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Abstract

Orientia tsutsugamushi, a causative agent of scrub typhus, is an obligate intracellular bacterium, which escapes from the
endo/phagosome and replicates in the host cytoplasm. O. tsutsugamushi infection induces production of pro-inflammatory
mediators including interleukin-1b (IL-1b), which is secreted mainly from macrophages upon cytosolic stimuli by activating
cysteine protease caspase-1 within a complex called the inflammasome, and is a key player in initiating and maintaining the
inflammatory response. However, the mechanism for IL-1b maturation upon O. tsutsugamushi infection has not been
identified. In this study, we show that IL-1 receptor signaling is required for efficient host protection from O. tsutsugamushi
infection. Live Orientia, but not heat- or UV-inactivated Orientia, activates the inflammasome through active bacterial uptake
and endo/phagosomal maturation. Furthermore, Orientia-stimulated secretion of IL-1b and activation of caspase-1 are ASC-
and caspase-1- dependent since IL-1b production was impaired in Asc- and caspase-1-deficient macrophages but not in
Nlrp3-, Nlrc4- and Aim2-deficient macrophages. Therefore, live O. tsutsugamushi triggers ASC inflammasome activation
leading to IL-1b production, which is a critical innate immune response for effective host defense.
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Introduction

Orientia tsutsugamushi, an obligate intracellular bacterium which is

transmitted by the bite of the larvae of certain trombiculid mites, is

the causative agent of scrub typhus (tsutsugamushi disease). Scrub

typhus is characterized by fever, rash, eschar, pneumonitis,

meningitis, and disseminated intravascular coagulation and often

becomes fatal due to severe multiple organ failure without

appropriate treatment [1,2]. O. tsutsugamushi usually infects

endothelial cells, macrophages, polymorphonuclear leukocytes

(PMN), and lymphocytes in patients or in animal models [3–7].

Proinflammatory cytokines, such as TNF-a, IL-1b and interleukin-

6 (IL-6), increase markedly in patients with scrub typhus, and

attribute to the high fever occurring in most scrub typhus patients

[8]. Such host responses against O. tsutsugamushi may involve the

activation of specialized pattern recognition receptors (PRR) in the

cells, leading to the production of proinflammatory mediators.

The innate immune system provides the first line of protection

against pathogens. Major functions of the innate immune system

include recruiting immune cells to sites of infection and the

activation of the complement cascade and the adaptive immune

system. Host immune cells sense microbial infection using pattern

recognition receptors (PRRs) that recognize molecular signatures

known as pathogen-associated molecular patterns (PAMPs) [9].

PRRs include Toll-like receptors (TLRs), NLR or nucleotide

binding domain (NBD), leucine rich repeat (LRR) family of

proteins [10,11] and retinoid acid-inducible gene I (RIG-I)-like

receptors (RLRs) and contribute to immune activation in response

to diverse stimuli, including infection or tissue injury [12]. These

PRRs are expressed either on the cell membrane or in endosomal

compartments or the cytoplasm.

Recent studies have shown the existence of a cytosolic detection

system for intracellular PAMPs. These intracellular PAMPs are

also recognized by a PRR family of cytosolic NLRs. NLRs consist

of three domains characterized by an amino-terminal protein

interaction domain, a central nucleotide-binding domain and

a carboxy-terminal LRR (leucine-rich repeat) domain [13]. NLR

proteins can be subclassified by their N-terminal protein in-

teraction domains into CARD containing (NLRC), Pyrin contain-

ing (NLRP) or other NLR family proteins [11]. So far, at least 23

human and 34 murine NLR genes have been identified, although

the physiological function of most NLRs remains poorly un-

derstood [14]. With the exception of Nod1 and Nod2, which are

involved in the activation of inflammatory gene expression, several

NLRs are involved in the activation of caspase-1-activating

complexes called inflammasomes [15]. These NLRs, including

Nlrp1, Nlrp3 and Nlrc4, respond to various PAMPs or damage

associated molecular patterns and lead to the release of the IL-1

family of inflammatory cytokines including IL-1b, IL-18 and IL-33

through the formation of the inflammasome [16]. Nlrp1 senses the

Bacillus anthracis lethal toxin, which is delivered into the cytoplasm

by receptor-mediated endocytosis [17]. Nlrc4 senses bacterial
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flagellin and components of the type III secretion system (TSSS)

such as PregJ-like protein through Naip5 and Naip2, respectively

[18,19]. Nlrp3 senses exogenous and host danger signals such as

pore-forming toxins, extracellular ATP and crystals such as uric

acid, cholestrol, silica, asbestos or alum [20]. Activation of the

inflammasome also causes programmed cell death called pyr-

optosis, which contributes to the elimination of pathogen-infected

cells [21]. The inflammasome consists of NLRs, caspase-1 and the

adaptor protein apoptosis-associated speck-like protein containing

a carboxy-terminal CARD (ASC). Caspase-1, also known as IL-

1b-converting enzyme, mediates the processing of the pro-form of

these cytokines into mature forms, which results in the secretion of

bioactive cytokines. ASC bridges the interaction between NLRs

and caspase-1 in the inflammasome complexes by mediating

homotypic interactions with its amino-terminal pyrin domain and

carboxy-terminal CARD [22]. ASC has a specific role in caspase-1

activation, because secretion of TNF-a and IL-6 is not affected by

ASC deficiency [23]. Recently, the absent in melanoma 2 (AIM2)

has been identified as a novel inflammasome component involved

in the recognition of cytosolic DNA during viral and bacterial

infection such as Listeria monocytogenes and Francisella tularensis [24–

30]. AIM2 is a type I IFN-inducible cytosolic protein containing

an amino-terminal pyrin domain and a domain of carboxy-

terminal hematopoietic interferon-inducible nuclear antigens with

200 amino acid repeats (HIN200) [24]. The HIN domain

promotes binding of DNA, whereas the pyrin domain associates

with ASC and forms the caspase-1-activating inflammasome. Like

other inflammasomes, AIM2 leads to the processing and release of

mature IL-1b and IL-18 and host cell death called pyroptosis via

the activation of caspase-1.

Although O. tsutsugamushi infection induces severe inflammation

accompanied with the production of proinflammatory cytokines

including IL-1b, the mechanism by which O. tsutsugamushi activates

innate immune responses has not been elucidated. In this study,

we demonstrate that IL-1 receptor signaling is critical for effective

host defense during O. tsutsugamushi infection. Furthermore, we

found that the uptake of live bacteria by macrophages is essential

for O. tsutsugamushi-induced inflammasome activation, which

results in the release of IL-1b in an ASC adaptor protein- and

caspase-1-dependent manner.

Results

IL-1 Receptor Signaling is Required for Effective Host
Defense Against O. tsutsugamushi (OT) Infection
To determine which proinflammatory cytokines play a critical

role in host defense during OT infection, C57BL/6 mice were

intraperitoneally infected with OT, and the mortality, splenomeg-

aly and cytokine level in the serum were examined. The OT-

infected mice did not show any clinical signs by day 6 post-

infection. After this asymptomatic period, the mice became

increasingly sick and were seriously ill by day 10 with increased

amounts of ascites. The mice then gradually recovered afterwards

and appeared normal by day 19. During the course of the disease,

the mice developed splenomegaly that progressively became severe

(Figure 1A). We found that OT infection induced IL-1b release in

the serum, which peaked on day 6 (Figure 1B). The elevation of

serum IL-1b levels seems partially due to increased transcripts of

IL-1b, since mRNA levels of IL-1b and related cytokine IL-18 in

the spleen assessed by RNA protection assay increased after OT

infection, together with IL-1a and MIF, and peaked on day 4

(Figure 1C). This finding of IL-1b release during OT infection

prompted us to examine the role of IL-1 receptor signaling in host

defense against OT infection. We challenged wild-type and IL-1

receptor (IL-1R) deficient mice with OT and quantified bacterial

numbers in the blood and spleen using qPCR. OT was detected in

both blood and spleen in wild-type mice on day 6 and this

bacterial load decreased by day 19 (Figure 1D). Strikingly, we

found that IL-1R deficient mice were highly susceptible to OT, as

demonstrated by the significantly elevated numbers of OT in both

the blood and spleen, indicating that IL-1 receptor signaling is

important for effective protection of hosts from OT infection.

Live O. tsutsugamushi Infection Activates IL-1b Processing
and Secretion
Since macrophages are a major source of IL-1b, we examined

whether OT infection in macrophages in vitro can induce IL-1b
release. LPS-primed BMDMs were infected with OT and levels of

IL-1b release in the supernatant was assessed. As shown in

Figure 2A and B, OT infection induced release of IL-1b in a time-

and dose-dependent manner in LPS-primed BMDMs. The level of

IL-1b secretion peaked 6 h postinfection and was proportional to

the bacterial dose (ICU) (Figure 2A and B). Based on these results,

we optimized the conditions for assessing IL-1b levels from OT-

infected macrophages, and those conditions were used for further

analysis.

In the current model of IL-1b maturation, two independent

signals are required for production and secretion of active IL-1b
[15]. The first signal is induced through plasma membrane-

associated PRRs such as TLRs to activate transcription of pro-IL-

1b, and the second signal is mediated by the NLR inflammasomes

that induce cleavage of IL-1b precursors into the active forms

through caspase-1 activation [31]. To determine whether OT

provides the first or second signal, BMDMs were infected with live

or inactivated bacteria in the presence or absence of priming with

LPS. First, BMDMs were challenged with live, heat-inactivated or

UV-inactivated OT for 16 h and then stimulated with ATP for IL-

1b secretion. Although LPS-primed BMDMs released IL-1b,
BMDMs pretreated with live or inactivated OT failed to

effectively produce IL-1b upon ATP stimulation, indicating that

OT, live or inactivated, provides a first signal at only modest levels

to prime macrophages to synthesize pro-IL-1b (Figure 2C). Next,

BMDMs were primed with LPS and challenged with ATP, or live

or inactivated OT to determine whether OT infection provides

a second signal for the processing and release of IL-1b. Live

bacteria or ATP induced significant IL-1b release, but not heat- or

UV-inactivated bacteria (Figure 2D). This suggests that only live

OT was able to activate caspase-1 to induce IL-1b maturation and

secretion. To confirm this, the OT-induced caspase-1 activation

was assessed by western blot analysis. In addition to ATP-

stimulated or Salmonella-infected BMDMs, the p10 fragment,

a subunit of active caspase-1, was detected in BMDMs upon

infection with live OT (Figure 2E). Taken together, these data

suggest that OT activates caspase-1 and induces IL-1b secretion in

macrophages.

Phagocytosis of O. tsutsugamushi and Phagosomal
Acidification were Required for IL-1b Release
Since O. tsutsugamushi are obligatory intracellular bacteria, it is

an interesting question to ask if intracellular invasion of OT is

required for the activation of caspase-1. First, to determine

whether phagocytosis is required for IL-1b secretion by BMDMs

infected with OT, cells were pretreated for 1 h with various

doses of actin polymerization inhibitor, cytochalasin D (CD), to

inhibit phagocytosis. The CD treatment efficiently blocked

Orientia internalization (data not shown). CD pretreatment

reduced mature IL-1b release from LPS-primed BMDMs

Activation of inflammasome by O. tsutsugamushi
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Figure 1. IL-1 receptor signaling is required for effective host protection from O. tsutsugamushi infection. (A) C57BL/6 mice (n= 5) were
i.p. inoculated with O. tsutsugamushi (OT) (56106 ICU) for the indicated time periods. Spleens were removed from infected mice and their weights
were measured and normalized to body weight. (B) Serum IL-1b levels from infected mice were assessed by ELISA. A single circle represents an
individual animal, and lines indicate the mean values. **p,0.01, ***p,0.001 versus uninfected mice. (C) Cytokine mRNA expression in the spleen from
infected mice. At the indicated time periods after infection, total RNA was extracted and mRNA expression was determined by RNase protection
assay. L32, a murine ribosomal protein; GAPDH, glyceraldehyde-3-phosphate dehydrogenase. (D) Age and sex-matched wild-type (WT, n= 7) and IL-
1R-deficient mice (n=7) were infected with O. tsutsugamushi i.p. for 6 and 19 days. O. tsutsugamushi loads in blood and spleen were quantified by
qPCR using primers specific for the O. tsutsugamushi tsa56 gene. Data were normalized by qPCR data for the GAPDH gene in host genomic DNA. A
single circle represents an individual animal, and lines indicate the mean values. p,0.01, Wild-type vs. IL-1R2/2. Data are representative of three
independent experiments in A-C.
doi:10.1371/journal.pone.0039042.g001

Activation of inflammasome by O. tsutsugamushi
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infected with OT in a dose-dependent manner but did not affect

ATP-induced IL-1b release (Figure 3A). On the other hand,

TNF-a release in response to live OT was not affected by CD

pretreatment. These results further demonstrate that live in-

tracellular Orientia organisms are required to process IL-1b. Next,

to examine if phagosomal acidification is important for OT-

induced IL-1b secretion, ammonium chloride, a chemical agent

that blocks endosome acidification, was added to the culture.

NH4Cl treatment reduced IL-1b release from both OT infected

and ATP treated macrophages in a dose-dependent manner,

indicating that endo/phagosomal maturation is required for IL-

1b secretion upon OT infection (Figure 3B). There was no

significant change in TNF-a levels upon NH4Cl treatment.

Therefore, these data demonstrate that IL-1b processing upon

OT infection requires active uptake of living bacteria and

maturation of phagosomes.

Caspase Activation is Essential for IL-1b Release from OT-
infected Macrophages
To investigate whether OT-infected BMDMs require caspase

activation for release of IL-1b, the pan-caspase inhibitor, Z-VAD-

FMK was used. First, we performed immunofluorescence micros-

copy and MTT assay in order to test whether Z-VAD-FMK has

any inhibitory effect on bacterial internalization into host cells and

host cell viability. The LPS-primed BMDMs were pretreated with

various doses of Z-VAD-FMK, and then infected with OT. Z-

VAD-FMK did not interfere with internalization of OT into the

cells (Figure 4A). Furthermore, the indicated concentration of

Figure 2. Live O. tsutsugamushi infection activates caspase-1 and induces IL-1b secretion in LPS-primed BMDMs. (A, B, D) BMDMs were
primed with LPS (10 ng/ml) for 16 h and infected with OT. IL-1b release was assessed by ELISA. (A) LPS-primed BMDMs were treated with ATP (5 mM)
for 3 h or infected with OT (ICU/cell = 50) for the indicated time periods. (B) LPS-primed BMDMs were infected with OT of the indicated ICU/cell for
6 h. (C) BMDMs were primed with LPS (10 ng/ml), live OT, heat-inactivated (HOT) or UV-inactivated (UVOT) for 16 h and then treated with ATP (5 mM)
for 3 h. (D) LPS-primed BMDMs were challenged with ATP, live OT, heat-inactivated OT (HOT), or UV-inactivated OT (UVOT) for 6 h. (A-D) Error bars
represent SD of triplicate samples. N.D.; not detected. (E) LPS-primed BMDMs were challenged with the vehicle (-), ATP (5 mM, for 3 h), Salmonella
enteritidis (Sal., MOI = 25) or OT (ICU/cell = 50) for the indicated time periods. The caspase-1 activation was analyzed by western blotting using rabbit
polyclonal antibodies specific for the p10 subunits of caspase-1. Data are representative of three independent experiments in A-E.
doi:10.1371/journal.pone.0039042.g002

Activation of inflammasome by O. tsutsugamushi

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e39042



inhibitor did not affect the viability of BMDMs infected with OT

(Figure 4B). LPS-primed BMDMs were pretreated with Z-VAD-

FMK in various concentrations, and then infected with OT or

treated with ATP. The level of IL-1b in the culture supernatant

was significantly reduced by treatment with the pan-caspase

inhibitor (Figure 4C). On the other hand, the caspase inhibitor had

no significant effect on the level of IL-6 (Figure 4C). These results

suggest that activation of caspase is essential for OT-induced IL-1b
secretion by BMDMs.

O. tsutsugamushi Infection does not Induce Pyroptotic
Cell Death in Bone Marrow-Derived Macrophages
Pyroptosis is a caspase-1-dependent cell death process through

ASC pyroptosome, a molecular platform to recruit and activate

caspase-1, largely composed of oligomerized ASC [32]. Pyr-

optosis is an important protection mechanism of the host by

eliminating infected cells, and various intracellular bacterial

species such as Salmonella or Legionella have been shown to induce

pyroptosis via caspase-1 activation [33,34]. To determine

whether O. tsutsugamushi infection can induce pyroptosis, LPS-

primed macrophages were infected with various doses of

bacterium for the indicated time periods, and then culture

supernatants were used for lactate dehydrogenase (LDH) release

assay. The ATP treatment induced significant release of LDH

into the culture medium as previously described [35,36].

However, O. tsutsugamushi infection did not induce pyroptosis

even at high doses of bacterium in wild-type macrophages as well

as Nlrp3-, Nlrc4-, Aim2- and Asc-deficient macrophages (Figure 5

and data not shown). Therefore, O. tsutsugamushi infection does

not induce pyroptosis, although it effectively induces the

inflammasome to activate caspase-1.

Nlrp3 and Nlrc4 do not Play a Major Role in the
Production of IL-1b Induced by O. tsutsugamushi
Infection
The caspase-1 activation induced by O. tsutsugamushi infection

suggested the possible involvement of inflammasome-forming

NLRs in the detection of intracellular OT. To gain insight into

the signals activated by the internalization of OT, macrophages

from wild-type and mutant mice were infected with OT. To

investigate whether caspase-1 activation by OT was dependent on

TLR or Nod1/Nod2 signaling, MyD88- and Rip2-deficient

BMDMs were primed by LPS treatment, and then infected with

OT or treated with ATP. IL-1b release upon ATP stimulation was

not detectable in MyD88-deficient BMDMs but was not altered in

Rip2-deficient BMDMs. These results were consistent with the

previous reports, since TLR4 signaling via the MyD88-dependent

pathway is required as a first signal for pro-IL-1b synthesis upon

LPS priming (Figure 6A). Similarly, upon OT infection, wild-type

and Rip2-deficient BMDMs produced both IL-1b and IL-6

significantly, whereas MyD88-deficient BMDMs did not. These

suggest that MyD88-dependent signaling is required for LPS

priming whereas Rip2 is not required for LPS priming and

inflammasome formation in OT-infected macrophages. To de-

termine which NLR or HIN-200 family proteins are involved in

OT induced inflammasome activation, the LPS-primed macro-

phages from wild-type, Nlrp3-, Nlrc4-, or Aim2-deficient mice were

challenged with OT or ATP, and the production of IL-1b was

assessed by ELISA. The production of IL-1b induced by ATP

treatment was dependent on Nlrp3, as previously shown

(Figure 6B) [37,38]. However, Nlrp3-, Nlrc4-, or Aim2-deficient

macrophages infected with OT produced IL-1b at a level

comparable to that of wild-type macrophages (Figure 6B). All

types of macrophages produced the inflammasome-independent

proinflammatory cytokine IL-6 in response to OT infection.

Figure 3. Bacterial internalization and endosomal acidification are required for efficient IL-1b secretion upon O. tsutsugamushi
infection. LPS-primed BMDMs were pretreated with cytochalasin D (CD) (A) or NH4Cl (B) at the indicated concentration for 1 h, and then challenged
with OT (50 ICU/cell) for 6 h or ATP (5 mM) for 3 h. The production of IL-1b and TNF-a from infected cells was assessed by ELISA. Error bars represent
SD of triplicate samples. *p,0.05, **p,0.01, ***p,0.001 versus vehicle-treated cells. Data are representative of three independent experiments in A
and B.
doi:10.1371/journal.pone.0039042.g003

Activation of inflammasome by O. tsutsugamushi
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Figure 4. IL-1b secretion induced by O. tsutsugamushi infection in LPS-primed BMDMs was blocked by pan-caspase inhibitor. LPS-
primed BMDMs were pretreated with pan-caspase inhibitor Z-VAD-FMK (VAD) at the indicated concentration for 1 h and then challenged with ATP
(5 mM) for 3 h or OT (A. ICU/cell = 10; B,C. ICU/cell = 50) for the indicated period (A) or 6 h (B, C). (A) Cells were fixed and stained with human
antiserum against OT and a FITC-conjugated goat anti-human IgG antibody, and examined using a fluorescence microscope. Green spots indicate OT
and red areas indicate the host cell. Scale bar, 50 mm. (B) Cell viability was measured by MTT assay. (C) The production of IL-1b and IL-6 was assessed
by ELISA. Error bars represent SD of triplicate samples. **p,0.01, ***p,0.001 versus vehicle-treated cells. Data are representative of three
independent experiments in A-C.
doi:10.1371/journal.pone.0039042.g004

Activation of inflammasome by O. tsutsugamushi
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Secretion of biologically active IL-1b requires posttranslational

processing by active caspase-1. Therefore, we compared caspase-1

activation in wild-type and Nlrp3-, Nlrc4-, or Aim2-deficient

BMDMs by western blotting for p10 caspase-1 subunits that are

generated by autocatalytic cleavage and released from the cell by

a poorly defined mechanism [39]. Culture supernatants from LPS-

primed wild-type BMDMs contained the caspase-1 p10 subunit

after infection with OT (Figure 6C). LPS-primed BMDMs from

Nlrp3-, Nlrc4-, or Aim2-deficient mice were also able to process

caspase-1 to produce the caspase-1 p10 subunit in response to OT

(Figure 6C). These data indicate that Nlrp3, Nlrc4 and AIM2 do

not play significant roles in the caspase-1 activation during OT

infection.

Caspase-1 and ASC are Essential for O. tsutsugamushi-
induced IL-1b Secretion in Bone Marrow-derived
Macrophages
The activation of pro-caspase-1 is caused by inflammasome

activation either in an adaptor ASC-dependent or –independent

manner [40]. To investigate whether ASC is required for IL-1b
production by OT infection, macrophages from caspase-1-de-

ficient mice and Asc-deficient mice were primed with LPS and then

challenged with OT or ATP. Caspase-1-deficient macrophages

failed to produce IL-1b (Figure 7A). Similar to caspase-1-deficient

macrophages, Asc-deficient macrophages, as well as dendritic cells,

did not produce IL-1b (Figure 7B). Furthermore, Asc-deficient

macrophages were not able to process caspase-1 upon OT

infection, evidenced by the absence of active caspase-1 by western

blotting analysis and flow cytometric analysis using an active

caspase-1-specific fluorescent probe (FAM-YVAD-FMK)

(Figure 7C and D). These data indicate that caspase-1 is essential

for secretion of IL-1b in response to cytosolic Orientia and identify

ASC as the critical inflammasome adaptor for caspase-1 activation

in response to OT infection.

Discussion

The innate immune cells recognize pathogenic microbial

invasion and produce proinflammatory cytokines such as IL-1

and TNF-a to activate the immune system and cause in-

flammation. In this study, we found that OT infection induces

ASC inflammasome activation and IL-1b secretion which is a key

innate immune response against bacterial invasion. Indeed, IL-1

receptor signaling is important for the host defense since IL-1R

deficient mice were susceptible to OT infection. Interestingly, live

OT but not inactivated OT induces caspase-1 activation and IL-

1b secretion in LPS-primed BMDMs (Figure 2). The OT exploits

integrin-mediated signaling and the actin cytoskeleton for

internalization of host cells (Figure 8) [41]. The actin polymer-

ization inhibitor effectively blocked IL-1b processing and release

by OT infection (Figure 3A). Following internalization, the

phagosome is transformed into a phagolysosome through a pro-

gressive maturation process that is dependent on the sequential

fusion of lysosomes with the internalized phagosome (Figure 8)

[42,43]. After internalization into the host cell by endo/

phagocytosis, OT escapes from the late endo/phagolysome to

the cytosol (Figure 8) [44]. Although the mechanism behind this

OT escape from the endo/phagolysome is not clear, it has been

shown that OT escapes from the endosome and the infectivity of

OT is impaired in the presence of inhibitors for endosomal

maturation such as NH4Cl or bafilomycin. Thus, the acidifica-

tion of endocytic compartments is required for the efficient OT

infection [44]. Interestingly, endosomal acidification inhibitor-

treated BMDMs reduced release of IL-1b by Orientia infection

(Figure 3B). Therefore, OT internalization and phagosomal

acidification are required for IL-1b release by BMDMs. These

findings suggest that OT-induced IL-1b secretion requires

bacterial escape from the phagosome to the cytosol where the

bacterium replicates and the PAMPs of OT may activate one of

NLRs in the cytoplasm (Figure 8). In case of infection of Ehrlichia

muris, another obligate intracellular bacterium in the family of

Anaplasmataceae, BMDMs do not induce IL-1b secretion, probably

because E. muris resides in endosomal compartments and does

not escape into the cytosol [45]. Another possible mechanism

behind how OT activates cytoplasmic innate immunity might be

due to the secretion of active PAMPs by a type IV secretion

system [46]. In this case, however, it is not clear why

acidification of phagosomes is required for caspase-1 activation.

IL-1b secretion from OT-infected BMDMs indicates that

component(s) of the inflammasome may recognize this bacterium

in the cytosol. Although Asc- or caspase-1-deficient BMDMs did

not induce IL-1b secretion, the OT infection-induced IL-1b
secretion and caspase-1 activation were not affected by Nlrp3-,

Nlrc4-, or Aim2-deficiency (Figure 6). ASC is an adaptor protein

which interbridges between Pyrin domain containing cytoplamic

sensor and CARD domain containing caspase-1. Therefore, it is

likely that Pyrin containing NLR may play an important role in

cytosolic detection of OT. Our data indicate that Nlrp3 is unlikely

to be the candidate (Figure 6). Thus, it is unlikely that Nlrp3-

activating factors such as potassium efflux, generation of reactive

oxygen species or cytoplasmic release of lysosomal enzymes are

associated with OT-induced inflammasome activation. Also, we

have not seen the reduction of IL-1b production in Nlrp6- and

Nlrp12-deficient macrophages (data not shown). Since macro-

phages are major producer of IL-1b, these data suggests that

Nlrp3, Nlrp6, Nlrp12, Nlrc4 and Aim2 are unlikely to be involved

in OT-induced inflammasome activation. In human, 14 out of 23

NLRs are Pyrin containing NLR (NLRP) and more exists in

mouse. Further analysis is required for the identification of OT-

sensing NLR in the cytoplasm.

Although live OT can activate inflammasome, OT, whether live

or not, were not very effective in priming macrophages for

subsequent stimulation for IL-1b production (Figure 2C). We

found that in vivo infection of OT induced IL-1b in the serum,

suggesting that OT is able to do both priming and inflammasome

activation during in vivo infection. Perhaps OT can prime cells

more efficiently via TLR signaling in vivo than in vitro in BMDMs,

and this results in the IL-1b production in OT infected animals.

Figure 5. O. tsutsugamushi infection did not induce pyroptosis.
LPS-primed BMDMs were challenged with ATP (5 mM) or OT with the
indicated ICU/cell for the indicated time periods. Pyroptosis was
assessed by LDH release. Error bars represent SD of triplicate samples.
Data are representative of three independent experiments.
doi:10.1371/journal.pone.0039042.g005
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Another interesting possibility is that priming of cells during in vivo

OT infection may be enhanced by cytokine signaling through

positive feedback loop via the production of proinflammatory

cytokines such as TNF-a.

It has been demonstrated that caspase-1 activation also leads to

cell death called pyroptosis during microbial infection [32].

Pyroptosis mediates further activation of inflammatory response

by the innate immune system. Upon infection by intracellular

Figure 6. O. tsutsugamushi activates caspase-1 in LPS-primed BMDMs in Nlrp3-, Nlrc4- and AIM2-independent manners. Wild-type
(WT), MyD88-, Rip2-, Nlrp3-, Nlrc4- or Aim2-deficient BMDMs were primed with LPS (10 ng/ml) for 16 h and then treated with ATP (5 mM) for 3 h or
infected with OT (ICU/cell = 50) for 6 h or the indicated time periods. (A, B) IL-1b and IL-6 production from the cells was assessed by ELISA. (C) The
cleaved caspase-1 and procaspase-1 were analyzed by western blotting using rabbit polyclonal antibodies specific for the p10 subunits of caspase-1.
Error bars represent SD of triplicate samples. N.D.; not detected. -; untreated. ***p,0.001 versus wild-type. Data are representative of three
independent experiments in A-C.
doi:10.1371/journal.pone.0039042.g006
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bacteria or viruses, infected cells form an ASC pyroptosome,

which rapidly recruits and activates caspase-1 resulting in

pyroptosis and the release of the intracellular proinflammatory

cytokines [32]. Francicella tulerensis, for instance, activates AIM2

inflammasome leading to IL-1b processing and pyroptosis through

ASC pyroptosome formation [29]. Legionella spp induce pyroptosis

via Nlrc4/Birc1e inflammasome in general, however, Legionella

strains which do not induce pyroptosis, sush as L. parisiensis or L.

tucsonensis or flagellin-defective L. pneumophila, can replicate

efficiently in macrophages, indicating critical roles of pyroptosis

for host defense [47]. Interestingly, although OT infection

activates caspase-1, OT-infected macrophages did not release

the LDH significantly, which is different from other bacteria that

induce pyroptosis (Figure 5). Nlrp3-, Nlrc4-, Aim2-, Asc- and

caspase-1-deficient macrophages also did not undergo pyroptosis

upon Orientia infection (data not shown). Our results suggest that

Orientia perhaps actively inhibits pyroptosis of infected macro-

phages, resulting in better survival of host cells and poorer

eradication of OT from infected cells and tissues. It has also been

reported that OT can inhibit beauvericin-induced apoptosis of

THP-1 cells, by modulating intracellular mobilization of Ca2
+,

which may account for the anti-apoptotic function of OT in

macrophages [48]. Regulation of viability of host cells might play

a significant role in efficient infectivity and proliferation of OT.

Although we have not identified the NLR that is responsible for

OT recognition, we suggest the possibility that cytosolic PRR is

able to recognize OT and lead to innate immune response by

secreting IL-1b. Interestingly, OT can survive in the host cell,

presumably by disturbing the host cell death mechanism. Further

study is needed to define the NLR inflammasome and ligand for

IL-1b secretion upon OT infection, and to identify the mechanism

which regulates pyroptosis.

Materials and Methods

Bacteria and in vitro Orientia tsutsugamushi
Infection of Cells
The prototype strain, Orientia tsutsugamushi Boryong was prop-

agated in monolayer of L-929 cells (American Type Culture

Collection) as described previously [49]. When more than 90% of

the cells were infected, the cells were collected, homogenized with

a glass Dounce homogenizer (Wheaton Inc., NJ, USA), and

centrifuged at 5006 g for 5 min at 4uC. The supernatant was

recovered and stored in liquid nitrogen until use. The infectivity

Figure 7. Live O. tsutsugamushi activates caspase-1 in LPS-primed BMDMs in caspase-1- and ASC-dependent manners. (A) Wild-type
(WT) or caspase-1-deficient BMDMs were primed with LPS (10 ng/ml) for 16 h and then treated with ATP (5 mM) for 3 h or infected with OT (ICU/
cell = 50) for 6 h. IL-1b and IL-6 production from infected cells was assessed by ELISA. (B) Wild-type (WT) or Asc-deficient BMDMs (left panel) or BMDCs
(right panel) were primed with LPS and treated as in panel A. IL-1b and IL-6 production from infected cells was assessed by ELISA. (C) Wild-type (WT)
or Asc-deficient BMDMs were primed with LPS (10 ng/ml) for 16 h and then infected with OT (ICU/cell = 50) for the indicated time periods. The
cleaved caspase-1 and procaspase-1 were analyzed by western blotting using rabbit polyclonal antibodies specific for the p10 subunits of caspase-1.
(D) Caspase-1 activation in LPS-primed wild-type (WT) or Asc-deficient BMDMs after infection with O. tsutsugamushi. Numbers above bracketed lines
indicate the percent of cells positive for FAM–YVAD staining. Error bars represent SD of triplicate samples. N.D.; not detected. ***p,0.001 versus wild-
type. Data are representative of three independent experiments in A-D.
doi:10.1371/journal.pone.0039042.g007
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titer of the inoculum was determined as described previously [49].

Briefly, five-fold serially diluted oriential samples were inoculated

onto L-929 cell layers on 24-well tissue culture plates. After 3 days

of incubation, the cells were collected, fixed, and stained using an

anti-orientia antibody. The ratio of infected cells to the counted

number of cells was determined microscopically, and infected-cell

counting units (ICU) of the oriential sample were calculated as

follows: ICU = (total number of cells used in infection) 6
(percentage of infected cells) 6 (dilution rate of the orientiae

suspension)/100. Heat-inactivation of bacterial inoculum was

performed by heating OT at 56uC for 30 min. UV-inactivated

bacterial inoculum was obtained by exposure to 254 nm

wavelength UV of 4 mW? sec/cm2 for 30 min.

In the inhibition assays, BMDMs were primed with LPS (from

Salmonella minnesota, Alexis, NY, USA) for 16 h, then were

preincubated with cytochalasin D (CD; Sigma, MO, USA),

ammonium chloride (NH4Cl, Sigma), or Z-VAD-FMK (Calbio-

chem, NJ, USA). for 1 h before OT was inoculated. Inhibitors

were maintained for the course of inhibition assays. After 1 h

incubation, cells were infected with OT for the indicated time

periods. Cell viability was determined by 3-(4,5-dimethyl-2,5

thiazolyl)-2,5 diphenyl tetrazolium bromide (MTT) assay and was

not affected by doses of the inhibitors used in this study.

Mice
MyD88-, Rip2-, caspase-1-, ASC-, Nlrc4-, Nlrp3-, and Aim2-

deficient mice were established as described, and the mice or

femurs were kindly provided by Drs. Shizuo Akira (Osaka

University), Richard Flavell, Yasunori Ogura (both at Yale

University), Vishva Dixit, Sanjeev Mariathasan (both at Genen-

tech), Katherine Fitzgerald and Vijay Rathinam (both at

University of Massachusetts) [22,26,37,50,51,52]. C57BL/6 mice

were from Taconic Farm, Inc and Orient Bio Inc. (Gyeonggi-do,

South Korea). IL-1R-deficient mice were originally from the

Jackson Laboratory [53]. Mice were maintained under specific

pathogen-free conditions. All mice were maintained and used in

accordance with institutional and National Institutes of Health

guidelines. All animal procedures were approved by and

performed according to the guidelines of the Institutional Animal

Care and Use Committee of Dana-Farber Cancer Institute (#04-

044 and 04-045) and/or Jeju National University (#2010-0028).

Orientia Challenge of Mice in vivo
The female C57BL/6 mice were infected by intraperitoneal

(i.p.) injection of 0.1 ml of oriential suspension (56106 ICU). On

the indicated days of infection, mice were sacrificed, and whole

blood and spleens were obtained.

RNase Protection Assay
Total RNA was extracted from the spleen using Trizol Reagent

(Gibco BRL, Grand Island, NY) and was quantitated spectropho-

tometrically. Detection and semiquantitation of various murine

cytokine and chemokine mRNAs were accomplished with the

RiboQuant multiprobe RNase protection assay kit from PharMin-

gen (San Diego, CA). In brief, a mixture of [32P]UTP-labeled

antisense riboprobes was generated from a panel of different

cytokine or chemokine template DNAs. These panels also

included templates for the murine housekeeping genes encoding

GAPDH and L32 to ensure equal loading of total RNA onto the

gels. Total RNAs from each sample (30 mg each) were hybridized

overnight at 56uC with 36106 cpm of the 32P-labeled antisense

riboprobe mixture. After hybridization, the samples were digested

with a mixture of RNases A and T1. Nuclease-protected RNA

fragments were precipitated with ethanol. The samples were

resolved on a 5% polyacrylamide sequencing gel. The bands were

observed after autoradiography. The specific cytokine and

chemokine bands were identified on the basis of their individual

mobilities compared with the undigested probes.

Determination of Bacterial Load in Tissues
Since O. tsutsugamushi is an obligatory intracellular bacterium

that does not grow outside of the cells, quantification method for

Figure 8. Model of inflammasome activation by O. tsutsugamushi. OT infection requires attachment to the host cell surface (binding),
followed by uptake of the bacteria by clathrin-mediated endo/phagocytosis (internalization). After maturation of the endo/phagosome, OT can be
released into the cytoplasm (escape), where OT multiplies (replication). OT in the mature endo/phagosome or cytoplasm activates ASC
inflammasome, which induce activation of caspase-1. Active caspase-1 processes pro-IL-1b cleavage, which results in the maturation and secretion of
IL-1b.
doi:10.1371/journal.pone.0039042.g008
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the Orientia load using qPCR was used with a modification of

previously established methods by other groups [54,55]. Briefly,

the oriential load was determined by qPCR (with SYBR Green)

for the Orientia tsa56 gene, which encodes a 56-kDa type-specific

antigen of O. tsutsugamushi. Primer sequences are as follow:

O. tsutsugamushi tsa56 forward, AACCCTAATCCTGTTGGA-

CAGCCA; O. tsutsugamushi tsa56 reverse, ACTTTGACAGGA-

GAAGCGCTAGGT; mouse GAPDH forward, CAACTA-

CATGGTCTACATGTTC; and GAPDH reverse,

CTCGCTCCTGGAAGATG. The substrate for amplification

was DNA purified from samples using the DNeasy Tissue kit

(Qiagen, Valencia, CA). qPCR was performed using the 7300

real time PCR system from Applied Biosystems. Results were

normalized to GAPDH levels in the same sample and expressed

as relative Orientia tsa amounts per GAPDH amount.

Bone Marrow-derived Macrophages (BMDMs)
The bone marrow cells from wild-type and mutant mice were

obtained from tibia and femur of mice by flushing with DMEM

(Invitrogen, CA, USA) containing 10% heat-inactivated FBS,

100 U of penicillin G and streptomycin. The 16107 bone marrow

cells were cultured in 10 ml of DMEM medium containing

glutamine, 20% heat-inactivated FBS, 100 U of penicillin G,

streptomycin and 30% L929 cell supernatant containing M-CSF

in 100 mm petri dish (BD Falcon, NJ, USA) at 37uC in humidified

5% CO2 for 6 days. At day 6 of culture, cells were harvested with

cold PBS, washed, resuspended in DMEM supplemented with

10% FBS and used at a density of 26105 cells/well in a 24 well

plate for experiments.

Bone Marrow-derived Dendritic Cells (BMDCs)
DCs were grown from wild-type and various knockout mice.

Briefly, bone marrow from tibia and femur was obtained as

described above, and bone marrow cells were cultured in RPMI

1640 medium containing 10% heat-inactivated FBS, 50 mM of 2-

ME, and 2 mM of glutamine supplemented with 3% J558L

hybridoma cell culture supernatant containing GM-CSF. The

culture medium containing GM-CSF was replaced every other

day. At day 6 of culture, nonadherent cells and loosely adherent

DC aggregates were harvested, washed, resuspended in RPMI

1640 supplemented with 5% FBS and used at a density of 26105

cells/ml for experiments unless mentioned otherwise.

LDH Release Assay
BMDMs were dispensed to 48-well culture plates at a concen-

tration of 16105/0.5 ml, and incubated for 24 h at 37uC in

humidified 5% CO2. Cells were primed with LPS (10 ng/ml), and

then further incubated for 16 h. LPS-primed BMDMs were

treated with ATP or infected with the indicated ICU of OT. After

1 h, the infected cells were washed, and then incubated for the

indicated time periods. Cell death was quantified with the

CytoTox96 LDH-release kit (Promega, WI, USA). Percent of cell

death is calculated measuring the OD490 of each sample and

using the following formula: [(experimental cells-untreated cells)/

(lysed cells-untreated cells)] 6100%.

Indirect Immunofluorescent Antibody (IFA) Test
BMDMs were dispensed to Lab-Tek chamber slides (Nunc,

NY, USA) at a concentration of 46104/0.2 ml, and incubated

for 24 h at 37uC in humidified 5% CO2. Cells were primed with

LPS (10 ng/ml), then further incubated for 16 h. LPS-primed

BMDMs were treated with several doses of inhibitor for 1 h, and

then infected with OT. Slides were removed from the Lab-Tek

chamber, then cells were fixed with acetone. The slide was

incubated with diluted human antiserum against OT for 30 min

at 37uC and washed three times with PBS for 5 min by shaking.

After the slide was dried, it was stained with goat anti-human

IgG-FITC conjugates (Caltag, CA, USA) and incubated in the

dark at 37uC for 30 min. The slide was washed three times with

PBS for 5 min by shaking. The counter-staining was performed

with 0.003% Evans Blue (Sigma) solution in PBS for 1 min, and

then washed two times in PBS for 1 min by shaking. Finally, the

cover slip was mounted using mounting media (90% glycerol,

10% PBS). The stained cells were examined with a fluorescence

microscope.

Western Blot Analysis
Bone marrow-derived macrophages (BMDMs) were dispensed

to 35 mm culture dishes at a concentration of 26106 cells/2 ml

and cultured for 24 h, and then cells were primed with LPS

(10 ng/ml) for 16 h and treated with ATP or infected with OT

for the indicated time periods. The culture supernatants were

collected and precipitated by addition of an equal volume of

methanol and 0.25 volumes of chloroform. The supernatant/

methanol/chloroform mixtures were vortexed and then centri-

fuged for 10 min at 20,0006 g. The upper phase was discarded

and 500 ml of methanol was added to the interphase. This

mixture was centrifuged for 10 min at 20,0006 g and the protein

pellet was dried, resuspended in protein sample buffer and boiled

for 5 min. Protein concentration in each sample was determined

using a bicinchoninic acid protein assay kit (Sigma). Protein

samples were electrophoresed in 15% SDS-polyacrylamide gels

and transferred to a polyvinylidene fluoride (PVDF) membrane

(Bio-Rad, CA, USA). The membrane was incubated overnight

with 1/250-diluted rabbit polyclonal antibodies specific for the

p10 subunits of caspase-1 (Santa Cruz Biotechnology, CA, USA)

in blocking buffer at 4uC. After washing, the membrane was

incubated with a horseradish peroxidase (HRP)-linked anti-rabbit

IgG (Cell Signaling, MA, USA) as a secondary antibody.

Immunoactive bands were detected using the WEST-ZOL plus

Western blot detection system (iNtRON Biotechnology, Seoul,

South Korea) according to the manufacturer’s instructions.

Flow Cytometry for Active Caspase-1 Staining
Active caspase-1 staining was assessed by flow cytometry. LPS-

primed bone marrow-derived macrophages (16106 BMDMs) in

non-tissue-culture-treated 12-well plates were infected for 4 h with

O. tsutsugamushi (ICU/cell = 5). Cells were removed with cold PBS

and stained for 1 h with FAM–YVAD–fluoromethylketone

((FAM–YVAD–FMK; Immunochemistry Technologies, MN) as

recommended by the manufacturer. Data were acquired on

a FACSCalibur (Becton Dickinson) and were analyzed with

CellQuest software (Becton Dickinson).

Cytokine Measurement
26105 BMDMs were seeded onto 24-well plate, and then

incubated for 24 h at 37uC in humidified 5% CO2. After

treatment with LPS (10 ng/ml) for 16 h, macrophages were

infected with OT (ICU/cell = 50) for 6 h or ATP (5 mM) for 3 h.

Culture supernatants were collected from culture plates and were

centrifuged at 14,0006 g for 5 min at 4uC. Concentrations of

murine IL-1b (R&D system, MN, USA), IL-6 (BD PharMingen,

CA, USA), and TNF- a (R&D system) in the culture supernatants

or in the mice serum were determined by enzyme-linked

immunosorbent assay (ELISA) according to the manufacturer’s

instructions.
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Statistical Analysis
All experiments were performed at least three times. Data are

expressed as mean 6 standard deviation (SD). Analysis of variance

(ANOVA) was used to evaluate the data with the following

significance levels: *p,0.05, **p,0.01, ***p,0.001.
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