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C57BL/6 mice are widely used for in vivo studies of immune function and metabolism in
mammals. In a previous study, it was observed that when C57BL/6 mice purchased
from different vendors were infected with Plasmodium yoelii, a causative agent of
murine malaria, they exhibited both differential immune responses and significantly
different parasite burdens: these patterns were reproducible when gut contents were
transplanted into gnotobiotic mice. To gain insight into the mechanism of resistance,
we removed whole ceca from mice purchased from two vendors, Taconic Biosciences
(low parasitemia) and Charles River Laboratories (high parasitemia), to determine the
combined host and microflora metabolome and metatranscriptome. With the exception
of two Charles River samples, we observed ≥90% similarity in overall bacterial gene
expression within vendors and ≤80% similarity between vendors. In total 33 bacterial
genes were differentially expressed in Charles River mice (p-value < 0.05) relative to the
mice purchased from Taconic. Included among these, fliC, ureABC, and six members of
the nuo gene family were overrepresented in microbiomes susceptible to more severe
malaria. Moreover, 38 mouse genes were differentially expressed in these purported
genetically identical mice. Differentially expressed genes included basigin, a cell surface
receptor required for P. falciparum invasion of red blood cells. Differences in metabolite
pools were detected, though their relevance to malaria infection, microbial community
activity, or host response is not yet understood. Our data have provided new targets that
may connect gut microbial activity to malaria resistance and susceptibility phenotypes
in the C57BL/6 model organism.

Keywords: microbiome, C57BL/6N lineage, metatranscriptome, malaria, metabolome

INTRODUCTION

Since its development in the 1940’s, the C57BL/6 inbred mouse strain has become one of the
most widely used murine genetic backgrounds for diverse biomedical research. The strength of
these inbred mice as model organisms is their reproducibility, allowing independent researchers
to carry out experiments on genetically identical mice (Silver, 1995). Use of this inbred
strain became so widespread it was selected as the first murine genome to be sequenced
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(Mouse Genome Sequencing Consortium et al., 2002). However,
in recent years, attention has been drawn to the split in
the strain’s ancestral line during the 1950’s when mice were
separately bred and maintained by the National Institutes of
Health (NIH) and Jackson Laboratory, now known as C57BL/6N
and C57BL/6J, respectively (Bailey, 1978; Altman and Kats,
1979). Concern has arisen over use of these divergent substrains
interchangeably as model organisms following multiple reports of
changes in behavior (Crawley et al., 1997), differential tolerance
to ethanol (Khisti et al., 2006; Green et al., 2007), deletion of
the gene encoding nicotinamide nucleotide transhydrogenase
(nnt) in the C57BL/6J lineage (Freeman et al., 2006), and
discovery of multiple SNPs between derived mouse genomes
(Mekada et al., 2009). The importance of these strains to the
scientific community has led to major efforts to describe the
genomic (Simon et al., 2013) and regulatory (Keane et al.,
2011) differences between the various lineages, and catalog
them for proper selection of model organisms (Grubb et al.,
2014).

While the genetic differences and the resulting phenotypic
alterations between the major C57BL/6 lineages may be
increasingly considered by researchers during experimental
design, only recently can this be said for their “second genome”:
the microbiome. The importance of tissue-associated microbial
symbionts to mammalian metabolism and immunity has become
well established. Gut microbial communities in particular make
up the majority of the microbial consortia and diversity in
the body (Savage, 2002), and play an important role in early
post-natal development of the immune system, protection from
gut pathogens, and host metabolism. Members of the taxa
Firmicutes and Bacteroidetes dominate intestinal communities,
largely responsible for the catabolism of hundreds of different
glycans indigestible by mammalian enzymes, giving the host
access to otherwise recalcitrant nutrients (Backhed et al., 2005).
The resulting pool of monosaccharides are fermented to short-
chain fatty acids, which not only provide energy for the
host, but have been shown to influence immune function.
Acetate and butyrate, influenced by dietary fiber content,
can signal through G-protein-coupled receptors expressed on
CD4+ T helper cells resulting in the regulation of cytokine
expression and resolution of intestinal inflammation (Kau et al.,
2011). Indeed, just as immune cells use receptors to detect
infection and tissue damage signals, it is apparent that the
same receptors are used in different combinations to detect
beneficial microbial activity and prevent harmful response
(Swiatczak and Cohen, 2015). Despite the profound influence
that even subtle changes in gut community composition and
activity can have on host physiology, the impact of the gut
microbiome on mice used as model organisms remains poorly
understood.

It was recently shown that when C57BL/6 mice purchased
from different vendors were infected with malaria parasite
Plasmodium yoelii, they exhibited significantly different parasite
burdens and immune responses. This was confirmed to be
the result of microbial interaction with the mouse host when
both resistant and susceptible phenotypes were reproduced via
fecal transplant to gnotobiotic mice (Villarino et al., 2016).

Subsequent sequencing of 16S rRNA gene libraries obtained
from the transplanted gut microbiomes showed conservation
in gut microbial community composition within, but major
differences between, samples obtained from mice from different
vendors. To elucidate the mechanisms underlying microbiome-
mediated resistance to malaria, the cecum microbial and host
metatranscriptome was sequenced. Significant differences were
observed in both host and bacterial transcription patterns.
Additionally, the metabolic profiles of cecum whole tissue
samples were determined and analyzed. Overall differences
in individual metabolite concentrations call into question the
interchangeable use of mice from different sources. These data
begin to elucidate factors that may influence susceptibility
to P. yoelli infection, and these results also provide further
evidence that caution is needed when comparing results from
experiments using mice from separate C57BL/6 sublineages
and/or vendors.

MATERIALS AND METHODS

Mice and Infections
Female C57BL/6 mice were purchased from Taconic
Biosciences (Hudson, NY, USA) and Charles River Laboratories
(Wilmington, MA, USA). Mice were housed and maintained
at University of Tennessee animal care facility under biosafety
level 2 conditions. Mice were fed NIH-31 Modified Open
Formula Mouse/Rat Irradiated Diet (Envigo 7913; Envigo,
Indianapolis, IN, USA) and provided autoclaved municipal tap
water to drink. To verify vendor-dependent malaria disease
severity, mice were infected with 105 P. yoelii parasitized
red blood cells (pRBCs) via tail vein injection after a 2 week
acclimation period upon arrival at the animal care facility.
Parasite burden was determined from thin blood smears.
Blood samples were obtained by performing tail snips. Slides
were fixed with methanol, followed by Giemsa stain (Thermo
Fisher Scientific) diluted 1:20 in ddH20 for 30 min. Percent
parasitemia was calculated as the percent of total RBCs that
contain a blood stage parasite averaged from the counts RBCs
within a 10 × 10 grid from five microscope fields (1000x)
per sample. All studies were performed in accordance with
the recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health and
approved by the University of Tennessee Institutional Animal
Care and Use Committee.

Gut Microbiome Sampling
As sampling directly from gut tissue is destructive, mice used for
microbiome sampling were not used to track parasite burden.
To limit potential variation in gut microbial communities and
to ensure that the disease severity phenotype was consistent,
mice used for microbiome sampling were purchased in the
same batch as those used for tracking disease progression. Six
mice from each vendor (Taconic Biosciences and Charles River
Laboratories) were acclimated for 2 weeks upon arriving at the
animal facility. After acclimation the mice were sacrificed and
a necropsy performed. Whole ceca were removed, weighed, and
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immediately flash frozen in liquid nitrogen and stored at−80◦C.
Cecum samples were divided in half for metabolomics analysis
and metatranscriptome sequencing.

RNA Extraction and Sequencing
Total RNA was isolated from whole ceca using the MOBIO
Power MicrobiomeTM RNA extraction kit. RNA concentration
and purity was determined using a NanoDrop ND-1000
spectrophotometer. Measurements were taken three times to
account for variability in the readings. Extracted RNA was tested
for DNA contamination by running a polymerase chain reaction
using universal bacterial 16S rRNA primers 27F and 1492R. DNA
contamination was removed with the MOBIO RTS DNase kit.
Twelve purified RNA samples were shipped to the Hudson Alpha
Institute Genomic Services Laboratory (Huntsville, AL, USA) for
rRNA reduction and sequencing on the Illumina HiSeq platform
using a paired-end 100bp flow cell.

Metabolite Extraction and Analysis
Contents were removed from ceca placed in 1.5 mL centrifuge
tubes and suspended in 1.3 mL of extraction solvent (40:40:20
HPLC grade methanol, acetonitrile, water with 0.1% formic
acid) kept at 4◦C. Extraction proceeded for 20 min at −20◦C
before samples were centrifuged for 5 min (16.1 rcf) at 4◦C and
supernatants were transferred to new vials. The remaining cecal
contents were resuspended in 200 µL of cold (4◦C) extraction
solvent. The extraction was again allowed to proceed for 20 min
at −20◦C before being centrifuged for 5 min (16.1 rcf) at 4◦C.
These supernatants were also transferred to the vials and another
200 µL of extraction solvent was added to the pelleted cell for a
final wash by repeating the previous extraction once more. The
vials containing all of the combined extraction supernatants were
placed in a nitrogen drying apparatus until all the extraction
solvent had been evaporated. The residual solid was resuspended
in 300 µL of sterile water and transferred to 300 µL autosampler
vials. Samples were immediately placed in a 4◦C autosampler for
mass spectrometric analysis.

A 10 µL injection of each sample was separated through
a Synergi 2.5 micron Hydro-RP 100 Å, 100mm × 2.00 mm
LC column (Phenomenex, Torrance, CA, USA) maintained at
25◦C. The mass spectrometer and chromatographic separation
were performed similar to a reported method (Lu et al., 2010).
The eluent was introduced into the mass spectrometer via an
electrospray ionization source in negative mode before entering
an Exactive Plus orbitrap mass spectrometer (Thermo Scientific,
Waltham, MA, USA) through a 0.1-mm internal diameter
fused silica capillary tube. The samples were run with a spray
voltage of 3 kV, a nitrogen sheath gas flow rate of 10 units,
a capillary temperature set at 320◦C, and an AGC target set
to 3e6. The samples were analyzed in full scan mode with a
resolution of 140,000 and a scan window of 85 to 800 m/z
for from 0 to 9 min and 110 to 1000 m/z from 9 to 25 min.
Solvent A consisted of 97:3 HPLC grade water:methanol, 10 mM
tributylamine, and 15 mM acetic acid. Solvent B was HPLC
grade methanol. The mobile phase gradient from 0 to 5 min
was 0% B, from 5 to 13 min was 20% B, from 13 to 15.5 min
was 55% B, from 15.5 to 19 min is 95% B, and from 19 to

25 min was 0% B while maintaining a constant flow rate of of
200 µL/min.

Data Processing
Raw sequences were downloaded from the HudsonAlpha
Institute server and checked for quality using FastQC application
(Babraham Institute, Cambridge, England). Unless noted, all
bioinformatics and statistical software were used at default
settings. Samples were subjected to a subsequent in silico rRNA
reduction using the SortmeRNA 2.0 software package (Kopylova
et al., 2012). Since RNA was extracted from whole cecum
tissue and would contain mRNA of murine origin, processed
reads were paired and mapped to the Mus musculus reference
genome using the CLC Genomics Workbench v8.5 (Waltham,
MA, USA). Mouse reads were annotated and further analyzed
in CLC. Unmapped reads were assumed to originate from
the gut microbiome and were uploaded to the Metagenomics
RAST server (MG-RAST; Meyer et al., 2008) for alignment and
identification. All sequencing data were submitted to the Short
Reads Archive (SRA) under accession code SRP075802.

For metabolome data, raw files generated by Xcalibur were
converted to the open-source mzML format (Martens et al., 2011)
via the ProteoWizard package (Chambers et al., 2012). MAVEN
software (Clasquin et al., 2012; Princeton University) was used
to automatically perform non-linear retention time correction
for each sample. Metabolites were manually identified by m/z
(±5 ppm) and retention time for each sample using MAVEN
to calculate associated peak areas. Relative concentrations (i.e.,
in the absence of internal standards for all metabolites) were
normalized by mass of the processed tissue sample. Fold changes
were calculated and the data were transformed and clustered
using Cluster software (de Hoon et al., 2004). Heat maps were
generated from clustered data using Microsoft Excel software.

Statistical Analysis
Microbial transcript abundances annotated from the SEED
Subsystem database (Overbeek et al., 2005; evaluated as raw
read counts) were exported from the MG-RAST server and
normalized by library size. Normalized gene expression data
and relative metabolite concentration were log transformed,
and used to generate a Bray-Curtis dissimilarity matrix and
non-metric multidimensional scaling plots in the PRIMER7
software suite (Clark and Gorley, 2015). PRIMER7 was also used
to perform ANOSIM tests comparing overall expression and
metabolite profiles. Differences in individual gene expression,
between gut microbial communities from the two vendors, were
determined using the edgeR Bioconductor package in R Statistics
software (Robinson and Smyth, 2007, 2008; Robinson et al., 2010;
McCarthy et al., 2012; Zhou et al., 2014). Differential expression
of individual mouse genes between vendors was determined
using the edgeR test implemented in CLC Genomics Workbench.
Figures were generated using SigmaPlot (Systat Software, Inc.).
As p-values from statistical tests were false discovery rate adjusted
for multiple comparisons, a p-value cutoff of 0.1 was used
to provide thorough detailing of differences between mouse
substrains that may be useful to researchers. Additionally,
Cohen’s d effect size (Cohen, 1988) was calculated for each gene
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from relative transcript abundances. All significantly different
genes and metabolites are presented with their p-values, fold
changes, and effect sizes in the Supplementary Material.

RESULTS

Differential Susceptibility to P. yoelii
C57BL/6N mice from Taconic and Charles River were infected
with P. yoelii pRBCs. Parasitemia in Taconic mice peaked 13 days
post-infection at∼15% and was cleared by 23 days post-infection
(Figure 1). Charles River mice exhibited higher parasite burden,
peaking at ∼60% parasitemia 19 days post-infection and delayed
clearance (day 29 post-infection) compared to Taconic mice
(Figure 1). These data are consistent with previous observations
that showed P. yoelii infection of C57BL/6 mice from Taconic
and Jackson Laboratories had lower parasitemia than C57BL/6
mice from Charles River, National Cancer Institute, and Envigo
(formally Harlan; Villarino et al., 2016).

Transcriptome Results
Ribosomal RNA reduction, cDNA synthesis, and sequencing on
the Illumina HiSeq yielded a total of 294 million paired-end
100bp reads across 12 samples. An average of 43.8% of reads were
removed during in silico rRNA reduction using SortMeRNA.
One of the Taconic samples exhibited much higher attrition,
with 73.2% of its reads removed. As a result, the number of
reads annotated from this sample were a full order of magnitude
lower than the other samples, so it was removed from further
analyses because of dissimilarity. Reads passing quality control
were mapped to the mouse genome and subsequently used to
determine murine transcriptional patterns. The remaining reads
were uploaded to MG-RAST for characterization of microbial
transcriptional patterns. The quality control pipeline removed

FIGURE 1 | C57BL/6 mice from Taconic exhibit reduced parasitemia
compared to mice from Charles River. Mice were infected with 105

P. yoelii pRBCs. Percent parasitemia was determined on the indicated days.
Data (mean ± SD) are cumulative results (n = 7–8 mice per group) from two
independent experiments.

an average of 14.6% of reads due to read quality, artificial
duplication, and estimated sequencing error. An average of 2.1
million reads per sample were annotated as microbial transcripts
and divided into functional categories.

Community Structure and Function
The phylogenetic makeup of the cecal microbial community
as determined by metatranscriptomic analysis is represented in
Figure 2. The microbial community transcriptional profile is
dominated by the bacterial phyla Firmicutes and Bacteroidetes,
the reads from which make up an average of 90.1% ± 6.3
of each sample. The next most abundant source of transcripts
originate in Proteobacteria at 3.2% ± 0.20 of reads, followed by
Actinobacteria, 1.7% ± 0.16, and Fusobacteria, 0.53% ± 0.03.
Within the phylum Bacteroidetes, families Bacteroidaceae and
Porphyromonadaceae are most prevalent, 46.7% and 51.1%
of the phylum, respectively. The Firmicutes portion of the
community is split predominantly between orders Lactobacillales
and Clostridiales, 8.9 and 82.5% of the phylum, respectively.
The MG-RAST pipeline identified 0.04% ± 0.007 of the reads
as being of viral origin, all of which were bacteriophage.
Archaea made up 0.24% ± 0.009 of the transcripts, with
the Euryarchaeota dominating at 92.3% of the Archaeal
reads.

Non-metric multidimensional scaling plot of Bray–Curtis
dissimilarity analysis is represented in Figure 3. Sample Taconic
6 was left out of this analysis due to significant dissimilarity
caused by methodology that skews the plot. Overall bacterial
transcript abundances in the 5 Taconic and 6 Charles River
samples are at least 80% similar Figure 3. With the exception
of two Charles River samples (designated by asterisks in
Figure 3), mouse groups cluster with at least 85% similarity
and as high as 98%. These two samples more closely resemble
expression profiles of the Taconic gut communities. As mice
from these two substrains are so closely related, some overlap
within the internal variation of the mouse groups was to
be expected. However, ANOSIM analysis comparing overall
expression of bacterially derived transcripts determined that
community expression between mouse groups was statistically
different (p= 0.048).

In general, the distribution of sequences within SEED
Subsystem categories were consistent between the two mouse
groups (Figure 4). Combining 11 metatranscriptomes, the
most abundant functional groups are Carbohydrate Metabolism
(19.5%), Protein Metabolism (14.0%), and Amino Acid
Metabolism (7.7%). A significant portion (13.3%) of the
sequences are categorized as clustering-based subsystems,
whose functions are bioinformatically identified, but not
yet experimentally validated. An unpaired t-test comparing
normalized expression of individual Level 1 SEED Subsystem
categories between the two treatment groups yielded significant
(p < 0.05), or trending toward significant (p < 0.08), differences
in Protein Metabolism (p = 0.029), Cell Wall and Capsule
synthesis (p = 0.053), Motility and Chemotaxis (p = 0.047),
Sulfur Metabolism (p= 0.038), Iron Acquisition and Metabolism
(p = 0.077), Secondary Metabolism (p = 0.059), and Potassium
Metabolism (p= 0.014).
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FIGURE 2 | Relative abundance of Bacterial phyla and total Archaea, Eukarya, and virus reads. Read counts normalized by library size from the samples in
each group. Blue bars represent abundance in mice purchased from Taconic Biosciences. Red bars represent abundance in mice purchased from Charles River
Laboratories. Error bars represent standard deviation. Data (mean ± SD) are from n = 5 Tac and n = 6 CR mice.

FIGURE 3 | Non-metric multidimensional scaling of Bray-Curtis similarity matrix comparing overall abundances of bacterially derived transcripts.
Blue points represent samples isolated from Taconic Biosciences mice. Red points represent samples isolated from Charles River Laboratories mice. Ellipses
represent lines of 80, 85, and 90% similarity between samples. Asterisks designate two Charles River samples addressed in text.

Differentially Expressed Bacterial Genes
To determine whether specific transcripts significantly differed
in expression between the resistant and susceptible phenotypes,
statistical analysis of differential gene expression of bacterially

derived transcripts was performed using the edgeR Bioconductor
package. A total of 60 bacterial genes were differentially expressed
(p ≤ 0.1), 33 of which with false discovery rate (FDR) adjusted
p-values less than 0.05 and 11 with p-values less than 0.001
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FIGURE 4 | Relative abundance of SEED subsystems functional categories. Read counts normalized by library size from samples within each group. Blue
bars represent abundance in mice purchased from Taconic Biosciences. Red bars represent abundance in mice purchased from Charles River Laboratories. Data
(mean ± SD) are from n = 5 Tac and n = 6 CR mice. Asterisks indicate functional categories significantly different (p < 0.05) or trending toward significant (p < 0.8)
in a comparison via unpaired Student’s t-test.

(Figure 5). Of these, 51 of 60 genes were overrepresented
in Charles River mice compared to Taconic. The majority of
differentially expressed genes are involved in energy, amino acid,
and carbon metabolisms. Overexpressed in Charles River mice
were transcripts encoding FliC, the flagellar body protein, which
is heavily proinflammatory. Only three genes were determined to
be significantly overrepresented in resistant mice purchased from
Taconic Biosciences. All statistically significant bacterial genes,
with the exception of three, exhibited an effect size greater than
0.8, the value typically used as the cutoff for a strong effect.

Differentially Expressed Mouse Genes
Since sequencing also yielded mouse transcripts within the
samples, differential gene expression amongst the murine
transcripts was also analyzed. Fold change in gene expression
and FDR adjusted p-values from the exact test are presented in
the volcano plot in Figure 6. Twenty genes were differentially
expressed with a p-value less than 0.1, 12 of which had
p-values less than 0.05. Of these, 11 genes were significantly
overrepresented in Charles River mice and one in Taconic mice.
The overrepresented transcripts in Charles River mice include
Galectin-9 (LGALS9), which is an important immune signaling
molecule (Merani et al., 2015), and Basigin (bsg), a cell surface
receptor whose expression is required for infection of RBCs by
the human malaria parasite P. falciparum (Crosnier et al., 2011).
All statistically significant mouse genes exhibited an effect size
greater than 1.0, with the lowest being 1.16.

Metabolite Pools
Relative metabolite concentrations were normalized by mass of
the processed tissue sample, and these data were used to calculate
fold change and cluster analyses. Comparison of normalized
metabolite abundances determined that differences in the
metabolome of Charles River and Taconic mice were present
(p = 0.082). Normalized abundance of significantly different
metabolites are presented in Figure 7. Of the 129 metabolites
detected in the samples, 36 were found in significantly higher
relative concentrations in Charles River mice, and two (NADH
and N-acetyl-L-alanine) were found in higher concentrations in
Taconic mice (p < 0.1). All statistically significant metabolites
exhibited an effect size greater than 1.0, with the lowest being
1.17. The majority of significant metabolites were nucleotides,
amino acids, or the substrates involved in the biosynthesis of
these compounds. While a number of additional transcripts
and metabolites were differentially abundant between mouse
substrains, we have restricted our discussion to only those where
a mechanism influential in gut microbial symbiosis, immune
regulation, and malaria infection are clear.

DISCUSSION

Previous studies have demonstrated that of the microbiome
of C57BL/6 mice can modulate the severity of Plasmodium
infections in mice (Villarino et al., 2016). The resistant and
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FIGURE 5 | Volcano plot showing degree of differential expression of bacterially derived genes in Charles River Laboratories mice compared to
Taconic Biosciences. Log-transformed fold change in expression is plotted on the x-axis and log-transformed false discovery rate-adjusted p-values plotted on the
y-axis. The red horizontal line represents the 0.1 p-value cutoff. Empty triangle: fliC (Flagellin).

FIGURE 6 | Volcano plot showing degree of differential expression of mouse-derived genes in Charles River Laboratories mice compared to Taconic
Biosciences. Log-transformed fold change in expression is plotted on the x-axis and log-transformed false discovery rate-adjusted p-values plotted on the y-axis.
The red horizontal line represents the 0.1 p-value cutoff. Empty square: bsg (Basigin). Empty triangle: lgals9 (Galectin-9).

Frontiers in Microbiology | www.frontiersin.org 7 September 2016 | Volume 7 | Article 1520

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01520 September 23, 2016 Time: 12:51 # 8

Stough et al. Plasmodium Resistant and Sensitive Microbiomes

FIGURE 7 | Heatmap representing metabolite abundances normalized to sample tissue mass and log transformed. Metabolites displayed are significantly
different with a p-value cutoff of 0.1. (A) Five columns represent metabolite abundances for each of five Taconic Biosciences mice. (B) Six columns represent each of
the six Charles River mice. (C) Columns represent the mean abundances for Taconic (A) and Charles River (B).

susceptible phenotypes were not only reproducible across
cohorts, but transmissible as part of cecal transplants to
germ-free mice. Differences in parasite burden and bacterial
community composition of Taconic and Charles River mice
in the current study were consistent with previous research.
Taconic mice exhibited significantly lower peak parasite burden
and recovered from infection more quickly than Charles River
mice. These findings strongly suggest that, as with our previous
study, differences in parasite burden are the result of some
currently unidentified interaction between the host and the
gut microbiota, rather than the effects of epigenetic regulation,
genetic or environmental effects. However, differential expression

of mouse genes and differential abundance of metabolite pools
are purely associative until further gut transplant studies are
carried out.

Phylogenetically, the vast majority of transcripts were
produced by bacteria, with Bacteroidetes and Firmicutes the
most abundant among them. And while reliance on transcript
abundance as an indicator of community composition is tenuous,
the data are consistent with 16S rRNA and metagenomic
studies of both mice and humans (Backhed et al., 2005;
Ley et al., 2006; Sekirov et al., 2010). Overall, community
composition inferred from transcript abundance did not differ
at the phylum level between mice from the two vendors
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sampled. However, relevant differences in community functional
profiles from overall expression patterns suggest that the factors
involved in affecting host phenotype may exist at a finer
scale.

Within the context of our study neither Archaea nor viruses
make up a significant portion of transcriptional activity, although
their contribution cannot be discounted. Previous studies have
also shown their abundance is lower than their bacterial
counterparts (Hoffmann et al., 2013); however, it is likely that
this community was not sequenced deeply enough to detail their
role. Viruses in particular may require targeted approaches to
better resolve their influence on community dynamics and host
phenotype. The role of phage populations may be limited to top-
down control of the bacterial community with no direct influence
over host cells (Ogilvie and Jones, 2015).

Differential bacterial gene expression in the cecum, in part,
reflects differences in microbial community composition between
mouse strains that are often used interchangeably in research and
provides important targets to unveil the mechanism underlying
resistance to malaria. Overrepresentation of transcripts encoding
flagellin in Charles River mice suggests a mechanism that may
involve indirect modulation of the immune system by the
gut microflora. Flagellin is the principal protein component
of the bacterial flagellum, encoded by the gene fliC. While
the majority of the gut microbial diversity is capable of
producing flagella, flagellin levels are generally low in the healthy
gastrointestinal tract (Verberkmoes et al., 2009). Increased
flagellin expression can be associated with mucosal barrier
breakdown and inflammation (Sanders, 2005; Gewirtz, 2006).
It has been hypothesized that anti-flagellin antibodies down-
regulate fliC expression in resident non-pathogenic microbes
(Cullender et al., 2013) and this prevents colonization by
potential pathogens (Ghose et al., 2016). However, it is currently
unclear whether local stimulation of innate and adaptive immune
response in the gut via Toll-like receptor 5 (TLR5; Gewirtz
et al., 2006) is relevant to the immune response to Plasmodium
infection.

Differential regulation of murine gene expression between
groups of mice purchased from different vendors is compelling
evidence of non-genomic C57BL/6N strain divergence. Of
particular interest is the overrepresentation of basigin (BSG)
in Charles River mice and its possible involvement in malaria
resistance. Also referred to as CD147 or EMMPRIN (extracellular
matrix metalloprotease inducer), basigin is a cell surface receptor
in the immunoglobulin superfamily. It is commonly expressed on
many tissue types and is involved in a wide variety of biological
functions, such developmental processes, nutrient transport, and
inflammation (Xiong et al., 2014; Hahn et al., 2015). The basigin
gene, bsg, can encode four different variants through alternative
splicing, each of which is expressed in different tissues (Liao et al.,
2011). Subsequent assembly and analysis of Basigin transcripts
from our dataset identified that the vast majority of reads encoded
isoform Bsg-2, the most abundant and best characterized isoform
in human and mouse tissue. While basigin is involved in many
processes, it became relevant to human health when it was
found to induce expression of matrix metalloproteases, which
can promote tumor cell development, invasion, and metastasis

(Hahn et al., 2015). Perhaps more relevant to the current work,
a recent study identified Bsg-2 as a key receptor for reticulocyte-
binding protein homolog 5 (PfRh5), the parasite ligand required
for erythrocyte invasion by P. falciparum (Crosnier et al., 2011).
In total these observations results in the new hypothesis that
decreased expression of basigin isoform Bsg-2 in Taconic mice
may contribute to their malaria resistance.

Another overrepresented transcript in Charles River mice
encodes the β-galactoside-binding protein galectin-9. Galectins
bind specifically to glycosylated proteins and are typically
involved in cell signaling and regulation. As a result, dysfunction
of galectin activity and expression is closely linked to cancer
development (Thijssen et al., 2015) and autoimmune disorders
(Blidner et al., 2015). As a ligand for the type-I glycoprotein
Tim-3, galectin-9 modulates the innate immune response
to viral infection by inducing apoptosis in infected T cells
(Merani et al., 2015). Dysfunctional expression and activation
of the Tim-3 signaling molecule has been linked to CD4+
and CD8+ T cell “exhaustion” in chronic HIV (Jones et al.,
2008) and hepatitis C (Golden-Mason et al., 2009) infection.
It is possible that underrepresentation of galectin-9 in Taconic
mice may improve T cell response to Plasmodium infection.
However, interest in galectin proteins as important immune
signaling molecules has emerged only recently. As the regulation
of these proteins is poorly understood, the mechanism by
which the gut microbiota may influence galectin expression is
unclear.

As part of our analysis we mapped both transcripts and
metabolite data (p ≤ 0.1) onto microbial metabolic pathways
to identify biological processes that may link the two. However,
we were unable to find connections beyond two or three
features within any pathway. This may be due to the relatively
low transcript coverage of the vast metabolic capabilities of
the microbiome, but is likely also related to the transient
nature of gut contents and the constant flux of new material
combined with the temporal disconnect between transcriptional
and metabolic responses. Additionally, it can be difficult to
determine whether differential relative concentrations of specific
molecules are the cause or result of physiological change.
However, the presence of significant differences in specific gut
metabolites, as well as relevant difference in overall metabolite
pools, between C57BL/6N mice is of serious concern to those
that rely on them for reproducibility. Previous work has also
shown that the murine microbiome can alter the concentration of
circulating metabolite in the host (Villarino et al., 2016), further
complicating the comparison of results between vendors and
substrains.

This study identified key differences in the gene expression
of both the microbial and murine components of the
gastrointestinal tract, including the cell surface receptor
basigin, as a potential link between the gut microbiome and the
previously observed malaria resistance. Differential expression
of the immune signaling protein galectin-9 was also noted, and
this alteration may play a role in regulation of the differential
immune response observed in the prior study. Additionally, a
relevant difference in the overall metabolome and significant
differences in multiple individual metabolites were observed.
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While the differences in gene expression and metabolism we
observed provide evidence against the interchangeability of mice
obtained from different vendors, they shed new light on potential
avenues for investigation into the effects of the microbiome on
the severity of malaria.
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