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Abstract

patients with chronic obstructive pulmonary disease (COPD).
Background Glucocorticoids have been widely used to treat
Nevertheless, corticosteroid insensitivity is a major barrier to the effective treatment of COPD and its mechanism remains unclear.
This study aimed to evaluate the effect of cathelicidin LL-37 on corticosteroid insensitivity in COPD rat model, and to explore the
involved mechanisms.
Methods COPD model was established by exposing male Wistar rats to cigarette smoke combined with intratracheal instillation of
lipopolysaccharide (LPS). Inhaled budesonide and LL-37 were consequently applied to COPD models separately or collectively to
confirm the effects on inflammatory cytokines (tumor necrosis factor [TNF]-a and transforming growth factor [TGF]-b) by enzyme-
linked immunosorbent assay (ELISA) and lung tissue histopathological morphology. Expression of histone deacetylase-2 (HDAC2)
and phosphorylation of Akt (p-AKT) in lung were also measured.
Results Briefly, COPD model rats showed an increased basal release of inflammatory cytokines (lung TNF-a: 45.7±6.1 vs. 20.1±
3.8pg/mL, P<0.01; serum TNF-a: 8.9±1.2 vs. 6.7±0.5pg/mL, P=0.01; lung TGF-b: 122.4±20.8 vs. 81.9±10.8pg/mL,
P<0.01; serum TGF-b: 38.9±8.5 vs. 20.6±2.3pg/mL, P<0.01) and COPD related lung tissue histopathological changes, as well
as corticosteroid resistance molecular profile characterized by an increase in phosphoinositide 3-kinase (PI3K)/Akt (0.5±0.1 fold of
control vs. 0.2±0.1 fold of control, P=0.04) and a decrease inHDAC2 expression and activity (expression: 13.1±0.4mmol/mg vs.
17.4±1.1mmol/mg, P<0.01; activity: 1.1±0.1 unit vs. 1.4±0.1 unit, P<0.01), compared with control group. In addition, LL-37
enhanced the anti-inflammatory effect of budesonide in an additive manner. Treatment with combination of inhaled corticosteroids
(ICS) and LL-37 led to a significant increase ofHDAC2 expression and activity (expression: 15.7±0.4mmol/mg vs. 14.1±0.9mmol/
mg, P<0.01; activity: 1.3±0.1 unit vs. 1.0±0.1 unit, P<0.01), along with decrease of p-AKT compared to budesonide
monotherapy (0.1±0.0 fold of control vs. 0.3±0.1 fold of control, P<0.01).
Conclusions This study suggested that LL-37 could improve the anti-inflammatory activity of budesonide in cigarette smoke and
LPS-induced COPD rat model by enhancing the expression and activity ofHDAC2. The mechanism of this function of LL-37 might
involve the inhibition of PI3K/Akt pathway.
Keywords: Chronic obstructive pulmonary disease; Glucocorticoid insensitivity; Histone deacetylase-2; Phosphoinositide 3-kinase/
Akt pathway

Introduction reporting inconsistent results regarding the inflammatory

levels in relation to number of inflammatory cells and
Chronic obstructive pulmonary disease (COPD) is a
common and heterogeneous chronic lung disorder and a
leading cause of morbidity and mortality worldwide.[1-4]

The pathogenesis of COPD is associated with abnormal
inflammation mainly affecting the lung parenchyma
and peripheral airways. Glucocorticoids are the most
effective anti-inflammatory drugs for many chronic
inflammatory and immune diseases but are relatively
ineffective against COPD.[5] Many studies have evaluated
the anti-inflammatory effects of glucocorticoids on COPD,
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cytokines,[6-8] regarding the crucial clinical outcomes such
as mortality,[9-11] quality of life,[9,12,13] and lung func-
tion.[9,14,15] The relatively low responsiveness of COPD to
glucocorticoids, namely the glucocorticoid resistance/
insensitivity, may be one of the underlying reasons
accounting for these inconsistent results.[16]

The exact molecular mechanism of glucocorticoid resis-
tance has not yet been fully elucidated. Recent studies have
shown that reduced histone deacetylase-2 (HDAC2)
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activity, which is critical for glucocorticoid-dependent
anti-inflammatory action, is induced by oxidant stress and

Enzyme-linked immunosorbent assay
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abnormal inflammation and may be involved in the
development of glucocorticoid insensitivity.[17-20] In addi-
tion, altered activity of signaling pathways kinase, such as
phosphoinositol-3-kinase d (PI3Kd), could inflict HDAC2
and suppress the function of glucocorticoid receptor-a
indirectly.[21] Moreover, cigarette exposure is considered a
major risk factor for COPD. Oxidant stress induced by
cigarette smoke has shown to promote COPD glucocorti-
coid resistance model, which was correlated with reduced
HDAC2 activity.[22-24]

LL-37, theonlypeptideof the cathelicidin family found in the
human body, is an important molecule of host innate
immunity against invadingmicrobes. Apart fromdirect anti-
bacterial effects, LL-37 has the ability to decrease infection-
induced inflammatory effects by inhibiting the activation of
c-Jun N-terminal kinase (JNK) and the Akt signal pathways
while decreasing the pro-inflammatory cytokine levels.[25,26]

Accordingly, we hypothesized that LL-37 could restore
corticosteroid sensitivity by enhancing HDAC2 expression
through inhibition of the PI3K/Akt pathway.

In this study, we investigated the role and effect of LL-37
on glucocorticoid resistance using the rat model induced by
cigarette smoke exposure and lipopolysaccharide (LPS).
Furthermore, we examined the role of HDAC2 and
phosphorylation of Akt (p-AKT) to explore the related
mechanism.

Methods

Ethical approval

All animal studies (including the mice euthanasia proce-
dure) were done in compliance with the regulations and
guidelines of Beijing Hospital institutional animal care and
conducted according to the Association for Assessment
and Accreditation of Laboratory Animal Care (AAALAC)
and the Institutional Animal Care and Use Committee
(IACUC) guidelines.

COPD rat model

The 10-week-old male Wistar rats weighing 252±7g were
obtained from Xingrong experimental animals company
(Beijing, China). Rats in control group (n=5) was main-
tained in specific-pathogen-free (SPF) laboratory with
temperature of 24.0±0.5°C and humidity of 50% to 60%
for 6 weeks. COPD rats (n=20) were exposed to cigarette
smoke for 28 days (1cigarette/rat, 1h for every treatment,
twice a day) and intratracheal instillation of LPS for 2 days
(Sigma Company, USA; 200mL/rat, 1g/L) as previously
described.[27] From the 29th day, the COPD rats were
randomized in additional groups (n=5/group): Bud group,
rats receivingaerosol inhalationofbudesonide (AstraZencca
Company, Sweden; 2mg/20mL per rat); LL37 group, rats
receiving intratracheal instillation of LL-37 (LLGDFFRKSK
EKIGKEFKRIVQRIKDFLRNLVPRTES-COOH, synthe-
sized using F-moc chemistry at Saibaisheng Biotechnology,
China; 1.5mg/kg); Bud+LL-37 group, rats receiving a
combination of budesonide and intratracheal installation
for 2 weeks; and COPD group: received no treatment.
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The levels of tumor necrosis factor-a (TNF-a) and
transforming growth factor b (TGF-b) in serum and lung
tissue homogenate were measured using Quantikine
ELISA kit (R&D Systems, Germany).

HDAC2 expression and activity
HDAC2 expression level and activity of lung were
measured by HDAC2 assay kit (Epigentek, USA) and P-
4002 HDAC activity assay kit (Epigentek, USA) respec-
tively according to the manufacturer’s instructions.

Detection of p-AKT by western blotting
Todetermine the protein content in lungs tissue, cytoplasmic
proteins were prepared according to the manufacturer’s
instructions. The p-AKT level was detected by sodium
dodecyl sulfate–polyacrylamide gelelectrophoresis/Western
blotting with antibody (Abcam, UK). Equal loading of
sample was confirmed by immumoblotting of b-actin.

Morphology
Lung tissues were cut into sections and stained with
hematoxylin and eosin (H&E). Then Olympus PM-10 AD
optical microscope and photographic system (Olympus,
Tokyo, Japan) were used to observe the morphology.

Statistical analysis
Data were expressed as means± standard deviation (SD).
All statistical analysis was performed using SPSS version
20.0 (IBM, USA). Levene test was used to assess the
equality of variances of groups. Data were evaluated by
one-way analysis of variance (ANOVA) with least-
significant difference (LSD) or Games-Howell post hoc
test for comparisons between groups. Statistical signifi-
cance was also assessed using Student’s t-test. A P<0.05
was considered statistically significant.

Results
Cigarette smoke and LPS inducing COPD related
manifestations in rats

Local and systemic inflammations are characteristics of
COPD. In order to determine the inflammatory level of
COPD, we analyzed the TNF-a and TGF-b levels of lung
homogenate tissue and serum in COPDmodel rats. Briefly,
the significant increases in inflammatory cytokines from
lung homogenate tissue or serum were found in the COPD
group, compared with control group (lung TNF-a: 45.7±
6.1pg/mL vs. 20.1±3.8pg/mL, t=8.0, P<0.01; serum
TNF-a: 8.9±1.2pg/mL vs. 6.7±0.5pg/mL, t=3.7, P=
0.01; lung TGF-b: 122.4±20.8pg/mL vs. 81.9±10.8pg/
mL, t=3.9, P<0.01; serum TGF-b: 38.9±8.5pg/mL vs.
20.6±2.3pg/mL, t=4.6, P<0.01; Figure 1). In addition,
bronchial smooth muscle thickening and significant
inflammatory cells infiltration with evidence of alveolar
wall rupture fused to the bulla were observed in the lung
tissue of COPD group; those morphological changes
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closely resemble the manifestations from lung tissue of
COPD group [Figure 2].

Furthermore, compared with control group (expression:
17.4±1.1mmol/mg; and activity: 1.4±0.1 unit), both

Figure 1: Concentration of inflammatory cytokines TNF-a (A and B) and TGF-b (C and D) in lung tissue homogenate and serum of rats. COPD: Chronic obstructive pulmonary disease; LPS:
Lipopolysaccharide; NS: No significance; TNF: Tumor necrosis factor; TGF: Transforming growth factor.
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Corticosteroid insensitivity and HDAC2 activity and
expression in COPD model rats

LL-37 treatment improving corticosteroid sensitivity in COPD
model rats
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Compared with COPD group, no significant differences in
lung and serum TGF-b levels were found in Bud group
after inhaled corticosteroids (ICS) treatment (lung TGF-b:
Bud group 114.0±13.4pg/mL, t=0.8, P=0.47; serum
TGF-b: Bud group 30.9±8.4pg/mL, t=1.5, P=0.18).
Contrary, significantly decreased lung and serum TNF-a
levels were found in Bud group compared to COPD group
(lung TNF-a: Bud group 30.2±4.0pg/mL, t=4.8, P<
0.01; serum TNF-a: Bud group 6.2±1.2pg/mL, t=3.5,
P<0.01; Figure 1). Moreover, the evidence of inflamma-
tory cells infiltration and alveolar wall rupture was slightly
but significantly decreased in Bud group [Figure 2].

5

expression and activity of HDAC2 in the lung decreased
significantly in the COPD group (expression: 13.1±0.4m
mol/mg, t=8.6, P<0.01; activity: 1.1±0.1 unit, t=6.4,
P<0.01) and Bud group (expression: 14.1±0.9mmol/mg,
t=5.2, P<0.01; activity: 1.0±0.1 unit, t=5.8, P<0.01;
Figure 3A and 3B). In addition, the level of p-AKT was
significantly higher in COPD group (0.5±0.1 fold of
control, t=3.1, P=0.04), but not in Bud group (0.3±0.1
fold of control, t=0.6, P=0.58), compared to control
group (0.2±0.1 fold of control) [Figure 4].
LL-37 showed additive and synergistic inhibition with
budesonide on lung and serum TGF-b levels (lung TNF-a:
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15.9±1.7pg/mL in LL37 group, and 9.7±2.9pg/mL in
Bud+LL37 group; serum TNF-a: 8.2±2.8pg/mL in LL37

destruction of lung tissue induced by smoke and LPS
[Figure 2].

Figure 2: Morphological manifestations of lung tissue of rats (HE staining; original magnification,�100). (A) Control group: structures of airway and alveoli were normal. Bronchial cilia were
well arranged. No obvious inflammation infiltration. (B) COPD group: numerous lymphocytes and neutrophils infiltrated surrounding bronchi and vessels (white arrow). Alveolar walls ruptured
into bulla (red arrow) and some alveolar septa widened. (C) Bud group: infiltration of inflammatory cells and destruction of alveolar walls (red arrow) also can be seen with a slightly
improvement compare to COPD group. Cilia of bronchial epithelia distributed poorly (black arrow). (D) LL37 group: the severity of infiltration of inflammatory cells and destruction of alveolar
walls was similar with Bud group. (E) Bud+LL37 group: the degree of inflammation and emphysema was mild. Morphological manifestations were very close to control group. COPD: chronic
obstructive pulmonary disease.
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group, and 5.4±0.8pg/mL in Bud+LL37 group; Lung
TGF-b: 69.6±10.0pg/mL in LL37 group, and 39.4±11.8
pg/mL in Bud+LL37 group; serum TGF-b: 22.3±4.7pg/
mL in LL37 group, and 13.9±2.0pg/mL in Bud+LL37
group; Figure 1). Furthermore, the combination of LL-
37 and budesonide could significantly improve the

5

In addition, lung HDAC2 expression and activity were
both significantly increased in Bud+LL37 group (expres-
sion: 15.7±0.4mmol/mg, t=3.5, P<0.01; activity: 1.3±
0.1 unit, t=4.2, P<0.01), but not in LL37 group
(expression: 13.1±0.4mmol/mg, t=2.1, P=0.07; activity:
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1.0±0.1 unit, t=0.59, P=0.56; Figure 3A and 3B), along
with suppression of Akt pathway (LL-37 group: 0.2±0.1

presence of COPD-like inflammation in the exposed
animals. However, COPD is a complex disease and no

Figure 3: Expression of HDAC2 (A) and activity of HDAC2 (B) in lung tissues. COPD: chronic
obstructive pulmonary disease; HDAC2: histone deacetylase-2; LPS: lipopolysaccharide;
NS: no significance.

Figure 4: Expression of p-AKT in lung tissues. COPD: chronic obstructive pulmonary
disease; NS: no significance; p-AKT: phosphorylation of Akt; LPS: lipopolysaccharide.
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fold of control, t=1.1, P=0.28; Bud+LL37 group: 0.1±0
fold of control, t=3.0, P<0.01), compared with Bud
group [Figure 4].

Discussion
73
COPD is a chronic inflammatory disorder, in which innate
immune responses are not a relevant component.[28]

Cigarette smoking is the most commonly encountered
risk factor for COPD. Animal models of cigarette smoke-
induced COPD reliably reflect the inflammatory and
pathogenic mechanisms of the disease. Using a guinea pig
or murine, it usually takes 6-month exposure period to
establish the COPD model.[29] Combining induction
agents could shorten the modeling period and induce
severer stage. In present study, COPD model was
established by exposing male Wistar rats to cigarette
smoke combined with intratracheal instillation of LPS.
Consequently, elevated inflammatory cytokines levels and
destruction of lung structure were observed confirming the

5

such animal model has completely replicated the inflam-
matory response of COPD to date. Our models, with the
shortcomings of short modeling time, could only partially
reflect the characteristics of COPD.

LL-37 is the only peptide of the cathelicidin family found in
the human body, that acts as an effector molecule of the
innate immune system.[30] Apart from broad antibacterial
effects, it also serves as a potent immunoregulator having a
delicate role in inflammatory/anti-inflammatory balance in
infectious and inflammatory diseases.[31] Significantly
higher levels of LL-37 have been observed in sputum,
airway epithelium and BALF samples in COPD patients
compared to healthy individuals.[32-36] In addition, LL-37
expression in airway epithelium has shown to be positively
correlated with airway wall thickness and collagen
deposition.[37] Moreover, high sputum hCAP18/LL-37
levels were associated with increased risk of exacerbation,
non-typeable Haemophilus influenzae colonization, higher
age and higher levels of inflammatory markers.[36] Overall,
these studies have suggested that LL-37 was involved in the
pathogenesis of COPD, which was somewhat contradic-
tory with our results. Yet, compared to healthy individuals,
significantly higher LL-37 levels were found in bronchoal-
veolar lavage fluid (BALF) in patients with early stages of
COPD (GOLD I–II), and significantly lower LL-37 levels in
patients with advanced COPD (GOLD III-IV).[35] Al-
though there were also some contradictory reports,[33,38]

these data suggested that the role of LL-37 and its
regulation in COPD was a complicated process, especially
in patients with the advanced stage of COPD.

http://www.cmj.org


Moreover, protein structures are closely related to their
functions. An increased presence of peptidylarginine

PI3Kd/Akt activity was increased, andHDAC2 reduced in
COPD patients.[21,54] This suggested that activation of

1. Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E,

Chinese Medical Journal 2019;132(5) www.cmj.org

74
deiminase (PADIs) and citrullinated proteins have been
found in the lungs of smokers and COPD patients, which
led to post-translational modification of proteins like LL-
37 by converting cationic peptidylarginine residues to
neutral peptidylcitrulline.[39,40] Previous study has
reported that citrullinated LL-37 was less efficient at
neutralizing LPS, and more prone to degradation by
proteases.[39] Cell death events were crucial for balancing
inflammatory reactions. LL-37 facilitated clearance of
apoptotic neutrophils (ie, non-functional cells with intact
membranes) from the system by surrounding macrophages
in an immunologically silent manner; this process in turn
resulted in a massive secretion of anti-inflammatory
mediators.[41,42] The secondary necrosis of apoptotic
neutrophils represents was an important immunomodula-
tory function of LL-37, that was abolished by citrullina-
tion,[39] which could potentially explain the contradictory
reports concerning the role of LL-37 in COPD. Immuno-
modulatory function of LL-37 relies on normal structure,
which is altered in COPD and smokers. Our study
proved that exogenous treatment of naïve LL-37 could
regulate the abnormal inflammation, thus supporting this
point of view.

Glucocorticoid resistance is a main barrier of ICS
implication in COPD. A body of evidence has verified
the important role of HDAC2 in the induction of steroid
resistance. The levels of HDAC2 were decreased in lung
parenchyma, bronchial biopsies and alveolar macrophages
in patients with COPD and in smokers,[43] as well as in
macrophages and lungs of mice exposed to cigarette
smoke. They were also correlated with disease severity and
exacerbation.[44] In patients with very severe COPD, the
expression of HDAC-2 was less than 5% of the expression
observed in normal lung.[45] In our study, HDAC2
expression was significantly decreased in COPD model
rats, along with unsatisfactory response to ICS, which was
consistent with previous reports.[27,46]

Considering these data, over the last decades HDAC2 has
become one of the most attractive targets for restoration of
glucocorticoid sensitivity. It has been reported that the
glucocorticoid resistance of COPD bronchoalveolar mac-
rophages could be completely reversed by overexpressing
HDAC2.[47] So far, several potential therapeutic avenues
for restoring HDAC2 function to improve steroid efficacy
in COPD have emerged. A low dose of theophylline has
shown to improve the anti-inflammatory action of
corticosteroid in COPD.[48,49] Although the exact molecu-
lar targets of theophylline remain unresolved, the
downstream mechanisms involve the restoration of
HDAC2 activity.[21] Similar to theophylline, some other
agents such as the curcumin,[50] nortriptyline,[51] and
erythromycin[17,50,52,53] have been proposed to mediate
restoration of corticosteroid function through a protection
of HDAC-2 expression and activity. In our study, LL-37
treatment enhanced the expression and activity ofHDAC2
in lung of COPD model rats. Combining LL-37 with ICS
suppressed the inflammatory cytokines more effectively
compared to monotherapy showing notable improvements
and changes in lung tissue.

5

PI3Kd was responsible for the dysfunction of HDAC2.
Indeed, the activation of PI3Kd could reduce HDAC2
activity in smoking-induced inflammation.[21,24,51] Most
of the above mentioned medicines appeared to restore
HDAC2 via selective inhibition of PI3Kd,[17,50-53] and
selective PI3Kd inhibitors were also effective.[21,54] In our
study, the significantly increased HDAC2 expression and
activity, as well as inhibition of Akt expression, were
observed in the group receiving combination therapy
compared to Bud group. Still, the differences in p-AKT
expression between control group and Bud group were not
significantly different, while HDAC2 expression and
activity was lower in Bud group. PI3K activation was
not completely related to the expression of HDAC2 and
corticosteroid response as it has been the case in the other
studies. This discrepancy might be due to the limited
number of experimental animals in our study and
complexity of mechanisms and pathways that regulate
HDAC2 expression and activity.

In conclusion, this study indicated that LL-37 improved
the anti-inflammatory activity of budesonide in cigarette
smoke and LPS-induced COPD model rats by enhancing
the expression and activity of HDAC2. The mechanism of
this function of LL-37 may involve the inhibition of PI3K/
Akt pathway.
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