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Alzheimer’s disease (AD) and epilepsy are neurological disorders that affect a large cohort of people worldwide. Although both of
the two diseases could be influenced by genetic factors, the shared genetic mechanism underlying the pathogenesis of them is still
unclear. In this study, we aimed to identify the shared genetic networks and corresponding hub genes for AD and epilepsy. Firstly,
the gene coexpression modules (GCMs) were constructed by weighted gene coexpression network analysis (WGCNA), and 16
GCMs were identified. Through further integration of GCMs, genome-wide association studies (GWASs), and expression
quantitative trait loci (eQTLs), 4 shared GCMs of AD and epilepsy were identified. Functional enrichment analysis was
performed to analyze the shared biological processes of these GCMs and explore the functional overlaps between these two
diseases. The results showed that the genes in shared GCMs were significantly enriched in nervous system-related pathways,
such as Alzheimer’s disease and neuroactive ligand-receptor interaction pathways. Furthermore, the hub genes of AD- and
epilepsy-associated GCMs were captured by weighted key driver analysis (wKDA), including TRPC1, C2ORF40, NR3C1,
KIAA0368, MMT00043109, STEAP1, MSX1, KL, and CLIC6. The shared GCMs and hub genes might provide novel therapeutic
targets for AD and epilepsy.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by memory difficulty, daily activity dysfunc-
tion, and cognitive decline, with neuropathological lesion
and neuron loss in the brain [1–3]. This disease affects
approximately 36 million people worldwide, and the number
of AD patients is estimated to triple by 2050, along with the
prolonged life expectancy of global population [4, 5]. Cur-
rently, the therapies of AD mainly focus on counterbalan-
cing the neurotransmitter disturbance, and there have not
been effective pharmacotherapeutic options for the preven-
tion and treatment of AD yet [6, 7]. Another neurological
disorder, epilepsy, is a common brain condition with an
unprovoked seizure of high recurrence rate, which is defined
epilepsy based on at least one of the following conditions: (1)

two unprovoked seizures that occur more than 24 h apart
and (2) diagnosis of an epilepsy syndrome [8, 9]. Epilepsy
is known to be closely related to the psychosocial, neurobio-
logical, and cognitive statuses and affects more than 70 mil-
lion people worldwide [8, 10]. Despite the advances in
antiepileptic drugs and surgeries, epilepsy treatments still
confront some challenges, such as the resistance to medical
treatment, underutilization of epilepsy surgery, and the gaps
in epilepsy-related knowledge [11]. Moreover, the etiologies
of AD and epilepsy are still unclear [12, 13].

It is believed that there is an association between AD and
epilepsy [14]. Both AD and epilepsy are neurological dis-
eases [15], and their incidence risks are proven to elevate
with age. AD is known to influence more than 40% of the
people over the age of 85 [16], and the incidence rate of epi-
lepsy also remains high in patients over 50 years old and
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peaks at the age of 70 years [10]. In addition, accumulating
evidence has proven that AD contributes to higher risk of
epilepsy [17–19]. It is reckoned that 10-22% of AD patients
have epilepsy [20]. Pathological alterations in entorhinal
cortex, subiculum, and hippocampal field CA1 are observed
in both temporal lobe epilepsy and AD [18, 21, 22]. Further-
more, both AD and epilepsy are associated with genetic fac-
tors. It has been proven that genetic factors play a pivotal
role in the occurrence of AD. In nonfamilial AD, genetic fac-
tors have a predominant role and account for more than
60% of the cases; while in familial AD, the familial genes
in AD are autosomal dominant, often with point mutations
in presenilin 1, presenilin 2, and amyloid precursor protein
[23]. SCN1A is recognized as an epilepsy-related gene, and
its variants are related to inherited genetic epilepsy [24].
Rohena et al. have proposed SNAP25 mutation as a risk fac-
tor for epilepsy, which could also lead to ataxia and seizure
in animal model [25]. Scher et al. have reported MTHFR
C677T variant as a potential genetic cause for epilepsy
[26]. In addition, the shared genetic background of AD
and epilepsy has also been explored. The presenilin 1 gene
(PSEN1) mutations are demonstrated to be associated with
AD and epilepsy. Epileptic seizures are recognized as the
clinical phenotypes of PSEN1 AD, and PSEN1 AD is sug-
gested to be considered as a genetic epilepsy syndrome
according to the new International League Against Epilepsy
nomenclature [27]. The genetic form of AD is characterized
by aberrant amyloid-β and potentially related to seizures
[14]. Toral-Rios et al. have proposed that the changes in
GSK3β and the encoding genes of tau are the genetic factors
that contribute to AD and temporal lobe epilepsy develop-
ments [28].

However, the treatment of epilepsy in patients with AD
remains to be a challenge, because the patients are prone
to be affected by drug interactions and adverse effects [20].
If there is a close relationship between epilepsy and AD,
the therapeutic strategies may be shared. Therefore, the asso-
ciation between epilepsy and AD is a pivotal issue. In this
research, we integrated the gene coexpression modules
(GCMs), genome-wide association studies (GWASs), and
expression quantitative trait loci (eQTLs) to identify the
shared GCMs of AD and epilepsy. Then, the shared biolog-
ical processes of the GCMs were investigated to analyze the
functional overlaps between these two diseases through
functional enrichment analysis. In addition, the hub genes
of AD- and epilepsy-associated GCMs were captured by
weighted key driver analysis (wKDA). The shared GCMs
and hub genes may be novel therapeutic targets for both
AD and epilepsy.

2. Materials and Methods

2.1. Study Population. The gene expression profiles of epi-
lepsy and AD samples were obtained from the Gene Expres-
sion Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
database. The epilepsy samples (access number: GSE63808,
platform: Illumina HumanHT-12 V3.0) included 129 epi-
lepsy patients, and the AD samples (access number:
GSE132903, platform: Illumina HumanHT-12 V4.0) con-

sisted of 97 AD patients and 98 healthy controls. The
genome-wide association study (GWAS) dataset of AD sam-
ples was obtained from Database of Genotypes and Pheno-
types (dbGaP, https://www.ncbi.nlm.nih.gov/gap, access
number: phs000219).

2.2. Data Preprocessing. Due to the difference in platforms of
GSE63808 and GSE132903 datasets, the annotated genes
were different. The removeBatchEffect function in limma
package (http://www.bioconductor.org/packages/release/
bioc/html/limma.html) [29] was used to remove the batch
effects after obtaining the shared genes of the two platforms.
Then, the two datasets were integrated into a matrix for fur-
ther analysis.

2.3. Construction of Gene Coexpression Modules (GCMs).
The AD (case) and epilepsy expression data were used
together for the GCM identification. The control samples
in the GSE132903 dataset were not included in this analysis.
We performed the weighted gene coexpression network
analysis (WGCNA) by using WGCNA R package [30]. First,
the similarity matrix was constructed by calculating the
Pearson correlation coefficient between every two genes with
the following equation: Sij = ∣ð1 + corðxi + yjÞÞ/2 ∣ . Then, the
similarity matrix was transformed to adjacency matrix with
the equation of αij = jð1 + corðxi + yjÞÞ/2jβ, and β repre-
sented the soft-threshold. The topological matrix was
obtained based on the topological overlapmeasure ðTOMÞ
= ð∑μ≠ijαiμαμj + αijÞ/ðmin ð∑μαiμ +∑μαjμÞ + 1 − αijÞ.

Hierarchical clustering analysis was carried out using 1-
TOM, the index which reflected the similarity between every
two genes. The modules were identified with dynamic branch
cutting method, and the closely interconnected genes were
placed into the same module (minimummodule size = 30).
Module eigengene (ME), the representative gene of each mod-
ule that reflected the whole expression level of corresponding
module, was calculated using the equation of ME =
princomp ðxijqÞ.

2.4. Identification of Shared GCMs between AD and Epilepsy.
The Marker Set Enrichment Analysis (MSEA) in Mergeo-
mics [31] was adopted to identify the shared GCMs between
AD and epilepsy, and the parameters that were used
followed the default pipeline stablished by Shu et al. P value
= 0.05 was used as the threshold for screening, and the fil-
tered expression quantitative trait loci (eQTLs) were ana-
lyzed by MSEA. Three files were input: the summary
results of GWAS, the eQTL information of single nucleotide
polymorphisms (SNPs), and the GCM results of WGCNA.

2.5. Functional Enrichment Analysis. The KOBAS 3.0
(http://kobas.cbi.pku.edu.cn/index.php) was used to per-
form the functional enrichment analysis of genes. P < 0:05
was considered as the threshold to screen for significantly
enriched Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Reactome pathways.

2.6. Identification of Hub Genes. Hub genes are defined as
the genes with the highest degree (the number of genes
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Figure 1: Construction of gene coexpression modules. (a) Clustering analysis of the samples showed there were no outlier samples. (b) The
soft-threshold was selected as β = 8 to satisfy the criteria of scale free topology. (c) Gene dendrogram showed that 16 coexpression modules
were identified. The gray module denoted the genes that could not be classified into any modules.
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Figure 2: Venn diagrams of overlap in gene coexpression modules and pathways between AD and epilepsy. (a) Overlap in gene
coexpression modules between AD and epilepsy. (b) Overlap in pathways between AD and epilepsy.
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connected to the hub) in the gene coexpression networks
calculated by maximum neighborhood component (MNC)
algorithm. The weighted key driver analysis (wKDA) in
Mergeomics was used to identify the hub genes of each
GCM, and the results were visualized by the Cytoscape soft-
ware [32]. The above analyses were performed using the R
software (version 3.5.2).

3. Results

3.1. A Total of 16 GCMs Were Identified for AD and Epilepsy
Samples. There were 22,614 common genes for the gene
expression profiles of AD and epilepsy samples. After
removal of batch effects and integration of matrix, 22,614
genes were obtained. Clustering analysis showed that there
were no outlier samples (Figure 1(a)). The soft-threshold
was selected as β = 8 to meet the criteria of scale free topol-
ogy (the correlation coefficient between log ðkÞ and log ðpð
kÞÞ greater than 0.8) (Figure 1(b)) [33, 34].

After identification of the gene modules, the ME of each
module was calculated. Then, clustering analysis was per-
formed on the modules, and the highly correlated modules
were merged (height = 0:25). As shown in Figure 1(c), 16
modules were obtained.

3.2. Shared GCMs between AD and Epilepsy. The identified
16 modules included AD-related modules, epilepsy-related
modules, and modules associated with both AD and epi-
lepsy. The shared GCMs between AD and epilepsy were
identified by MSEA using the GCM information above and
the GWAS data of AD. As shown in Figure 2(a), 11 modules
were associated with AD and 9 with epilepsy. Among them,
four modules (the brown, yellow, red, and midnightblue
modules) were associated with both AD and epilepsy. Func-
tional enrichment analysis of the genes in these 16 modules
revealed that there were 725 pathways related to AD and 485

pathways related to epilepsy. Among them, 113 pathways
were related to both AD and epilepsy (Figure 2(b)).

3.3. Shared Biological Processes of AD- and Epilepsy-
Associated GCMs. Functional enrichment analysis of the
genes in the 4 shared modules between AD and epilepsy
was carried out. The significantly enriched pathways in the
brown, midnightblue, red, and yellow modules are shown
in Figures 3(a) and 3(b) and Figure S1A and Figure S1B,
respectively. There were 713 genes in brown module, 152
in midnightblue module, 287 in red module, and 486 in
yellow module. In addition, the result of functional
enrichment analysis of these four modules was provided in
Table S1. It was found that the genes in the 4 shared
GCMs were significantly enriched in nervous system-
related pathways, such as AD and neuroactive ligand-
receptor interaction, indicating that the genes in these
GCMs played a key role in AD and epilepsy.

3.4. Hub Genes of AD- and Epilepsy-Associated GCMs. The
wKDA in Mergeomics was used to construct the gene
expression networks for the 4 shared GCMs. Then, the hub
genes were identified. As shown in Figure 4 and Figure S2,
KIAA0368 in the brown module, MMT00043109 and
TRPC1 in the red module, STEAP1, C2ORF40, MSX1, KL,
and CLIC6 in the midnightblue module, and NR3C1 in the
yellow module exhibited the highest degree in each of the
gene coexpression networks and were identified as the hub
genes of each module.

4. Discussion

As neurological disorders, AD and epilepsy are considered
to be interconnected with shared symptoms and etiologies
[35]. In addition, genetic factors also play a crucial role in
the pathogenesis of AD and epilepsy. In this research, we
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Figure 3: Function enrichment analysis of the genes in the (a) brown and (b) midnightblue modules. The vertical axis represented the
pathways, and the color alteration of the dot from red to blue indicated the alteration of P value from large to small.
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constructed 16 GCMs and identified 4 shared GCMs
between AD and epilepsy by integrated analyses of GCMs,
GWAS, and eQTLs. To analyze the functional overlaps
between the two diseases, the shared biological processes of
these GCMs were investigated by functional enrichment
analysis. It revealed that the genes in the shared GCMs were
significantly enriched in nervous system-related pathways,
such as AD and neuroactive ligand-receptor interaction
pathways. Furthermore, the hub genes of each AD- and
epilepsy-associated GCM were captured, including TRPC1,
C2ORF40, NR3C1, KIAA0368, MMT00043109, STEAP1,
MSX1, KL, and CLIC6.

Transient receptor potential canonical 1 (TRPC1)
encodes the TRPC1 protein, which is a crucial member of
the TRPC proteins [36]. TRPC proteins are main gates of
Ca2+ entry and participate in multiple biological processes,
including transcription factor activation and cell prolifera-
tion [37]. As first reported in 1995, TRPC1 protein can

interact with TRPC4 and TRPC5 to form TRPC1/4/5 chan-
nels, which are significantly implicated in epilepsy [38–40].
It is generally known that TRPC1/4 channels can lead to
the excitotoxicity and epileptiform burst firing in the CA1
and the lateral septum, which are pathophysiological ele-
ments of epilepsy [41, 42]. Consequently, TRPC1 is the
potential target for the treatment of epilepsy. Previous study
has suggested that calcium homeostasis dysfunction could
occur in AD [43]. Due to the vital effect of TRPC1 on Ca2+

entry, it is hypothesized that TRPC1 is also probably associ-
ated with AD. A previous study confirmed that TRPC1
played a protective role in neurodegeneration and neurotox-
icity, which were typical features of AD, through regulation
of Ca2+ influx [44–46]. Therefore, TRPC1 may be a shared
genetic risk factor for AD and epilepsy.

The orphan C2ORF40 gene encodes Ecrg4, a preprotein
precursor related to neural progenitor responsiveness of cen-
tral nervous system injury [47, 48]. The expression of
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C2ORF40 alters in some brain cells of AD patients, which is
probably implicated in the neuroimmune response in AD
via recruiting the microglia or infiltrating monocytes to the
white matter [49], while in status epilepticus, the infiltrating
monocytes could enhance the inflammation of brain and
accelerate neural injury [50]. Based on these studies, we
speculate that C2ORF40 may also be involved in epilepsy
by affecting the infiltrating monocytes.

NR3C1 encodes glucocorticoid receptor (GR), a 94 kDa
protein that belongs to the superfamily of nuclear hormone
receptors [51]. GR plays an important role in neuron func-
tion by binding to glucocorticoid hormones [52]. In the
mouse model of AD, the early downregulation of GR was
observed, and the decreased GR level could be normalized
by rosiglitazone, a potent agonist used for the cognitive
function improvement for AD patients [53]. Brain-derived
neurotrophic factor (BDNF), highly expressed in the brain,
is a crucial regulator of neuron function, and the altered
expression of BDNF is related to epilepsy, while GR shares
several similarities with BDNF and is able to regulate BDNF
expression level [52]. Therefore, it is proposed that the GR-
encoding gene NR3C1may participate in the pathogenesis of
epilepsy by regulating BDNF, and NR3C1 is a possible
shared gene for AD and epilepsy.

In conclusion, we identified 4 shared GCMs and 9 hub
genes, including TRPC1, C2ORF40, NR3C1, KIAA0368,
MMT00043109, STEAP1, MSX1, KL, and CLIC6 through
integrating analyses of genomics and genetics. The shared
GCMs and hub genes should be helpful for unraveling the
current difficulty of epilepsy treatment in AD and providing
novel shared therapeutic strategies targeting both of these
two diseases.
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