

et al. (2013b)].

CABS is a well-established coarse-grained protein modeling tool for

predicting protein dynamics (Kmiecik and Kolinski, 2007, 2011; Kmiecik

et al., 2012) and protein structure (Blaszczyk et al., 2013; Kmiecik et al.,

2007; Kolinski and Bujnicki, 2005). The CABS design is a compromise

between high sampling efficiency and high resolution of protein repre-

sentation. The CABS protein representation is reduced to up to four

pseudo-atoms per residue, the force field uses knowledge-based potentials

(accounting for solvent effects in an implicit fashion), and the sampling is

realized by the Monte Carlo method [details are given in Kolinski (2004)].

The resolution of CABS-generated models allows the reconstruction of

physically sound atomistic models (Kmiecik et al., 2007, 2012; Wabik

et al., 2013).

The CABS-based procedure for the simulation of near-native dy-

namics has been made available as a CABS-flex web server (Jamroz

et al., 2013a). The CABS-flex server requires input of a single protein

structure and outputs a residue fluctuation profile together with accom-

panying analysis. Additionally, the CABS-flex pipeline incorporates mul-

tiscale reconstruction and optimization procedures (Gront et al., 2012;

Kmiecik et al., 2011), which output an ensemble of protein models (in all-

atom resolution) reflecting the flexibility of the input structure.

2.3 Computing residue fluctuation profiles

Based on the generated trajectory (CABS-flex or MD) or NMR ensem-

ble, superimposed with THESEUS (Theobald and Wuttke, 2006), a residue-

fluctuation profile (root mean square fluctuation, RMSF), is calculated as

follows:

RMSF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j

xiðjÞ � xih ið Þ
2

vuut

where54denotes the average over the whole NMR ensemble or trajec-

tory, and x is the position of residue (C� atom) i in the trajectory or

NMR ensemble model j.

For the comparison of residue fluctuation profiles obtained from

CABS-flex, MD and NMR ensembles, we used Spearman’s rank correl-

ation coefficient. It quantifies the extent of statistical dependence between

pairs of observations (and is better suited to reflect data correlation in the

presence of outlier values than the Pearson correlation coefficient).

Spearman’s rank correlation was also used in our earlier comparisons

of MD and CABS-flex fluctuation profiles to which we refer in this

study (Jamroz et al., 2013a, b).

Note that the statistical errors of RMSF values generated by CABS-

flex are reflected in root mean squared deviations (RMSD) between

RMSF profile data (Fig. 2B).

3 RESULTS

In this work, we used a benchmark protein set of 140 proteins

collected and reported by Jamroz et al. (2012).
In Figure 1, we show a comparison of flexibility for four ex-

ample proteins from the benchmark set. Structural flexibility is

presented in the figure as residue-fluctuation profiles, i.e. RMSF

values for each residue (see Section 2.3), visualized in plots or
projected on protein models.

In Figure 2, we present a comparison of residue-fluctuation

profiles for the entire benchmark set. The comparison is done
using Spearman’s correlation coefficient (rs) (Fig. 2A) and aver-

age root mean square deviation (RMSD) between RMSF values

of MD/NMR/CABS-flex (Fig. 2B). Remarkably, the average rs
between CABS-flex and NMR ensembles is slightly less scattered
than that between MD and NMR: 0.72 (�0.15) and 0.64

(�0.23), respectively (standard deviation values are given in

brackets).
The rs correlation coefficient is a measure of statistical depend-

ence between compared residue-fluctuation profiles and does not

reflect differences in profile amplitudes. This is reflected in the

average RMSD between the compared profiles shown in
Figure 2B. As presented in the plot, the RMSD between NMR

profiles and CABS-flex or MD profiles usually does not exceed

2 Å. In general, the higher the structural heterogeneity in NMR

ensembles, the higher is the presented RMSD values. The largest
RMSD values correspond to proteins with highly flexible

regions. For instance, the highest RMSD values (NMR to MD

as well as CABS-flex to NMR) correspond to the structure of

CIDE-N Domain of CIDE-B protein (PDB ID: 1d4b), which has
largely disordered regions of substantial length (residues 1–31

and 111–122). The exact rs and RMSD values for each protein

are given in Supplementary Table S1 together with accom-

panying data.

4 DISCUSSION

The proteins from the benchmark set represent different degrees

of structural variability within NMR ensembles. The degree of
variability (average displacement per residue) ranges from 0.2 to

almost 12 Å. For the entire benchmark set, the average displace-

ment per residue in NMR ensembles is 1.68 Å (the values for

each protein are given in Supplementary Table S1).
The analysis of variability of NMR ensembles versus predic-

tion quality showed a tendency that the higher the flexibility
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observed in an NMR ensemble, the better the correlation coef-

ficient (rs) between NMR and CABS-flex or MD fluctuation

profiles. For 57% of proteins from the benchmark set, the aver-

age displacement within their NMR ensembles is41 Å. In this

subset, the average rs between NMR and simulation (CABS-flex

or MD) is slightly higher (0.78 for CABS-flex and 0.69 for MD)

than for proteins with less variable NMR ensembles (Table 1).

Furthermore, we examined another subset of proteins for

which CABS-flex predictions were the poorest (with rs50.5:

1k8b, 1waz, 1kkg, 1k5k, 1cok, 1sgg, 1pcp, 1pav, 1p6q, 2rgf).

In this subset of 10 proteins, the average rs between NMR and

CABS-flex fluctuation profiles was 0.35, while that between

NMR and MD was even lower: 0.26. The subset analysis

showed that 9 of 10 proteins had NMR ensembles exhibiting

almost no or small flexibility, in contrast to CABS-flex or MD

predictions (the exception was 1pcp, which has a small amount

of secondary structure only). For these nine proteins, the average

displacement per residue within NMR ensembles was below

0.5 Å (counted for the entire or most of the chain). Such large

rigidity does not seem to be justified by the structural character-

istics of these proteins. For at least some of them, highly homolo-

gous counterparts can be found in the PDB, which show more

structural variation than the analyzed NMR ensembles.

The above observations suggest that an important source of

poor correspondence between fluctuations from computational

A

B

Fig. 2. Comparison of residue-fluctuation profiles for the benchmark set.

For the set of 140 protein structures, a comparison between CABS-flex

and NMR is presented together with that of MD and NMR. For each

protein, residue-fluctuation profiles (root mean squared fluctuations,

RMSF) are compared using (A) Spearman’s correlation coefficient (rs)

and (B) average RMSD (root-mean square deviation) values

A

B

Fig. 1. Comparison of residue-fluctuation profiles for example proteins

from the benchmark set. The presented examples illustrate several levels

of prediction accuracy in comparison with NMR ensembles: (A) high by

CABS-flex and average or below average by MD, (B) high by CABS-flex

and poor byMD. For each protein, residue-fluctuation profiles are visua-

lized on a plot and projected on protein models. The plots present RMSF

values (in Ångstroms) derived from NMR ensembles (red line) and simu-

lation trajectories: CABS (green line) and MD (blue line). The RMSF

values are also visualized in the respectively signed protein models (in

brackets: correlation coefficients for residue fluctuations between NMR

and CABS-flex or MD). In the protein models, colors and tube thickness

denote RMSF values scaled from the maximum (red color, thick tube) to

minimum (blue color, thin tube). Analogous plots for the entire test set

are presented in Supplementary Figure S1
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predictions (from CABS-flex or MD) and NMR ensembles is the

underestimation of fluctuations in NMR ensembles. Several stu-

dies strongly indicate that fluctuations in NMR ensembles are

underestimated and do not reflect real structural heterogeneity

(Pfeiffer et al., 1997; Scheek et al., 1995; Spronk et al., 2003;

Torda et al., 1990). The underestimations are largely due to

shortcomings of computational procedures used to generate the

ensembles based on NMR data.
The CABS-flex method provides an alternative to other effi-

cient computational tools generating protein residue fluctuation

profiles, such as sequence-based predictors of protein disordered

regions (Mészáros et al., 2014) or coarse-grained normal mode

analysis (NMA; Ma, 2005). Most disorder prediction algorithms

[such as DISOPRED, Ward et al. (2004)] perform well for stable

globular domains or highly flexible disordered regions without a

strong structural preference. However, their performance does

not meet expectations for structurally ambiguous regions

(Mészáros et al., 2014). Therefore, in comparison with se-

quence-based disorder prediction algorithms, CABS-flex is

better suited to detecting non-obvious dynamic behavior (e.g.

significant fluctuations within the well-defined secondary struc-

tural elements that could be of biological importance). Another

class of commonly used algorithms that compute protein fluctu-

ation profiles use NMA based on elastic network models or

other coarse-grained models [e.g. WEBnma server, Hollup

et al. (2005)]. In comparison with elastic network models,

CABS-flex uses more detailed information on the protein

system and generates residue fluctuation profiles better corre-

lated (on average) with those obtained by all-atom MD [see

our Section 4 in Jamroz et al. (2013b)]. The CABS-flex-generated

models (or trajectory) can also be subjected to NMA. As we

demonstrated earlier (Jamroz et al., 2013b), essential movements

derived from CABS-flex trajectories might not be accurate indi-

vidually, but when considered together they provide a similar

description to that obtained by all-atom MD. Readers interested

in applying the NMAmay refer to a review on the usefulness and

limitations of the method (Ma, 2005).

5 CONCLUSION

Due to the dynamic nature of proteins, structure-based studies of

protein functions require accurate description of protein

flexibility.

Crystallographic B-factors are perhaps the most common

measure used for the elucidation of residue fluctuations, and

this is probably because the majority of known structures have

been solved by X-ray crystallography. The B-factors reflect pro-

tein flexibility but are also influenced by crystallization condi-

tions, the refinement method (used for the interpretation of

X-ray data) and, importantly, the molecular environment of

the crystal structure. The crystal environment has a significant

effect on protein flexibility: the spectrum of fluctuations is con-

siderably flattened in crystal as compared with that in solution

(Eastman et al., 1999). Moreover, most X-ray structures have

been determined at cryogenic temperatures. Crystal cryo-cooling

has been shown to reduce B-factors, introduce packing defects

and it may result in unrealistically unique non-functional struc-

tures (Fraser et al., 2011; Rasmussen et al., 1992). Therefore,

descriptions of protein flexibility derived from X-ray models

and B-factors must be approached with caution.

NMR and all-atom MD are now the methods of choice for

investigation of protein flexibility in solution. Because of the

difficulty of NMR studies and timescale problems in all-atom

MD, coarse-grained methods have emerged as an inexpensive

and powerful alternative. The design of coarse-grained methods

successfully applied for large timescale investigations of protein

dynamics encompasses entirely different modeling strategies

(Emperador et al., 2008; Jamroz et al., 2013b; Maisuradze

et al., 2010). An excellent review on the successes and shortcom-

ings of diverse coarse-grained representations of protein flexibil-

ity is provided in (Orozco et al., 2011).
In this work, we compare CABS-flex predictions of protein

fluctuations with that derived from NMR ensembles and MD

simulations. The comparison shows that CABS-flex produces, on

average, a more similar distribution of residue fluctuations to

NMR ensembles than MD does. This is due to more efficient

sampling compared with MD, which leads to additional fluctu-

ations or fluctuation amplitudes that better fit the NMR ensem-

ble data. Moreover, the results from CABS-flex and MD can

complement each other in the sense that the flexibility of some

protein regions may be better retrieved by one of these methods,

while the remaining part by the other one. In summary, our

results suggest that for the accurate assessment of protein flexi-

bility it is reasonable to analyze results from both CABS-flex and

atomic MD simulations. Because the CABS-flex method pro-

vides a significantly cheaper means of accessing backbone dy-

namics than atomic MD, it is a promising tool for larger and/or

initial reconnaissance screening studies, for example, of the effect

of mutations on protein stability or structure-based drug design.
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Education [IP2011 024371].
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Table 1. Average Spearman’s correlation coefficients (rs) between resi-

due-fluctuation profiles

Compared methods Benchmark dataset of NMR-solved proteins

Entire dataset

(140 proteins)

Subset with

RMSD of

NMR ensem-

ble �1 Å (60

proteins)

Subset with

RMSD of

NMR ensem-

ble41 Å (80

proteins)

CABS-flex versus NMR 0:72 ð�0:15Þ 0:64 ð�0:17Þ 0:78 ð�0:11Þ

MD versus NMR 0:64 ð�0:23Þ 0:57 ð�0:25Þ 0:69 ð�0:19Þ
CABS-flex versus MD 0:67 ð�0:18Þ 0:64 ð�0:17Þ 0:69 ð�0:17Þ

Note: The table shows an average pairwise comparison between CABS-flex, MD

and NMR ensembles. The average correlation values (and standard deviations in

brackets) are presented for the entire protein benchmark set and its subsets having

average fluctuations in the NMR ensemble: lower (RMSD� 1 Å) or higher

(RMSD41 Å).
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