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Abstract: To overcome the biological barriers formed by the lignin–carbohydrate complex for releas-
ing fermentable sugars from cellulose by enzymolysis is both imperative and challenging. In this
study, a strategy of intergranular swelling of cellulose combined with hydrolysis and oxidation
was demonstrated. Pretreatment of the bagasse was evaluated by one bath treatment with phos-
phoric acid and hydrogen peroxide. The chemical composition, specific surface area (SSA), and
pore size of bagasse before and after pretreatment were investigated, while the experiments on the
adsorption equilibrium of cellulose to cellulase and reagent reuse were also performed. Scanning
electron microscopy (SEM) and high-performance liquid chromatography (HPLC) were employed
for microscopic morphology observations and glucose analysis, respectively. The results showed
that pretreated bagasse was deconstructed into cellulose with a nanofibril network, most of the
hemicellulose (~100%) and lignin (~98%) were removed, and the SSA and void were enlarged 11-
and 5-fold, respectively. This simple, mild preprocessing method enhanced cellulose accessibility and
reduced the biological barrier of the noncellulose component to improve the subsequent enzymolysis
with a high glucose recovery (98.60%).

Keywords: cellulose; swelling; bagasse; enzymolysis; cellulase

1. Introduction

Lignocellulose biomass is an energy form that plants utilize to store energy gained
via photosynthesis [1]. It is known as a carbon-neutral, green resource, with a total annual
output of 146 billion tons [2]. Fuel, materials, and chemicals in solid, liquid, and gaseous
states are obtained from biomass using various technical means [3–5]. However, biological
barriers make it extremely difficult to release fermentable sugars from cellulosic biomass.
As a result, large dosages of enzymes are required for hydrolysis, which diminish their
cost-efficient features for commercial application [6]. Since the energy crisis in the 1970s,
biofuel and biochemical production technologies based on enzymolysis from biomass have
been driven in both industry and academia [7]. Although enzymolysis offers potentially
higher yields [8], higher selectivity [9], lower energy costs [10], and milder operating
conditions [11] compared to chemical processes, the technology still faces significant chal-
lenges. Eliminating the biological barriers of lignocellulose biomass to enzymes under mild
conditions is vital [12].

Cellulose, as a linear polymer consisting of 300–15,000 D-glucose units, aggregates
into 3 to 4 nm-wide elementary fibrils due to intermolecular forces [13–15]. The elementary
fibrils are embedded in the hemicellulose matrix and are further aggregated into 10 to
25 nm-wide primary microfibrils [16]. These primary microfibrils are likewise embedded
in a lignin–carbohydrate complex (LCC) matrix and are then bonded together, weaving
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throughout the plant cells in a unique way [17,18]. Limiting the accessibility of polysaccha-
rides and unproductive binding to enzymes are the main mechanisms by which the unique
icing that is formed by LCC limits the enzymolysis of lignocellulose biomass [19,20].

To reduce the cellulase required, the accessibility of cellulose through pretreatment by
mechanical, chemical, biological, or a combination of these methods has been extensively
studied [21,22]. Some early studies show that the dosage of catalyst needed was lower
than 20 FPU/g. These pretreatment techniques can be divided into two types according to
their mechanism: (1) Based on hydrolysis (dilute acid, hydrothermal, alkali, enzyme) and
oxidation (basic hydrogen peroxide) mechanisms to cut off the molecular chain to remove
noncellulose components by improving the mass transfer channels [23]. These methods
are limited by the resistance of the plant cell wall; it is difficult to completely remove
hemicellulose and lignin. (2) Based on mechanical forces (ball milling), molecular forces
(ionic liquids, deep eutectic solvents (DESs), inorganic salt hydrates) destroy cellulose
aggregation and increase cellulose exposure [24]. The main problem with this kind of
method is that cellulose overdisperses or overdissolves and mixes with residual noncel-
lulose components, which may show some deterioration over time [25]. Thus, assuming
limited swelling of cellulose combined with hydrolysis and oxidation in one-pot treatment
is expected to simultaneously achieve: the removing of the hemicellulose and lignin, and
the increasing of cellulose accessibility, although this has not been reported.

H3PO4 is an effective cellulose dissolution and swelling agent that can be easily cus-
tomized for cellulose intercrystalline swelling or dissolution, depending on the properties of
cellulose and operating conditions. Walseth [26] first developed a high-reactivity cellulose
for cellulase activity analysis by dissolving cellulose using H3PO4, which has become one of
the most common cellulose substrates for cellulase activity analysis. Previous studies have
shown that H3PO4 (with the help of H2O2) can extract nanofibrils and high-reactivity cellu-
lose suitable for enzymolysis from biomass [27,28]. However, few studies have revealed
the influence of intercrystalline swelling of cellulose on bagasse enzymolysis.

In this work, bagasse was pretreated by using an H3PO4 and H2O2 aqueous solution
system under mild conditions, which has three functions, namely, swelling, hydrolysis, and
oxidation. Cellulose swelling, hemicellulose hydrolysis, and lignin oxidation degradation
occur simultaneously during the pretreatment, and they cooperate and promote each other.
Pretreated bagasse was deconstructed into cellulose with a nanofibril network, most of the
hemicellulose (~100%) and lignin (~98%) were removed, their pore volume suitable for
enzyme entry was magnified 11-fold, and their surface area available for cellulase loading
was increased 5-fold. This preprocessing approach enhanced cellulose accessibility and
reduced the barrier of noncellulose components to improve the subsequent enzymolysis
with a high glucose recovery (98.60%). In addition, the used H3PO4 mixture can be reused
for subsequent pretreatment or neutralized to produce a fertilizer rich in phosphorus [29].
This study demonstrates a strategy with simple, mild features, which has the potential
pretreatment methods for bioethanol processing and a new possible pathway for biomass-
refining technology development.

2. Experimental
2.1. Cellulose and Cellulase

The bagasse used in this study was purchased from Guangxi Guitang Group Co.,
Ltd. (Guitang, China). The bagasse was ground to a 40–60 mesh powder. Analytically
pure reagents, phosphoric acid (H3PO4, 85% w/v), anhydrous ethanol (98% w/v), and
hydrogen peroxide (H2O2, 30% w/v) were purchased from Nanning Blue Sky Experimental
Equipment Co., Ltd. (Nanning, China).

A total of 30 g bagasse powder, 60 mL H2O2, and 240 mL H3PO4 were placed in a
round-bottomed flask and pretreated at 30 ◦C with stirring at 300 rpm for 42 h. After the
reaction, the solids were recycled by filtration from the suspension and then soaked in
100 mL anhydrous ethanol for 24 h. The pretreated bagasse was recovered by centrifugation
at 4000 rpm for 15 min from ethanol suspension.
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The chemical composition of raw materials and pretreated bagasse was determined
according to the standard method of the US National Renewable Energy Laboratory
(NREL) [30]. This involved a two-stage extraction of samples followed by a two-stage
acid hydrolysis. Residual solids were quantified as acid-insoluble lignin content. The
acid-soluble lignin content was quantified by a UV spectrophotometer (Agilent Cary 3500,
Agilent, Santa Clara, CA, USA) in the analytical hydrolysate. The lignin content was the
sum of acid-soluble lignin and acid-insoluble lignin content. Structure of cellulose and
hemicellulose were quantified as their monomeric forms in the analytical hydrolyzate using
high-performance liquid chromatography (HPLC, Agilent 1260 Infinity II, Agilent, Santa
Clara, CA, USA) with an HPX-87H column (Agilent, Santa Clara, CA, USA). Cellulase
(Novozyme CTec2) was purchased from Sigma-Aldrich (Shanghai, China). The cellulase
activity was determined by the filter paper method according to US NREL [31] and protein
content was determined using the Bradford method [32].

2.2. Physicochemical Properties of Cellulose
2.2.1. X-ray Diffraction

The X-ray diffraction (XRD) pattern was obtained using a MiniFlex 600 advance X-ray
diffractometer (Rigaku, Tokyo, Japan) with a Cu Kα radiation source operated at 40 kV
and 40 mA. The measurement of 2θ ranged from 10◦ to 50◦ at a scanning speed of 5◦/min
and step size of 0.02◦. The crystallinity index (CrI) of pretreated cellulose was calculated
by subtracting the amorphous contribution from diffraction spectra using an amorphous
standard according to a previous study [33]. XRD was calculated by the following formula:

CrI (%) = (I200 − Iam)/I200 (1)

where I200 represents the maximum intensity of the lattice diffraction peak at 2θ between
22.5◦, and Iam represents the intensity scattered by the amorphous component in the sample,
which was evaluated as the lowest intensity at 2θ at 18◦.

2.2.2. Degree of Polymerization

The intrinsic viscosity degree of polymerization (DP) test [34] was used to calculate
the DP of cellulose. The DP was calculated according to the following equation (with an
average of three measurements per sample):

[η]G = ηsp/C × (1 + 0.35 ηsp) (2)

DP = 80 [η]G (3)

where [η]G is the intrinsic viscosity (mL/g), ηsp is the specific viscosity, C represents the
concentration (g/100 mL), and DP is the degree of polymerization.

2.2.3. Specific Surface Area

Nitrogen adsorption (Micromeritics ASAP2460, Norcross, Georgia) was used to mea-
sure the specific surface area (SSA) of untreated and pretreated bagasse. The samples were
degassed at 90 ◦C for 12 h prior to analysis to remove moisture and air from the substrate
pores. The test was carried out at liquid nitrogen temperature, and the SSA of the sample
was calculated using the BET model [35].

2.2.4. Zeta Potential

The surface charge of the pretreated cellulose was evaluated by determining the zeta
potential using the zeta potential mode of the Malvern Zetasizer (ZS90X, Melvin, UK) [36].
The pretreated cellulose was uniformly dispersed in a sodium citrate buffer of pH 4.8
to form a 0.5% (w/v) suspension, and the suspension was measured and scanned with a
cuvette 100 times.
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2.2.5. Additional Measurements and Characterization

An X-ray photoelectron spectrometer (XPS) (ULVAC-PHI, Chigasaki-shi, Japan) was
used to determine the surface chemical analysis of pretreated cellulose [37]. A Fourier-
transform infrared (FTIR) spectrometer (TENSOR II, Brook Technology, Ettlingen, Germany)
was used to obtain the FTIR spectra of the untreated bagasse, pretreated bagasse, and enzy-
molysis residual in the frequency range of 4000–400 cm−1 with a resolution of 4 cm−1 using
the KBr tablet method [38]. Scanning electron microscopy (SEM) SU8220 (Hitachi, Tokyo,
Japan) was used to analyze the surface structure of the untreated bagasse and pretreated
bagasse. ImageJ software (Version 2.0, National Institutes of Health, Bethesda, MD, USA)
was used to determine the diameter of the nanofibers after at least 100 measurements based
on SEM images. The bagasse samples were freeze-dried using the Advantage Plus EL-85
freeze-drying system (SP Scientific, Warminster, PA, USA) and the samples were sprayed
with gold to improve the conductivity of the samples before observing the samples.

2.3. Adsorption Equilibrium Experiment

Two hundred milligrams of substrate were weighed into a centrifuge tube and a
series of concentrations of enzyme solutions were added (0.05 M citrate buffer, refrigerated
at 4 ◦C before use) to form a solid loading of 2% (w/v). The mixture was shaken at
130 rpm at 4 ◦C for 2 h. In parallel, a blank control sample was run. After adsorption,
the mixture was centrifuged at 10,000 rpm for 5 min, and the supernatant was taken.
The protein concentration was determined by the Bradford method and each sample was
measured in duplicate. The adsorption capacity was expressed as the difference between
the concentration of added enzyme protein and that of supernatant. The adsorption data
were fitted using the Langmuir equation [39]:

Eb = (Ebm × Ka × Ef)/(1 + Ka × Ef) (4)

where Eb is the amount of bound cellulase (mg/g substrate), Ebm represents the theoretical
maximum adsorption capacity of the substrate (mg/g substrate), Ka is the affinity constant
(L/mg), and Ef is the free enzyme in the supernatant (mg/mL).

2.4. Enzymatic Hydrolysis

Enzymolysis of pretreated bagasse was carried out in a 50 mM citrate buffer (pH 4.8)
with a substrate load of 2% (w/v; dry matter, DM). Cellulase was introduced at 5, 10, and
20 filter paper unit (FPU)/g cellulose, and 0.1 g/L ampicillin trihydrate was added to avoid
microbial interference during hydrolysis. After enzymolysis for 0.5, 2, 4, 8, 16, 48, and 72 h,
~5 mL of solid–liquid mixture was taken out and inactivated at 100 °C for 30 min, passed
through a 0.22 µm filter membrane, and stored at 4 ◦C for further measurement of glucose
yield. Enzymolysis of each sample (untreated and pretreated bagasse) was run in parallel.
The glucose concentration was measured at 60 ◦C using an HPLC system equipped with
an HPX-87H column (Agilent, Santa Clara, CA, USA). The mobile phase flow rate was at
0.6 mL/min and the detection time was 30 min. The hydrolysis efficiency of the enzyme
bound to the cellulose surface was calculated by the hydrolysis rate of the unit bound
enzyme in the initial stage of enzymolysis (0.5 h).

3. Results and Discussion
3.1. Physical and Chemical Property Characterization

To assess the efficacy of the pretreatment in the removal of noncellulose components,
the chemical composition of untreated and pretreated bagasse is compared in Table 1.
Table 1 showed that ~100% of initial hemicellulose in the bagasse was removed during
the pretreatment. As shown in the FTIR results (Figure 1), the characteristic peaks at
1737 cm−1 (C=O stretching of the acetyl and urate groups of hemicellulose or the ester
bond of carboxyl groups in lignin to fragrant acid and ferulic acid) and 1247 cm−1 (the
alkyl ester of the acetyl group in hemicellulose) of the hemicellulose of pretreated bagasse
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from untreated bagasse are decreased or completely disappeared [40]. These indicate
that hemicellulose removal is complete [41], which is attributed to the fact that cellulose
intercrystalline swelling fully exposes the hemicellulose and promotes the hydrolysis of
the hemicellulose. Similarly, 98% of the initial lignin was removed during the pretreatment
(Table 1). As seen from the FTIR results (Figure 1), the characteristic peaks at 1515 cm−1

(C=C stretching of the aromatic skeleton), 1607 cm−1 (the aromatic skeletal stretching),
and 1458 cm−1 (C–H deformation of CH3 and CH2) of lignin of pretreated bagasse from
untreated bagasse almost disappeared [42]. This demonstrates that lignin was efficiently
removed, attributing to the oxidative degradation of lignin by peroxyphosphoric acid
(H3PO5) formed by H3PO4 and H2O2 [43]. The cellulose yield possibly reached 96.03%
(Table 1), which is due to both the mild reaction conditions and high selectivity of the
delignification and hemicellulose removal [43].

Table 1. Composition of bagasse and pretreated bagasse.

Yield (%) a Cellulose (%) Hemicellulose (%) Lingin (%)

Untreated bagasse 100/100 43.26 ± 2.13 22.86 ± 0.97 25.53 ± 1.18
Pretreated bagasse 42.58/96.03 97.56 ± 4.38 0 1.35 ± 0.11

a Yield based on the initial amount of biomass/yield based on the initial amount of cellulose in biomass.
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Figure 1. Fourier-transform infrared spectrometer (FTIR) spectrum of the untreated and pretreated
bagasse.

As shown in the XPS results (Figure 2a,b), the oxygen-to-carbon (O/C) ratio of un-
treated bagasse was 0.39. The known theoretical O/C ratios of cellulose, hemicellulose, and
lignin are 0.83, 0.81, and 0.33, respectively. The low O/C ratio of natural bagasse can explain
the lignin on the surface of the fibrils. The O/C ratio of pretreated bagasse increased to
0.62. The concentrations of C1 (C=C/C-C/C-H), C2 (C-O-C/C-O-H), and C3 (C=O/O-C-O)
in untreated bagasse were 41.35%, 47.19%, and 11.46%, respectively. Contributions of
cellulose, hemicellulose, and lignin to these peaks have been reported [44,45], with 85% of
cellulose signaling to C2 and part of it to C3, 80% of hemicellulose signaling to C2 and the
rest to C3, and 50% of lignin signaling to C1 and the rest to C2. The C1 content of pretreated
bagasse decreased, while C2 and C3 contents increased. These phenomena suggest that
the lignin is removed and the polysaccharides are exposed on the surface of the fibers [46].
This was consistent with the results of the chemical composition and FTIR analysis.
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Figure 2. X-ray photoelectron spectrometer (XPS) spectrum of (a) untreated bagasse and (b) pretreated
bagasse.

The structure of untreated bagasse is complete and compact, and the fiber bundles
are arranged compactly (Figure 3a). This intact structure greatly impedes the accessibility
of the cellulase to the cellulose. Bagasse was pretreated in an aqueous solution of H3PO4,
and the surface morphology of the pretreated bagasse changed significantly, transforming
the dense bagasse into cellulose with a nanofibrils skeleton network structure (Figure 3b,c).
The widths of most nanofibers are in the range of 10–60 nm (Figure 3d). This is attributed
to the fact that the H3PO4 molecules intrude between the fibrils, breaking the hydrogen
bonds between adjacent fibrils [47]. The removal of hemicellulose and lignin also increases
the number of channels for H3PO4 molecules to squeeze into the cell wall, causing the
distance between adjacent fibrils to widen.
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To evaluate the effect of pretreatment on cellulose aggregation, the XRD patterns
of untreated and pretreated bagasse were compared (Figure 4). The peaks [48] at 16◦

(101), 22◦ (200), and 34◦ (004) for cellulose I were significantly strengthened in the XRD
patterns of untreated and pretreated bagasse. Similarly, the CrI value of the pretreated
bagasse increased from 58.84% to 74.92% (Figure 4). There were no obvious clear peaks at
2θ = 12.1◦ (110 for cellulose II), and 20.2◦ (110 for cellulose II) in the XRD patterns of
pretreated bagasse as reported in the literature [49]. These indicate that the cellulose
crystal structure was unchanged, and the supramolecular structure of cellulose was not
visibly broken. This implies that the swelling of H3PO4 in cellulose mainly occurs in the
intercrystalline spaces rather than the intracrystalline spaces.
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Figure 4. X-ray diffraction (XRD) patterns of the untreated bagasse and pretreated bagasse.

3.2. Adaptability of Pretreated Bagasse to Cellulase

To evaluate the effect of cellulose intercrystalline swelling on bagasse enzymolysis, the
adaptability of pretreated bagasse to cellulase was analyzed (Figure 5a). As seen from the
enzymolysis of pretreated bagasse, the glucose yield (78.19%) achieved at a lower enzyme
dosage of 5 FPU/g was 14-fold higher than that achieved with untreated bagasse (5.25%).
Further increase in the cellulase dosage to 10 FPU/g resulted in a glucose yield of 95.91%
that was five-times higher than that achieved with untreated bagasse (18.07%). However,
with 20 FPU/g of cellulase, a glucose yield of 98.60% was obtained: this was two-fold
higher than that achieved with untreated bagasse (47.27%). This indicates that pretreated
bagasse is highly amenable to cellulase.

Highly selective removal of lignin (~98%) and hemicellulose (~100%) helps to reduce
the unproductive adsorption and the physical barrier of bagasse to cellulase (Table 1). These,
in addition to the lower noncellulose content of the pretreated bagasse, are also associated
with changes in other physicochemical properties including [50,51] pore volume (PV), SSA,
degree of polymerization (DP), and CrI, directly and indirectly providing information
about enhanced enzymolysis of pretreated bagasse. As seen from the PV results (Figure 5b),
a new mesopore (8–23 nm) appeared in the pretreated bagasse and the PV increased to
1.60 × 10−2 cm3/g from 1.43 × 10−3 cm3/g (Figure 5b). Pores larger than 5.1 nm allow the
enzyme to enter the substrate without being restricted by size [52]. The PV of pretreated
bagasse increased 11-fold, meaning that the physical channels through which the enzyme
can pass are increased. The SSA of pretreated bagasse significantly increased to 1.9068 m2/g
from 0.3633 m2/g (Table 2). The increase in the SSA of cellulose means that a larger area
is available for enzyme loading [53]. The SSA of pretreated bagasse increased five-fold,
meaning that the available surface area of the cellulose for enzyme loading was enhanced.
The DP of cellulose dropped to 300 from an initial value of 2877 during the pretreatment



Polymers 2022, 14, 3587 8 of 13

(Table 2). This is attributed to the cleavage of the β-1,4 glycosidic bonds in cellulose by the
acid-catalyzed hydrolysis during the pretreatment [54]. It can therefore be inferred that the
cellulose was destroyed and depolymerized, meaning that the number of nodes requiring
cellulase hydrolysis was reduced.
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Table 2. Physicochemical properties of bagasse and pretreated bagasse.

SSA (m2/g) DPn Zeta Potential (mV)

Untreated bagasse 0.3633 ± 0.016 2876.95 ± 26.83 −9.01 ± 0.59

Pretreated bagasse 1.9068 ± 0.207 300.6 ± 7.48 −45.61 ± 1.13

As shown in the XRD results (Figure 5c), the CrI value decreased sharply to 35.03%
from 74.92% [55], while the corresponding cellulose conversion to glucose was 55.32%
during the 2 h enzymolysis. When the enzymolysis time was extended to 16 h, the per-
centage of cellulose to glucose increased to 80.02% and the CrI value decreased to 19.34%.
The remaining crystalline cellulose was greatly enzymolyzed, the glucose yield reached to
98.6%, and the CrI value of the residue dropped to 8.51%. The cellulase therefore showed
a strong preference for the digestion of crystalline cellulose over amorphous cellulose.
This may be because amorphous cellulose is mixed with noncellulose components, which
hinders the approach of cellulase.

As shown in the XPS results (Table S1), the O/C ratio of the residual from the pre-
treated bagasse enzymolysis at 20 FPU/g for 48 h decreased from 0.62 to 0.31. In addition,
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the content of C1 increased (from 31.75% to 58.79%), and the content of C2 decreased (from
53.49% to 27.17%) (Figure S1). As seen from the FTIR results (Figure 1), the characteristic
absorption peaks [56,57] at 895 cm−1 (the glycosidic bond of cellulose), 2892 cm−1 (C–H
tensile vibration of methyl and methylene), 1160 cm−1 (C–O–C asymmetric stretching of
cellulose), and 1066 cm−1 (C–O, C–C stretching vibration) of cellulose were weakened.
The characteristic absorption peaks [58,59] at 823 cm−1 (C–H bending vibration of guaia-
cyl), 1273 cm−1 (C-O stretching vibration of guaiacyl), and 1637 cm−1 (C=O conjugated
stretching) of lignin were significantly enhanced in the FTIR of the residue (Figure 1). This
is attributed to the cellulose being converted to glucose (98.6%) by cellulase and being
removed, while the lignin was retained in the enzymolysis residue.

3.3. Enzymolysis Kinetic Behavior of Pretreated Bagasse

The linear correlation coefficient (R2) was greater than 0.963, indicating that the Lang-
muir [39,60] equation fits the adsorption isotherm data well (Figure 6a). The affinity
constant of pretreated bagasse was 19 L/g, which was three times that of untreated bagasse
(6 L/g). This suggests that pretreated bagasse adsorption enzymes require a higher enzyme
concentration at saturation than untreated bagasse. The adsorption capacity of cellulase
onto the pretreated bagasse decreased to ~29 mg/g from ~40 mg/g (Figure 6a). The ad-
sorption behavior of cellulase onto lignin is well-understood [61] and the hydrophobic
lignin enhances the hydrophobic interaction, increasing the adsorption of enzymes onto
lignin [62]. The hydrophobic interaction was weakened in pretreated bagasse due to the
lower lignin content (Table 1). Cellulase was negatively charged in the buffer at pH 4.8 and
demonstrated an electrostatic repulsion of cellulose, which had a negatively charged surface
(−45.61 mV). Due to the weakening of the hydrophobic interaction and the enhancement
of the electrostatic interaction of pretreated cellulose and cellulase, the adsorption capacity
of cellulase onto cellulose decreased, although the SSA of the pretreated bagasse increased
(Table 2).
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The unit-bound enzyme efficiency was calculated based on the enzymolysis rate at
0.5 h (Figure 6b). The unit-bound enzyme efficiency of pretreated bagasse was significantly
improved (Figure 4b), although the amount of bound enzyme onto bagasse remained
unchanged (Figure 6c). This means that productive adsorption increases due to increased
cellulose exposure to cellulase after the removal of noncellulose components (Table 1).
This implies that the adequate removal of the noncellulose components is necessary for
the enzyme to diffuse into or access the cellulose. The unit-bound enzyme efficiency
(0.76 g/L/h/mg bound enzyme) of bagasse at low enzyme doses was significantly higher
than that of the high enzyme doses of 10 and 20 FPU/g (0.68 and 0.43 g/L/h/mg bound
enzyme). This suggests that pretreated bagasse is more conducive to enzyme efficiency at
lower enzyme doses.

3.4. Evaluation of H3PO4 Recyclability

‘Green’ and sustainable production is widely recognized by human society [63]. If the
final production quality is not disturbed, the reuse of reagents for pretreatment can sig-
nificantly reduce the cost. The H3PO4 mixture was reused five times for subsequent
pretreatment of bagasse with the appropriate addition of H3PO4, and the resulting glu-
cose yield of pretreated bagasse via enzymolysis was similar to that of the fresh reagent
(Figure 7a). Approximately 85% of the H3PO4 is recycled directly by filtration, ~10% H3PO4
is recovered from ethanol washing solution via rotary evaporation, and only ~5% H3PO4
needs to be replenished for reuse (Figure 7b). Residual H3PO4 (~5%) in pretreated bagasse
almost obviated the need for acid to adjust the pH to 4.8 to meet the requirements of the
enzymatic hydrolysis process. Further research will be conducted to recover acid-soluble
lignin from the H3PO4 mixture to further improve the reuse potential of H3PO4.
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In addition, phosphorus, in the form of phosphate, is an important nutrient for liv-
ing things [64]. The treated filtrate rich in H3PO4 has the potential to be converted to
phosphorus-rich fertilizer by reacting it with calcium hydroxide or ammonia water [65].
These examples indicate biomass pretreatment can be affected with milder environmental
consequences.

4. Conclusions

Obtaining green energy and materials from renewable biomass is an indispensable
pathway for human society to deal with the energy crisis and environmental issues. To over-
come the biological barriers to biomass, a strategy of intergranular swelling of cellulose
combined with hydrolysis and oxidation was proposed and demonstrated, which was
used for enhancing the release of fermentable sugars by enzymolysis. Due to the fact
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that cellulose swelling, hemicellulose hydrolysis, and lignin oxidation degradation occur
simultaneously during the pretreatment, they cooperate and promote each other. Bagasse
was converted into cellulose with a nanoscale size, low DP, high void fraction, and high
SSA. The cellulose in pretreated bagasse was sufficiently exposed to cellulase, affording
a high glucose yield (98.60%), posing a competitive pretreatment method for enzymatic
hydrolysis of biomass. This nanofiber network structure of cellulose provides the possi-
bility for the combined production of fermentable sugars and nanocellulose, which will
greatly improve the efficiency of biomass refining and inspire the development of novel
cellulose-based materials. In addition, this study found that cellulase preferred crystalline
cellulose to amorphous cellulose, which provided new evidence for further understanding
the enzymatic hydrolysis mechanism of cellulose.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14173587/s1, Figure S1: X-ray photoelectron spectrometer
(XPS) spectrum of residue from enzymolyzed pretreated bagasse for 48 h, Table S1: oxygen/carbon
(O/C) ratio of the X-ray photoelectron spectrometer (XPS) spectrum.
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